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ON THE NUMBER OF RESTRICTED PRIME FACTORS

OF AN INTEGER. Ill

by Karl K. Norton

§1. Introduction

Let P be the set of all (positive rational) prime numbers, and let E be an

arbitrary nonempty subset of P. Throughout this paper, let denote a general

member of P, and for non-negative integers a, write p" if p" and 1

For each positive integer n, define

© (n ; £) X !' X
p\n, peE Pa || n, peE

We usually write to (n;P) co(n),fi(n;P) Q (n). In this paper, we shall

estimate the functions

S (x, y ; £, co) card {n ^ x : co (n ; £) > y}
(1.1)

S (x, y ; £, Q) card {n ^ x:Q.(n; E) > y}

when y is appreciably larger than the normal order of co (n ; E) and Q (n ; £) ; y

may even be as large as the maximum order of co (n ; E) or Q(n; £), respectively.

(Here and throughout, card B means the number of members of the set B, and if
Q (n) is a statement about the integer n, we often write {n ^ x : Q (n)} instead of

{n: 1 ^ n ^ x and Q (n)}.)

Define E(x)-X P'1 (x real). (1.2)
p^x, peE

In [13], it was observed that if E (x) -> + ooasx^ + oo, then both the average
order and the normal order of00 (n; E) are equal to E (n), and the same statement
holds for Q (n ; E). In [13], we obtained sharp inequalities for the functions (1.1)

when 0 < y < 2E (x), roughly. In [14], we gave asymptotic formulas for the

same functions when E (x) -» + 00 and y E (x) + o (E (x)) as x - + 00. It
is well-known, however, that

E (x) ^ log log x + 0 (1) for x ^ 2

1980 Mathematics Subject Classification. Primary 10H15, 10H25. Secondary 10A20,
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32 K. K. NORTON

whereas if x is large, co (n ; E) and Q (n ; E) may be much larger than log log x for
some values of n ^ x. For example, the method of [6, pp. 262-263, 359] shows

that
© (n)loglog

lim sup 1 (1.3)
n^ + oo log n

and a more precise version of (1.3) was obtained in [12, pp. 96-100]. (See also the

remarks at the beginning of §3 below.) Before stating estimates for the functions
(1.1) when y is large, it seems worthwhile to generalize results like 1.3) to co (n ; E).

First define

n(x;E) Yj 1 (x real), (1.4)
p ^ x, peE

and write
log2 X log log x, logr X log (logr- :x)

for r 3,4,... (1.5)

Theorem 1.6. Suppose that there exists a real number y (E) > 0 suchthat

n(x;E) y(E)(x/log x) {1 + 1/log x)}

for all x > 2. (1.7)

Then for each n ^ 3, we have

/ loë n {1 + !°g Y (£)} log «
® (n ; E)sg+ "5

log2 n (log2 ny

with equality for infinitely many n.

Here and throughout, the notation 05 e implies a constant depending at

most on 5, 8,..., while 0 without subscripts implies an absolute constant.

Likewise, for i 1,2,..., we shall write c, (5, 8,...) for a positive number

depending at most on 8, 8,..., while c, will mean a positive absolute constant.

It is interesting to observe that a much weaker hypothesis than (1.7) still

implies that the maximum order of co (n; E) is approximately (log n) (log2 n)~ F

See the remarks after the proof of Theorem 1.6 in §3.

After (1.3) .and Theorem 1.6, it is natural to ask how often co (n; E) and

Q {n ; E) assume values appreciably larger than their normal order E (n). It
appears that rather little was known about this problem until very recently. The

earliest contribution was by Hardy and Ramanujan [5] (reprinted in [15,
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pp. 262-275]), whose estimate for card {n ^ x: co (/?) m} leads easily to a

good upper bound for S (x, y ; P, co) (essentially the same as the bound given in

Theorem 1.14 below). However, they did not state explicitly a result of the latter

type. For arbitrary £, much weaker upper bounds for S (x, y;F, co) and

S (x, y; E, £2) can be derived from a general theorem of Turân [19] on the

distribution of values of additive functions. (See also Turân [18] or Hardy and

Wright [6, pp. 356-358] for the case E P, and see [13, §§1, 3] and [14, pp. 18-

19] for remarks on all of this early work.) For the particular functions co (n; E)

and £2 (n ; F), Turân's bounds were improved considerably in the author's paper

[13; (5.16), (5.15), (1.11)], where it was observed that for any set £,

S (x, olE (x); P, co) ^ x exp {(a— 1 — aloga) E (x)} (1.9)

for real x ^ 1, a ^ 1, where E (x) is defined by (1.2). A similar (slightly less

precise) result was stated for £2 (n; E) when 1 ^ a < pu where p1 is the smallest

