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ON THE NUMBER OF RESTRICTED PRIME FACTORS
OF AN INTEGER. III

by Karl K. NORTON

§1. INTRODUCTION

Let P be the set of all (positive rational) prime numbers, and let E be an
arbitrary nonempty subset of P. Throughout this paper, let p denote a general
member of P, and for non-negative integers a, write p* || n if p*| n and p* oy n
For each positive integer n, define

own;E)= > 1, Qn;E)= ) a.
p|n, peE p®||n, peE
We usually write o (n; P) = o (n), Q(n; P) = Q(n). In this paper, we shall
estimate the functions

S(x,y;E, 0) = card {n < x: o (n; E) > y},

(1.1)
S(x,y;E, Q) = card {n < x:Q(n; E) > y}

when y is appreciably larger than the normal order of w (n; E) and Q (n; %); y
may even be as large as the maximum order of ® (n; E) or Q (n; E), respectively.
(Here and throughout, card B means the number of members of the set B, and if
0 (n) is a statement about the integer n, we often write {n < x: Q (n){ instead of
fn:1 < n < xandQ(n)})
Define
E(x= > p! (x real). (1.2)
p<x, peE

In[13],it was observed thatif E (x) - + ocasx — + oo, then both the average
order and the normal order of w (n; E) are equal to E (n), and the same statement
holds for Q (n; E). In [13], we obtained sharp inequalities for the functions (1.1)
when 0 < y < 2E (x), roughly. In [14], we gave asymptotic formulas for the
same functions when E (x) - + ccandy = E(x) + o (E (x))as x - + oo. It
is well-known, however, that

E(x) < loglog x + O (1) for x> 2,
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32 K. K. NORTON

whereas if x is large, o (n; E) and Q (n; E) may be much larger than log log x for
some values of n < x. For example, the method of [6, pp. 262-263, 359] shows
that

o (n) log log n

lim sup =1, (1.3)
B % g log n

and a more precise version of (1.3) was obtained in [ 12, pp. 96-100]. (See also the
remarks at the beginning of §3 below.) Before stating estimates for the functions
(1.1) when yislarge, it seems worthwhile to generalize results like (1.3) to o (n; E).
First define

tx;E)= Y 1 (x real), (1.4)

p<x, peE
and write |
log, x = log log x, log, x = log (log, _ ,x)

for r=3,4,... (1.5)

THEOREM 1.6. Suppose that there exists a real number v (E) > 0 such that

n(x; E) = v (E) (x/log x) {1 + Og(1/log x)}
for all x = 2. (1.7)

Then for each n = 3, we have

logn {1 + logy(E)} logn
+ 2
log, n (log, n)

-+OE<J%2L>, (1.8)

o(n; E) <

(log, n)*
with equality for infinitely many n.

Here and throughout, the notation O , . implies a constant depending at
most on 9, g, .., while O without subscripts implies an absolute constant.
Likewise, for i = 1,2, .., we shall write c; (9, ¢, ...) for a positive number
depending at most on 9, &, ..., while ¢; will mean a positive absolute constant.

[t is interesting to observe that a much weaker hypothesis than (1.7) still
implies that the maximum order of o (n; E) is approximately (log n) (log, n)~ 1.
See the remarks after the proof of Theorem 1.6 in §3.

After (1.3) and Theorem 1.6, it is natural to ask how often o (n; E) and
Q (n; E) assume values appreciably larger than their normal order E (n). It
appears that rather little was known about this problem until very recently. The

earliest contribution was by Hardy and Ramanujan [5] (reprinted in [15,
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pp. 262-275]), whose estimate for card {n < x: o (n) = m} leads easily to a
good upper bound for S (x, y; P, w) (essentially the same as the bound given in
Theorem 1.14 below). However, they did not state explicitly a result of the latter
type. For arbitrary E, much weaker upper bounds for S(x,y;E, ) and
S (x,y; E, Q) can be derived from a general theorem of Turan [19] on the
distribution of values of additive functions. (See also Turan [18] or Hardy and
Wright [6, pp. 356-358] for the case E = P, and see [13, §§1, 3] and [14, pp. 13-
19] for remarks on all of this early work.) For the particular functions  (n; E)

and Q (n; E), Turan’s bounds were improved considerably in the author’s paper
[13:;(5.16), (5.15), (1.11)], where it was observed that for any set E,

