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ON THE NUMBER OF RESTRICTED PRIME FACTORS
OF AN INTEGER. III

by Karl K. NORTON

§1. INTRODUCTION

Let P be the set of all (positive rational) prime numbers, and let E be an
arbitrary nonempty subset of P. Throughout this paper, let p denote a general
member of P, and for non-negative integers a, write p* || n if p*| n and p* oy n
For each positive integer n, define

own;E)= > 1, Qn;E)= ) a.
p|n, peE p®||n, peE
We usually write o (n; P) = o (n), Q(n; P) = Q(n). In this paper, we shall
estimate the functions

S(x,y;E, 0) = card {n < x: o (n; E) > y},

(1.1)
S(x,y;E, Q) = card {n < x:Q(n; E) > y}

when y is appreciably larger than the normal order of w (n; E) and Q (n; %); y
may even be as large as the maximum order of ® (n; E) or Q (n; E), respectively.
(Here and throughout, card B means the number of members of the set B, and if
0 (n) is a statement about the integer n, we often write {n < x: Q (n){ instead of
fn:1 < n < xandQ(n)})
Define
E(x= > p! (x real). (1.2)
p<x, peE

In[13],it was observed thatif E (x) - + ocasx — + oo, then both the average
order and the normal order of w (n; E) are equal to E (n), and the same statement
holds for Q (n; E). In [13], we obtained sharp inequalities for the functions (1.1)
when 0 < y < 2E (x), roughly. In [14], we gave asymptotic formulas for the
same functions when E (x) - + ccandy = E(x) + o (E (x))as x - + oo. It
is well-known, however, that

E(x) < loglog x + O (1) for x> 2,
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32 K. K. NORTON

whereas if x is large, o (n; E) and Q (n; E) may be much larger than log log x for
some values of n < x. For example, the method of [6, pp. 262-263, 359] shows
that

o (n) log log n

lim sup =1, (1.3)
B % g log n

and a more precise version of (1.3) was obtained in [ 12, pp. 96-100]. (See also the
remarks at the beginning of §3 below.) Before stating estimates for the functions
(1.1) when yislarge, it seems worthwhile to generalize results like (1.3) to o (n; E).
First define

tx;E)= Y 1 (x real), (1.4)

p<x, peE
and write |
log, x = log log x, log, x = log (log, _ ,x)

for r=3,4,... (1.5)

THEOREM 1.6. Suppose that there exists a real number v (E) > 0 such that

n(x; E) = v (E) (x/log x) {1 + Og(1/log x)}
for all x = 2. (1.7)

Then for each n = 3, we have

logn {1 + logy(E)} logn
+ 2
log, n (log, n)

-+OE<J%2L>, (1.8)

o(n; E) <

(log, n)*
with equality for infinitely many n.

Here and throughout, the notation O , . implies a constant depending at
most on 9, g, .., while O without subscripts implies an absolute constant.
Likewise, for i = 1,2, .., we shall write c; (9, ¢, ...) for a positive number
depending at most on 9, &, ..., while ¢; will mean a positive absolute constant.

[t is interesting to observe that a much weaker hypothesis than (1.7) still
implies that the maximum order of o (n; E) is approximately (log n) (log, n)~ 1.
See the remarks after the proof of Theorem 1.6 in §3.

After (1.3) and Theorem 1.6, it is natural to ask how often o (n; E) and
Q (n; E) assume values appreciably larger than their normal order E (n). It
appears that rather little was known about this problem until very recently. The

earliest contribution was by Hardy and Ramanujan [5] (reprinted in [15,
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pp. 262-275]), whose estimate for card {n < x: o (n) = m} leads easily to a
good upper bound for S (x, y; P, w) (essentially the same as the bound given in
Theorem 1.14 below). However, they did not state explicitly a result of the latter
type. For arbitrary E, much weaker upper bounds for S(x,y;E, ) and
S (x,y; E, Q) can be derived from a general theorem of Turan [19] on the
distribution of values of additive functions. (See also Turan [18] or Hardy and
Wright [6, pp. 356-358] for the case E = P, and see [13, §§1, 3] and [14, pp. 13-
19] for remarks on all of this early work.) For the particular functions  (n; E)

and Q (n; E), Turan’s bounds were improved considerably in the author’s paper
[13:;(5.16), (5.15), (1.11)], where it was observed that for any set E,