member of E. No lower bound was obtained in either case for a ^ 2, so that the

precision of (1.9) for large a was not clear. In a later paper [2], Erdös and Nicolas
obtained a rather good estimate in the special case E P. They showed that for

any fixed a with 0 < a < 1,

card {n ^ x : co (n) > a (log x) (log2 x)~ x1 "a + 0 (1) (1.10)

as x -> + oo. (In fact, they obtained a somewhat more precise result resembling
Theorem 4.13 below.) However, they did not get an analogous result for £2 (n),

nor did they generalize to co (n; E) or £2 (n; E). Furthermore, their method did
not give good upper estimates for S (x, y ; P, co) when y is appreciably smaller
than (log x) (log2 x)~ h We propose to remedy all of these drawbacks to some
extent. First, we obtain the following lower bound by a refinement of the Erdös-
Nicolas method :

Tfieorem 1.11. Suppose that there exists a real number y (E) > 0 suchthat
(1.7) holds. Let 8 > 0, and suppose that x ^ c1 (£, s) and

c2 (E) ^ y ^ (log x)(log2 x)"1

+ {1 + log Y (E)-s} (log x) (log2 x)~2. (1.12)

Then

S (x, y;E,to)^ x exp {-y(logy + log2 log y (£) - 1)

+ 0E(y(log2 y)/log y)} • (1.13)

L'Enseignement mathém., t. XXVIII, fasc. 1-2. 3



34 K. K. NORTON

1.8) shows that only a very small weakening of the hypothesis (1.12) would be

of any interest. In Theorem 3.20, we assume much less than (1.7) and derive a

result similar to Theorem 1.11 (but somewhat weaker).

Concerning upper bounds for S (x, y; £, co), we have obtained only a modest

improvement of (1.9); see Theorem 4.8 and Corollary 4.12. It should be

emphasized that (1.9) and Theorem 4.8 hold for an arbitrary set E (without the

assumption (1.7)). Using the same methods, we deduce

Theorem 1.14. Suppose that there exists a real number y (E) > 0 such

that (1.7) holds. If x ^ 3 and y ^ y (E) log2 x, then

S (x, y ; £, co) ^ x exp { — y (log y — log3 x — log y (E) — 1)

Although there is a considerable gap between (1.13) and (1.15), the results are

more general and somewhat sharper than those of Erdös and Nicolas [2]. In

particular, we get a generalization of (1.10) (see Theorem 4.13). Theorems 1.11

and 1.14 also yield immediately the following result which could not be obtained

by the Erdös-Nicolas method:

Corollary 1.16. Suppose that there exists a real number y (E) > 0 such

that (1.7) holds. If 0 < a < 1 and x ^ c3 (£, a), then

S (x, (log x)a ; E, co)

x exp {— a (log x)° log2 x + 0 ((log x)a log3 x)}

It should be mentioned that when E P (the set of all primes) and y/log2 x
is bounded and not too close to 1, Theorems 1.11 and 1.14 can be replaced by a

striking asymptotic formula which was recently obtained by H. Delange (for the

proof, see [2]):

Theorem 1.17 (Delange). Let x, a, ru r2 be real with x ^ 3, 1

< r1 ^ a ^ r2. Then

y (E) log2 x + 0E log2 (1.15)

S (x, a log2 co)
F (a) a1/2+alog2 x~ [alo82 M

(2k)1 12 (a— 1)

(log x)1"a+a,08a(log2 x)1'2

X
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where [z] means the largest integer ^z and

Delange obtained a similar result for card {n ^ x: co (n) ^ a log2 x} when

x > 3, (log2 x)"1 ^ a ^ r3 < 1 (see [2]). In this connection, it is interesting to

note the estimate

F (a) exp { — a log a — a log2 a + (1 — y) a + 0 (a/log a)}

for real a > 2, where y is Euler's constant. (Some effort is required to show this,

and we omit the proof.)
For values of a near 1, Kubilius [8, Theorem 9.2] proved a result on the

distribution of co (n) which is similar to Theorem 1.17. His theorem was later
extended by himself [9] and Laurincikas [10] to somewhat more general
additive functions, and it was generalized to co (n; E) and Q(n; E) by Norton
[14]. The estimates for S (x, y\ E, co) derived in the present paper are not as

precise as Theorem 1.17 or the earlier work cited, but they are more general with
respect to E (except for [14]), and they hold for much larger values of y.

We now consider the function Q(n;E). Here we assume that E is any
nonempty set of primes; in particular, nothing like (1.7) is assumed. For
completeness, we begin by stating the following easy result :

Tfteorem 1.18. Let px be the smallest member of E. Then

Q (n; E) ^ (log n) (log pj-1 for all n ^ 1, (1.19)

with equality if and only if n p\ for some integer a ^ 0.