S (x, aE (x); E, ) < x exp {(a—1—oaloga) E (x)} (1.9)

for real x > 1, « > 1, where E (x) is defined by (1.2). A similar (slightly less
precise) result was stated for Q (n; E) when 1 < a < p,, where p, 1s the smallest
member of E. No lower bound was obtained in either case for & > 2, so that the
precision of (1.9) for large o was not clear. In a later paper [2], Erdos and Nicolas
obtained a rather good estimate in the special case E = P. They showed that for
any fixed o with 0 < a0 < 1,

card {n < x: o (n) > a (log x) (log, x)"'} = x!'7*7°) (1.10)

asx — + oo.(Infact, they obtained a somewhat more precise result resembling
Theorem 4.13 below.) However, they did not get an analogous result for Q (n),
nor did they generalize to o (n; E) or Q (n; E). Furthermore, their method did
not give good upper estimates for S (x, y; P, ®) when y is appreciably smaller
than (log x) (log, x)~!. We propose to remedy all of these drawbacks to some
extent. First, we obtain the following lower bound by a refinement of the Erds-
Nicolas method:

THEOREM 1.11. Suppose that there exists a real number vy (E) > 0 suchthat
(1.7) holds. Let € > 0, and suppose that x > c, (E, &) and

¢, (E) <y < (log x) (log, x)~!
+ {1 + log v (E) — €} (log x) (log, x) 2. (1.12)
Then
S(x,y;E,0) > xexp {—y(logy + log, y — log v (E) — 1)
+ O (y (log, y)/log y)} . (1.13)
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34 K. K. NORTON

(1.8) shows that only a very small weakening of the hypothesis (1.12) would be
of any interest. In Theorem 3.20, we assume much less than (1.7) and derive a
result similar to Theorem 1.11 (but somewhat weaker).

Concerning upper bounds for S (x, v: E, ), we have obtained only a modest
improvement of (1.9); see Theorem 4.8 and Corollary 4.12. It should be
emphasized that (1.9) and Theorem 4.8 hold for an arbitrary set E (without the
assumption (1.7)). Using the same methods, we deduce

THEOREM 1.14.  Suppose that there exists a real number v (E) > 0 such
that (1.7) holds. If x =2 3 and y = y(E)log, x, then
S(x,y; E,0) < xexp {—y(log y — log; x — log y(E) —1)
— v (E) log, x + O (y/log, x)} . (1.15)

Although there i1s a considerable gap between (1.13) and (1.15), the results are
more general and somewhat sharper than those of Erdos and Nicolas [2]. In
particular, we get a generalization of (1.10) (see Theorem 4.13). Theorems 1.11
and 1.14 also yield immediately the following result which could not be obtained
by the Erdos-Nicolas method:

COROLLARY 1.16. Suppose that there exists a real number vy (E) > 0 such
that (1.7) holds. If 0 <o <1 and x = c5(E, ), then

S (x, (log x)*; E, o)
= x exp {—a (log x)* log, x + O ((log x)* log; x)} .

It should be mentioned that when E = P (the set of all primes) and y/log, x
is bounded and not too close to 1, Theorems 1.11 and 1.14 can be replaced by a
striking asymptotic formula which was recently obtained by H. Delange (for the
proof, see [2]):

THEOREM 1.17 (Delange). Let x,a,r,r, be real with x> 3, 1
<r, <a<r, Then

F (o) o 1/2 +odosz x—[oog2 x)
2m)t? (a—1)

* 1+ 0 !
(log x)l—q+aloga(log2 x)l/z ri,r2 10g2 X ’

S(x,olog, x; P,®) =
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where [z] means the largest integer <z and

1 o 1\*
Fv(a):r(wl)l—pl(“p—l) (17)'

Delange obtained a similar result for card {n < x: ® (n) < a log, x} when
x > 3,(log, x)7! < o < ry < 1(see [2]). In this connection, it is interesting to
note the estimate

F(a) = exp {—aloga — alog, o + (1—y)a + O (o/log o)}

for real o > 2, where vy is Euler’s constant. (Some effort is required to show this,
and we omit the proof.)

For values of o near 1, Kubilius [8, Theorem 9.2] proved a result on the
distribution of ® (n) which is similar to Theorem 1.17. His theorem was later
extended by himself [9] and Laurin¢ikas [10] to somewhat more general
additive functions, and it was generalized to ® (n; E) and Q (n; E) by Norton
[14]. The estimates for S (x, y; E, ®) derived in the present paper are not as
precise as Theorem 1.17 or the earlier work cited, but they are more general with
respect to E (except for [14]), and they hold for much larger values of y.

We now consider the function Q (n; E). Here we assume that E is any
nonempty set of primes; in particular, nothing like (1.7) is assumed. For
completeness, we begin by stating the following easy result :

THEOREM 1.18. Let p, be the smallest member of E. Then
Q(n; E) < (log n) (log p,) " * for all n>=l1, (1.19)
with equality if and only if n = p$ for some integer a > 0.