S (x, aE (x); E, ) < x exp {(a—1—oaloga) E (x)} (1.9)

for real x > 1, « > 1, where E (x) is defined by (1.2). A similar (slightly less
precise) result was stated for Q (n; E) when 1 < a < p,, where p, 1s the smallest
member of E. No lower bound was obtained in either case for & > 2, so that the
precision of (1.9) for large o was not clear. In a later paper [2], Erdos and Nicolas
obtained a rather good estimate in the special case E = P. They showed that for
any fixed o with 0 < a0 < 1,

card {n < x: o (n) > a (log x) (log, x)"'} = x!'7*7°) (1.10)

asx — + oo.(Infact, they obtained a somewhat more precise result resembling
Theorem 4.13 below.) However, they did not get an analogous result for Q (n),
nor did they generalize to o (n; E) or Q (n; E). Furthermore, their method did
not give good upper estimates for S (x, y; P, ®) when y is appreciably smaller
than (log x) (log, x)~!. We propose to remedy all of these drawbacks to some
extent. First, we obtain the following lower bound by a refinement of the Erds-
Nicolas method:

THEOREM 1.11. Suppose that there exists a real number vy (E) > 0 suchthat
(1.7) holds. Let € > 0, and suppose that x > c, (E, &) and

¢, (E) <y < (log x) (log, x)~!
+ {1 + log v (E) — €} (log x) (log, x) 2. (1.12)
Then
S(x,y;E,0) > xexp {—y(logy + log, y — log v (E) — 1)
+ O (y (log, y)/log y)} . (1.13)

L’Enseignement mathém., t. XXVIII, fasc. 1-2. 3




34 K. K. NORTON

(1.8) shows that only a very small weakening of the hypothesis (1.12) would be
of any interest. In Theorem 3.20, we assume much less than (1.7) and derive a
result similar to Theorem 1.11 (but somewhat weaker).

Concerning upper bounds for S (x, v: E, ), we have obtained only a modest
improvement of (1.9); see Theorem 4.8 and Corollary 4.12. It should be
emphasized that (1.9) and Theorem 4.8 hold for an arbitrary set E (without the
assumption (1.7)). Using the same methods, we deduce

THEOREM 1.14.  Suppose that there exists a real number v (E) > 0 such
that (1.7) holds. If x =2 3 and y = y(E)log, x, then
S(x,y; E,0) < xexp {—y(log y — log; x — log y(E) —1)
— v (E) log, x + O (y/log, x)} . (1.15)

Although there i1s a considerable gap between (1.13) and (1.15), the results are
more general and somewhat sharper than those of Erdos and Nicolas [2]. In
particular, we get a generalization of (1.10) (see Theorem 4.13). Theorems 1.11
and 1.14 also yield immediately the following result which could not be obtained
by the Erdos-Nicolas method:

COROLLARY 1.16. Suppose that there exists a real number vy (E) > 0 such
that (1.7) holds. If 0 <o <1 and x = c5(E, ), then

S (x, (log x)*; E, o)
= x exp {—a (log x)* log, x + O ((log x)* log; x)} .

It should be mentioned that when E = P (the set of all primes) and y/log, x
is bounded and not too close to 1, Theorems 1.11 and 1.14 can be replaced by a
striking asymptotic formula which was recently obtained by H. Delange (for the
proof, see [2]):

THEOREM 1.17 (Delange). Let x,a,r,r, be real with x> 3, 1
<r, <a<r, Then

F (o) o 1/2 +odosz x—[oog2 x)
2m)t? (a—1)

* 1+ 0 !
(log x)l—q+aloga(log2 x)l/z ri,r2 10g2 X ’

S(x,olog, x; P,®) =
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where [z] means the largest integer <z and

1 o 1\*
Fv(a):r(wl)l—pl(“p—l) (17)'

Delange obtained a similar result for card {n < x: ® (n) < a log, x} when
x > 3,(log, x)7! < o < ry < 1(see [2]). In this connection, it is interesting to
note the estimate

F(a) = exp {—aloga — alog, o + (1—y)a + O (o/log o)}

for real o > 2, where vy is Euler’s constant. (Some effort is required to show this,
and we omit the proof.)