This follows from

n ^ f] Pa > EI PÎ vVn;E).
pa\\n,peE pa || n, peE

We now proceed to estimate S (x,y;E,Q) (defined by (1.1)). For ^ (x),
rather little previous work has been done on this problem, and all of it was
restricted to the special case E P (the set of all primes). Selberg [17, p. 87]
stated without detailed proof the following asymptotic formula:

card {n<x: Q (n) m} ~ A2~m x log x

for integers m satisfying (2 + e) log2 x sS m < log2 x. (Here e > 0 is
arbitrarily small, while A and B are positive absolute constants; it is not clear
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from [17] how large B could be.) Selberg also gave an asymptotic formula for
card {n ^ x : co (n) m) when m/log2 x is bounded. His work was recently
extended to considerably larger values of m (roughly m < (log x)3/5) by Kolesnik
and Straus [7], whose theorems are quite complicated. These results, together
with the formula

S (x, y ; P, £2) £ card {n ^ x:Q{n) m) + S (x, Y ; P, Q)
y<m^Y

and different tools for estimating S(x, Y; P, £2) from above, would yield some
information about S (x, y; P, £2). However, it appears that neither [17] nor [7]
would thus lead to an estimate for S (x, y ; P, £2) which is both simple and

reasonably precise when y/log2 x is unbounded. To the best of our knowledge,
the only previous result of the latter type is due to Erdos and Sarközy [3], who

recently proved that

S (x, y; P, £2) ^ c4 y4 2~y x log x for x ^ 3, y ^ 1. (1.20)

We shall generalize their work to S (x, y ; E, £2) and get a sharper upper bound.

Although the result could be phrased in terms of the function E (x) (defined by
(1.2)), it is more convenient to state it in terms ofa real number v which in practice
is taken to be an approximation to E (x). (For example, if E P, we could take

V log2 X.)

Theorem 1.21. Let x,.v, y be real with x ^ 1, v ^ 1, and y ^ 0. Let
be the smallest member of E, and define

A A (x,v;E) max {2, | E (x) — v |} (1.22)

Then
S (x, y ; E, £2) ^ c5 (Pl) ply xpm eipi~1)v+plA (1.23)

We remark that (1.23) is our best upper bound when y > pxv — v112, but it
can be improved for smaller values of y (see Lemma 5.3).

Concerning the problem of estimating S (x, y ; P, £2) from below, we shall

state only the following simple result :

Theorem 1.24. Let px be the smallest member of E. If x ^ px and

0 ^ y ^ (log x) (log pj"1 - 1, then

S(x,y;E, £2) ^ (1/2) x.

To prove this, let k [y] + 1 (so k is the smallest integer greater than y),

and observe that the multiples n of p\ have the property that £2 (n ; E) ^ k > y.
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There are just [xpik] of these n ^ x, and since [z] ^ z/2 for z ^ 1, we get the

result.

It is clear that Theorem 1.24 is essentially best possible in certain extreme

cases (for example, if E (pj, or if x p\ and y a — 1).

WhenE P (the set of all primes), we can take v log2 x. Then A 0(1),
and we have the following corollary of Theorems 1.21 and 1.24:

Corollary 1.25. If x ^ ee and 0 ^ y ^ (log x) (log 2)_1 — 1, then

2~y~2 x ^ S (x, y ; P, Q) ^ c6 2~y x (log x) (log2 x)1/2

Corollary 1.25 should be compared with the Erdös-Särközy result (1.20)

and with the asymptotic formula of Selberg mentioned after Theorem 1.18.

When y < 2 log2 x (roughly), more precise estimates for S (x, y; P, f2) can be

obtained from [13] and [14].
In a later paper, we shall show that if is the smallest member of E and

e > 0 is fixed, then the precise order of magnitude of S(x,y;E,Q) is'

pîy x exp {(pi 1) E (x)}

when E (x) is sufficiently large and

Pi E(x) < yÜ(1-e)(log x) (log p^'1

This theorem is much more difficult to prove than Theorem 1.21. Its proof
depends on Theorem 1.21 and on an extension of Halasz's work [4] concerning
the local distribution of Q (n; E). Theorem 1.21 remains our best upper bound
when y is close to (log x) (log pj-1 (cf. Theorem 1.18), and it seems to be the

most we can achieve by a fairly simple method.

§2. Notation

The symbols a, m, n always represent integers with a ^ 0, m ^ 0, n > 0. The
letter p always denotes a prime, while v, w, x, y, z, a, ß, 8, s, a are real numbers,

[x] means the largest integer ^x. The notation logr x is defined by (1.5), and the
notations 0, 05 E c,-, (8, e,...) are explained after Theorem 1.6. If a

condition such as "x ^ ct (8, 8,...)" is used as a hypothesis, it is to be understood
that c, (8, 8,...) is sufficiently large. We shall occasionally use the notations
«, » to imply constants which are absolute. (Thus A O (B) is equivalent to
A « B.)
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