This follows from

n> [ p*= [l pf=pi"D.
p?||n, peE p?||n, peE
We now proceed to estimate S (x, y; E, Q) (defined by (1.1)). For y > 2E (x),
rather little previous work has been done on this problem, and all of it was
restricted to the special case E = P (the set of all primes). Selberg [17, p. 87]
stated without detailed proof the following asymptotic formula:

card {n < x:Q(n) = m} ~ 427" x log x

for integers m satisfying (2+¢)log, x < m < Blog, x. (Here ¢ > 0 is
arbitrarily small, while 4 and B are positive absolute constants: it is not clear
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from [17] how large B could be.) Selberg also gave an asymptotic formula for
card {n < x:® (n) = m} when m/log, x is bounded. His work was recently
extended to considerably larger values of m(roughly m < (log x)*'°) by Kolesnik

and Straus [7], whose theorems are quite complicated. These results, together
with the formula

Sx,y; P,Q = Y card{n<x:Qm =m} + S(x,Y;P,Q)
y<m<Y

and different tools for estimating S(x, Y; P, Q) from above, would yield some
information about S (x, y; P, Q). However, it appears that neither [17] nor [7]
would thus lead to an estimate for S (x, y; P, Q) which is both simple and
reasonably precise when y/log, x is unbounded. To the best of our knowledge,
the only previous result of the latter type is due to Erdos and Sarkozy [3], who
recently proved that

S(x, y; P, Q) < cyy*277x log x for x=3y=>1 (120

We shall gereralize their work to S (x, y; E, Q) and get a sharper upper bound.
Although the result could be phrased in terms of the function E (x) (defined by
(1.2)), it is more convenient to state it in terms of a real number v which in practice
is taken to be an approximation to E (x). (For example, if E = P, we could take
v = log, x.)

THEOREM 1.21. Let x,v,y be réal with x> 1L,v>1, and y > 0. Let
p, be the smallest member of E, and define

A=Axv;E)=max {2,| E(x) — v]|}. (1.22)
Then .
S(x,y;E, Q) < cs(py) py? xv/? et~ Dotpn (1.23)

We remark that (1.23) is our best upper bound when y > p,v — v'/2, but it
can be improved for smaller values of y (see Lemma 5.3). ‘

Concerning the problem of estimating S (x, y; E, Q) from below, we shall
state only the following simple result:

THEOREM 1.24. Let p, be the smallest member of E. If x > p, and
0 <y < (logx)(logp,)~*— 1, then

S(x,y; E,Q = (1/2) pi” " x.

To prove this, let k = [y] + 1 (so k is the smallest integer greater than y),
and observe that the multiples n of p% have the property that Q (n; E) > k > y.




PRIME FACTORS OF AN INTEGER | 37

There are just [xp; ¥] of these n < x, and since [z] > z/2 for z > 1, we get the
result.

It is clear that Theorem 1.24 is essentially best possible in certain extreme
cases (for example, if E = {p,},orif x = pfand y = a — 1).

When E = P (the set of all primes), we can take v = log, x. ThenA = O (1),
and we have the following corollary of Theorems 1.21 and 1.24:

COROLLARY 1.25. If x> ¢ and 0 <y < (log x) (log2)™' — 1, then
277" 2x < S(x,y: P, Q) < ¢ 27 x (log x) (log, x)/?.

Corollary 1.25 should be compared with the Erdos-Sarkozy result (1.20)
and with the asymptotic formula of Selberg mentioned after Theorem 1.18.
When y < 2 log, x (roughly), more precise estimates for S (x, y; P, Q) can be
obtained from [13] and [14].

In a later paper, we shall show that if p, is the smallest member of E and
e > 0 is fixed, then the precise order of magnitude of S(x, y;E, Q) is’

pi” x exp {(p;—1) E (x)}

when E (x) is sufficiently large and

p1 E(x) <y < (1—¢)(log x) (log py)™" .

This theorem is much more difficult to prove than Theorem 1.21. Its proof
depends on Theorem 1.21 and on an extension of Halasz’s work [4] concerning
the local distribution of Q (n; E). Theorem 1.21 remains our best upper bound

when y is close to (log x) (log p;)~ ! (cf. Theorem 1.18), and it seems to be the
most we can achieve by a fairly simple method.

§2. NOTATION

The symbols a, m, n always represent integers witha > O,m > 0,n > 0. The
letter p always denotes a prime, while v, w, x, y, z, a, B, , €, ¢ are real numbers.
[x] means the largest integer <x. The notation log, x is defined by (1.5), and the
notations 0, Os . ., ¢, c; (0, ¢, ..) are explained after Theorem 1.6. If a
condition such as “x > ¢; (9, €, ...)” is used as a hypothesis, it is to be understood
that ¢; (3, ¢, ...) 1s sufficiently large. We shall occasionally use the notations

<«, > to imply constants which are absolute. (Thus A = O (B) is equivalent to
A « B.)
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