For values of o near 1, Kubilius [8, Theorem 9.2] proved a result on the
distribution of ® (n) which is similar to Theorem 1.17. His theorem was later
extended by himself [9] and Laurin¢ikas [10] to somewhat more general
additive functions, and it was generalized to ® (n; E) and Q (n; E) by Norton
[14]. The estimates for S (x, y; E, ®) derived in the present paper are not as
precise as Theorem 1.17 or the earlier work cited, but they are more general with
respect to E (except for [14]), and they hold for much larger values of y.

We now consider the function Q (n; E). Here we assume that E is any
nonempty set of primes; in particular, nothing like (1.7) is assumed. For
completeness, we begin by stating the following easy result :

THEOREM 1.18. Let p, be the smallest member of E. Then
Q(n; E) < (log n) (log p,) " * for all n>=l1, (1.19)
with equality if and only if n = p$ for some integer a > 0.

This follows from

n> [ p*= [l pf=pi"D.
p?||n, peE p?||n, peE
We now proceed to estimate S (x, y; E, Q) (defined by (1.1)). For y > 2E (x),
rather little previous work has been done on this problem, and all of it was
restricted to the special case E = P (the set of all primes). Selberg [17, p. 87]
stated without detailed proof the following asymptotic formula:

card {n < x:Q(n) = m} ~ 427" x log x

for integers m satisfying (2+¢)log, x < m < Blog, x. (Here ¢ > 0 is
arbitrarily small, while 4 and B are positive absolute constants: it is not clear
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from [17] how large B could be.) Selberg also gave an asymptotic formula for
card {n < x:® (n) = m} when m/log, x is bounded. His work was recently
extended to considerably larger values of m(roughly m < (log x)*'°) by Kolesnik

and Straus [7], whose theorems are quite complicated. These results, together
with the formula

Sx,y; P,Q = Y card{n<x:Qm =m} + S(x,Y;P,Q)
y<m<Y

and different tools for estimating S(x, Y; P, Q) from above, would yield some
information about S (x, y; P, Q). However, it appears that neither [17] nor [7]
would thus lead to an estimate for S (x, y; P, Q) which is both simple and
reasonably precise when y/log, x is unbounded. To the best of our knowledge,
the only previous result of the latter type is due to Erdos and Sarkozy [3], who
recently proved that

S(x, y; P, Q) < cyy*277x log x for x=3y=>1 (120

We shall gereralize their work to S (x, y; E, Q) and get a sharper upper bound.
Although the result could be phrased in terms of the function E (x) (defined by
(1.2)), it is more convenient to state it in terms of a real number v which in practice
is taken to be an approximation to E (x). (For example, if E = P, we could take
v = log, x.)

THEOREM 1.21. Let x,v,y be réal with x> 1L,v>1, and y > 0. Let
p, be the smallest member of E, and define

A=Axv;E)=max {2,| E(x) — v]|}. (1.22)
Then .
S(x,y;E, Q) < cs(py) py? xv/? et~ Dotpn (1.23)

We remark that (1.23) is our best upper bound when y > p,v — v'/2, but it
can be improved for smaller values of y (see Lemma 5.3). ‘

Concerning the problem of estimating S (x, y; E, Q) from below, we shall
state only the following simple result:

THEOREM 1.24. Let p, be the smallest member of E. If x > p, and
0 <y < (logx)(logp,)~*— 1, then

S(x,y; E,Q = (1/2) pi” " x.

To prove this, let k = [y] + 1 (so k is the smallest integer greater than y),
and observe that the multiples n of p% have the property that Q (n; E) > k > y.
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There are just [xp; ¥] of these n < x, and since [z] > z/2 for z > 1, we get the
result.

It is clear that Theorem 1.24 is essentially best possible in certain extreme
cases (for example, if E = {p,},orif x = pfand y = a — 1).

When E = P (the set of all primes), we can take v = log, x. ThenA = O (1),
and we have the following corollary of Theorems 1.21 and 1.24:

COROLLARY 1.25. If x> ¢ and 0 <y < (log x) (log2)™' — 1, then
277" 2x < S(x,y: P, Q) < ¢ 27 x (log x) (log, x)/?.

Corollary 1.25 should be compared with the Erdos-Sarkozy result (1.20)
and with the asymptotic formula of Selberg mentioned after Theorem 1.18.
When y < 2 log, x (roughly), more precise estimates for S (x, y; P, Q) can be
obtained from [13] and [14].

In a later paper, we shall show that if p, is the smallest member of E and
e > 0 is fixed, then the precise order of magnitude of S(x, y;E, Q) is’

pi” x exp {(p;—1) E (x)}

when E (x) is sufficiently large and

p1 E(x) <y < (1—¢)(log x) (log py)™" .

This theorem is much more difficult to prove than Theorem 1.21. Its proof
depends on Theorem 1.21 and on an extension of Halasz’s work [4] concerning
the local distribution of Q (n; E). Theorem 1.21 remains our best upper bound

when y is close to (log x) (log p;)~ ! (cf. Theorem 1.18), and it seems to be the
most we can achieve by a fairly simple method.

§2. NOTATION

The symbols a, m, n always represent integers witha > O,m > 0,n > 0. The
letter p always denotes a prime, while v, w, x, y, z, a, B, , €, ¢ are real numbers.
[x] means the largest integer <x. The notation log, x is defined by (1.5), and the
notations 0, Os . ., ¢, c; (0, ¢, ..) are explained after Theorem 1.6. If a
condition such as “x > ¢; (9, €, ...)” is used as a hypothesis, it is to be understood
that ¢; (3, ¢, ...) 1s sufficiently large. We shall occasionally use the notations

<«, > to imply constants which are absolute. (Thus A = O (B) is equivalent to
A « B.)
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Empty sums mean 0, empty products 1, and we define 0° = 1. The notation

xl ...xm/yl ...yn

1s sometimes used instead of

(xl xm) (yl yn)—1 .

Throughout this paper, E denotes a nonempty set of primes, to be regarded
as quite arbitrary unless further assumptions are stated. E (x) is always defined
by (1.2). p, always means the smallest member of E, and if

E—{p} ={p:pecE and p # p,}

is not empty, then p, denotes the smallest member of E — {p,}. When x and v are
positive, the function A = A (x, v; [) is always defined by (1.22).

§3. PROOFS OF THEOREMS 1.6 AND 1.11,
AND RELATED RESULTS

Before proving (1.8), we observe that a similar but weaker inequality has a
very simple proof. For if y > 1, then

logn> ) logp> Y logp>=(ogy Y 1,
p|n

pln, p2y pln,p2y

and hence

om = Y 1+ Y 1<y+(logn)(logy "*.

pln, p<y pin,p=y
The right-hand side is approximately minimized by taking

y = (log n) (log, n)™ 2,
and we obtain

log n logy n
o (n) < 1+ 0 for n>=16(>e. (3.1)
log, n log, n

Another simple proof of (3.1) can be based on Newman’s observation [ 11, p. 652]
that if  (n) = r, thenn > r!. ‘

To get the sharper inequality (1.8), it seems to be necessary to use an
assumption such as (1.7) about the distribution of E. First we need a lemma
relating © (x; E) (defined by (1.4)) and |

0(x;E)= Y logp. (3.2)

p<x, peE
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LEMMA 3.3. Suppose that there exists a real number vy (E) > 0 such that
(1.7) holds. Then for x > ¢ (E),

0(x; E) = n(x; E) {logn(x;E) + log, n(x; E) — 1 — log v (E)
log, m(x; E) 1 34
+ log m(x; E) + Os <log1r(x;E))}' (3.4)

Proof: For notational simplicity, we write [, = log, x, L, = log, ©n (x; E)
whenever these are defined. First note that for x > ¢, (E), (1.7) implies

In particular, L, ~ l;and L, ~ [, asx — + oo,soforx > c¢,5 (E),(3.5) implies
L, =1, {1 + 0g(L,/L})},
and multiplication by (L,l,)” " yields
ITP = L' {1 + Og(L,/Ly)} for x > cy3(E). (3.6)
Taking logarithms in (3.5), then using (3.6), we get
L, =1,(1 = 1/l; + 0g(1/1,11y))

=1, (1 — 1/Ly + Og(1/L,L;))  for x> ¢4 (E).
It follows that

l, = L,(1 + 1/L; + Og(1/L,L,)) for x > ¢y5(E). (3.7)

Substituting (3.7) in (3.5), replacing Og (1/1,) by O (1/L,), and solving for [,, we
get '
ly, = Ly + L, — log y(E) + Ly/L; + Og(1/L,)
for x> ci6(E). (3.8)

We now need to estimate 0 (x; E) in terms of ©t (x; E). We use the Stieltjes
integral, then integrate by parts and combine with (1.7): |

0(x; E) = J (log H)dn (t; E) = n(x; E)l, — F@dt
1 , logt

*oodt
+ Og (LW> = n(x; E)I; — v (E)(x/l}) + Og (x/13)

= n(x; E)l; — m(x; E) + Og (x/I7) (3.9)
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for x = 2. Now, (1.7) shows that
x/li = Og(n(x; E)/ly) = Og(n(x; E)/L;) for x> c;,(E).
Using this fact as well as (3.9) and (3.8), we get (3.4). Q.E.D. |

Proof of Theorem 1.6: Write E = {py, p,, D3, ...}, Where p; < p, < p;
. Define n, = p,p, ... p, for r > 1. By (3.4),

1 1 +1 E 1 1
logn, = 0(p,; E) = (rlogr)<1 + .7 1 og v (E) og2r2 E\ 3
log r log r (log r) (log r)
(3.10)
for r > ¢, (E). Hence for r > ¢4 (E),
log, r 1
log, n, = logr + log, r + + Og : (3.11)
log r log r
If r > c,4 (E), then (3.10) and (3.11) yield
log n, = r{log, n, — 1 — log v (E) + Og(1/log, n,)} . (3.12)
if r > ¢,q (E), we can solve (3.12) for r to get
1 1 +1 E 1
o E) = r — 08m ) Trleev®) . < R )
log, n, log, n, (log, n,)

Now let n be any integer >3, and write ® (n; E) = r. Define

log n 1 + lo E)! log n lo
g +{ g v (E)} log L g logn

S ) = e n (logs 1)? (log, n°

for real o. For fixed positive a, f (n, o) increases with nforn > c¢,, (a, E). Thus if
r > ¢,, (E), it follows from (3.13) (since n > n,) that

o (n; E) = o (n,; E) < f(n, c23(E)) < f(n,cy3(E)).
Now suppose that 0 < r = © (n; E) < ¢,, (E). If n > ¢,, (E), then clearly
f(n,ca3 (E)) 2 ¢, (E) > @ (n; E).
If 3 < n < ¢, (E) and c,5 (E) is sufficiently large, then (since v (E) < 1)

1
f (n, Cas (E)) = (Td% {025 (E) + (108 Y (E)) log, ¢4 (E)}
2

= c,,(E) 2 o(n; E).
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It follows that if

¢26 (E) = max {c,; (E), ¢35 (E)},
then
o (n; E) < f (n, c36 (E))

for all n > 3. This proves (1.8), and (3.13) shows that equality holds in (1.8) for
infinitely many n. Q.E.D.

For a more precise version of (1.8) when E is the set of all primes, see [12,
p. 99].

Even a much weaker hypothesis than (1.7) implies that the maximum order of
o (n; E)isnearly (log n) (log, n)~ L. Specifically, suppose that there exist positive
real numbers 9, x,, such that

n(x; E) > x> forall x> x,. (3.14)

In the notation of the preceding proof, it is then clear that for r > x,,

logn, =0 (p;E)=n(p;E)—1>pl — 1. (3.15)
But trivially 6 (p,; E) < r log p,, so
o (n,; E) = r > (log n,) (log p,) ™",
and hence by (3.15),

L E) 1
lim sup 20 BV logn o (3.16)
n—+ oo logn

Proof of Theorem 1.11: We use the method of Erdos and Nicolas [2],
which we can refine and generalize by appealing to Lemma 3.3. As before, write

E = {pla Pza p3a } s
where

Pi <Py <p3 < ...

Assume that y satisfies (1.12) (where ¢, (E)is sufficiently large), taker = [y] + 1,

andletn, = p;p, ... p,. There are exactly [x/n,] multiples n of n,such thatn < x,
and for each such n we have @ (n; E) > r > y. Hence

S(x,y;E,0) = [x/n,] . (3.17)
By (3.4),

log n, = r{logr + log, r — 1 — log y (E) + O ((log, r)/log r)}
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for r > ¢, (E). Define
g@t) =t{logt+log,t — 1 — logy(E)}
for real t > 3 and note that

0<g(t) = Og(logt) for t>3.

By the mean-value theorem for derivatives,

g(r) =g() + Og(logy),
and hence
logn, = g(y) + Og(y(log, y)logy) if y>cy;(E). (3.18)
In order to derive (1.13) from (3.17) and (3.18), we need to show that
[x/n,] » x/n,, (3.19)
1.e., that n, < x. For the remainder of this proof, write

I, =log, x,B =1+ logy(E) — ¢,
and

z = (I/L) + B(1l/B) -
It follows from (1.12) that
y (log; y)/log y = Og (1,15/13).
Also, if x > c,4 (E, €), then

logz<l, —l;+B/l) <, — 15+ (g/2),

It follows from these inequalities and (3.18) thatif x > ¢, (E, g) (sdfﬁ'ciently large)
and (1.12) holds, then

< g(2) + 0g (Ls/15)

< (/L) A+B/L) {l, — 15 + (/2) + I; — (B+e)}
+ O0g (i15/13)

I, (1—¢/21) + Og  (L1/13) < Iy,

log n,

so n, < x. Thus (3.19) holds, and (1.13) follows from (3.17) and (3.18). Q.E.D.
It is interesting to observe that a result somewhat like (1.13) can be deduced
from a much weaker assumption than (1.7):
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THEOREM 3.20. Suppose there exist real numbers & > 0, x, = 2 such that
(3.14) holds. If x = c,4(8) and x, < y < & (log x) (log, x)~ !, then
S(x,y;E,0) » xexp {—8 ! (ylog y + log y + 2)}.

Proof: In the notation of the preceding proof, (3.17) holds, and trivially
logn, <rlogp,. Ify > xo thenp, >r > x,and r = n(p,; E) = pd, so

S lrlogr<d '(y+1)(ogy+y Y
0 ' (ylogy + log y+2). (3.21)

But log y < log, x — log; x, so logn, < log x if x > ¢,4(d). Hence (3.19)
holds, and the result follows from (3.17) and (3.21). Q.E.D.

§4. PROOFS OF THEOREM 1.14 AND RELATED RESULTS

We begin by quoting the following easy result from [13, pp. 689-690]:

LemMMmA 4.1. For x>1 and z > 1,

Y WP <x ] {1+ @E-1p 1},

n<x p<x, pecE

To put this in a more convenient form, we prove

LEMMA 42, If x>1 and w > —2, then (cf (1.2))

[T (4+wp™) < evE®. (4.3)
If 1 <w<x, then [T (+wpY
= exp {w(E (x) — E (w)) + O (w/log (2w))} . (4.4)

Proof :  (4.3) follows immediately from the inequalities

0<1+wp ! <exp(wp ).

To get (4.4), we first write

[T G+wp ™)< I]T @wp™ Y- [ exp(wp?)

p<x, peE pPSsw w<p<x, peE

= exp {w(E (x) — E (W) + m(w) log 2w) — 6 (w)},
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where m(w) = ) ,<, 1 and 8 (w) = >, log p. Since = (t) « t/log (2¢) for
t > 1, we have

w

0(w) = Jw(log t)ydr (t) = n(w) logw — J n(tyt tdt

1

— 7(w) log w + O (w/log (2w)),

and it follows that the right-hand side of (4.4) is an upper bound for the left-hand
side. On the other hand, since log (1+y) = y + O (y?) for y > 0, we have

[T +wp™) = JI exp{wp '+ 0Wwp?)}

p<x, peE w<p<x, peE

=exp {(W(E(X)— EWw) + 0w ) p?)}.

p>w

But

L pt= Jw =2 dn (1) < 2rw 172w (t) dt < (wlog (2w)™ ",

w

and (4.4) follows. Q.E.D.

COROLLARY 4.5. If x =1 and z > 1, then

Z 70 (BE) < x ez~ DE(x) (46)

n<x

If 1 <z<x, then

Z 70 (n; E)

n<x

< xexp {(z— 1 (E (x) — E (2)) + c30z/log 22)} . (4.7)
Note that if 1 < z < 2, then (4.7) follows from (4.6).

THEOREM 48. Let x> 1,v > 0,1 < a < x. Define A= A(x,v;E)
by (1.22). Then '

S(x,ow; E, ®) < x exp {(a—1—alog o) v — aE (&) + c3; Aa}.

Proof : Suppose 1 < z < x. Then

Z Zu) (n?E) 2 Z Z(D (n,; E) > Zow S (x’ av; E’ 0)) )

n<x n<x,o(n; E)>av
Combining this result with (4.7), we get
S(x,oav; E,0) < xexp {(z—1)(v+A) — zE(z) — av log z
+ ¢35 z/log (22)} . (4.9)
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In practice, we think of v as being a good approximation to E (x), so that A is
small compared to v. We want to minimize the right-hand side of (4.9)
approximately, and for simplicity, we choose z 50 as to minimize the expression (z
—1)v — aw log z,ie., we takez = o. With this value of z, we get the resul; from

(49). Q.E.D.

LEMMA 4.10. Suppose that there exists a real number vy (E) > 0 such that
(1.7) holds. Then there is a real number & (E) such that

E(x) = y(E)log, x + 8 (E) + Og (1/log x) for x>2. (4.11)
Proof :  Write
E(x) = JX t~ldn(t;E),

1
integrate by parts, and use (1.7). Q.E.D.
From Theorem 4.8 and Lemma 4.10, we get

COROLLARY 4.12. Suppose that there exists a real number v (E) > 0 such
that (1.7) holds. Let x > 3,2 < oo < x. Then

S (x, oy (E) log, x; E, o)

< x exp {(0—1—olog o) y (E) log, x — ay (E) log, o + ¢33 (E) o} .

Using (1.8), it is easy to show that Corollary 4.12 actually holds forall & > 2,
but it is also clear from (1.8) that

S (x, oy (E) log, x; E,0) = 0

whenever o is somewhat greater than (log x) (log, x) ™ 2.

The upper bound given in Corollary 4.12 compares favorably with the
theorem of Delange (Theorem 1.17 above), and our result is more general and
holds for a much wider range of a. Our proof is also much simpler than
Delange’s. Unfortunately, our lower bound (1.13) is much smaller than the upper
bound in Corollary 4.12.

Theorem 1.14 1s proved in the same way as Theorem 4.8, but we use (4.6)
instead of (4.7), apply Lemma 4.10, and take z = y (y (E) log, x)™*.

We conclude this section by generalizing the Erdos-Nicolas result (1.10).
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THEOREM 4.13. Suppose that there exists a real number y (E) > 0 such that
(1.7) holds. Let €& > 0, and suppose that x > ¢, (E,€) and

(log; x)* (log x)™' < @ < 1 + {1 + log vy (E) — ¢} (log, )"

Then
]
x! "% exp {—035 (E) ki } < S (x, o (log x) (log, x)™'; E, 0)
log, x
L 2a (log x) logs x log x
< x " %exp C36 (E) :
log, x log, x

This can be obtained from Theorems 1.11 and 1.14 (take
y = a(log x) (log, x)™*
and use the inequalities
log, y < log; x,y = log, x > v (E) log, x).
Theorem 4.13 should be compared with Theorem 1.6.

§5. PROOFS OF THEOREM 1.21 AND RELATED RESULTS

In estimating S (x, y; E, Q) (defined by (1.1)), we do not need any assumption
such as (1.7). Hence we emphasize that throughout the remainder of this paper, E
is merely assumed to be any nonempty set of primes. (We shall sometimes assume
explicitly that E has at least two members.) The smallest member of E will always
be denoted by p, (and the smallest member of E — {p,}, if it exists, by p,). When
x and v are positive real numbers, the function A = A (x, v; E) is always defined
by (1.22).

The subsequent work depends heavily on the following elementary lemma
[13, p. 690]:

Lemma 5.1. If x>0 and 1<z < p,, then

Z ZQ(n;E) < pl (pl_z)—l xe(z—l)E(x)+4z_

n<x
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For the special case E = P, there is a recent paper of DeKoninck and

%k
Hensley [1] giving various estimates for Y, z®", where z is complex and *

n<x
indicates that the prime factors of n are restricted to lie in a certain range.
DeKoninck and Hensley get sharp results, but their work is rather complicated
and does not seem applicable to the problems discussed here.
If y is real and z > 1, then
Z R0E) > Z (5 E)

<x n<x,Q(m E)=y

X

>z’ card {n < x: Q(n; E) > y}.

Hence Lemma 5.1 immediately yields

LemMAa 52. If x>0,y isreal,and 1 <z < p,, then

card {n < x: Q(n; E) > y}
< p,(p,—2)" ' x exp {(z—-l)E(x) — ylogz + 42} .

LEMMA 5.3. Let x> 0,0 <v <y <pv. Then
card {n < x: Q(n; E) > y}
< ¢37(p) (py—y/v)" ' x exp {y — v — y log (y/v) + p:A}.
Proof: 1In Lemma 5.2, use the inequality E (x) < v + A and take z = y/v
to get an approximate minimum. Q.E.D.
We observe in passing that Lemma 5.2 can also be used when y > p,v. In

order to get a reasonably good result in this case by the same method, one needs
to minimize the function

gz =(z—1)v-—ylogz — log(p;—2)

on the interval 1 < z < p,. Assuming that y is rather large, one can see with
some computation that g (z) is approximately minimized when

z=p (1 -2y,

and this z satisfies 1 < z < p, whenever y > 1. With this value of z, Lemma 5.2
yields '

card {n < x: Q(n; E) > y} < ¢35 (py) yp1 Y x elpt— Dot piA (5.4)

forx > 0,y > 1. When E is the set of all primes and x > 3, we can take
v = log, x, A = O (1). Thus (5.4) is already sharper and more general
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than (1.20) (which is due to Erdos and Sarkozy [3]). However, Theorem
1.18 shows that it may be of interest to take y as large as
(log x) (log p;)~ %, and we shall now prove that when y is relatively large,

the factor y on the right-hand side of (5.4) can be replaced by a much
smaller quantity.

LEMMA 55. Write F = E — {p,} (if F is empty, we define
Qn;F) =0 for all n). Let. x>0,y>0, and let k =[y] + L
For integers a with 0 < a < k, define

C,={m<xp;®p/m and Q(m;F) >k — a}.
Then |
k—1
S(x,y;E, Q) = [xp; ] + > card C,.
a=0

Proof: For 0 < a < k, define
B,={n<x:pi|n and Qnp * F) =k — a}

(recall that p? || n means p? | n and p%*! t n). It is easy to see that
(h<x:Qm;E)>y} ={n<x:pi|nfu (J B,.
0

Since the sets {n < x:p% | n}, By, By, .., By_ are disjoint, we have
k=1
S(x,y;E,Q) = card {n < x:pj|n} + ) card B,.
0

a=

But the mapping n+ np;  establishes a one-to-one correspondence
between B, and C,, so the result follows. Q.E.D.

Proof of Theorem 1.21: If E = {p,}, then by Lemma 5.5,
S(x,y; E, Q) < xp;”,
and (1.23) follows. Thus we may assume that F = E — {p,} is not

empty. Let-p, be the smallest member of F, and let k = [y] + 1. By
Lemma 5.5,

k
S(x,y; E, Q) = [xp;*] + ) card C,_,. (5.6)
a=1
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To estimate
card C,_, = card {m < xp} *:p; ¥ m and Q(m;F) > a}

from above, we apply Lemma 5.2 (with E replaced by F and p, by p,).
Since

Fxpi ) S Fx)SE(X)<v+A,
we obtain
card C, _,
< p,(p,—2) P xpi*exp {(z—1) (v+A) — alog z + 4z}
— H(a,2), (57)
say, and this holds for each integer a (1<a<k) and each real z with
1 < z < p,. In applying (5.7), we are free to choose z to depend on a.

Write Q = max {k, p,v}, and for each a (1<a<Q), let z, be any real
number satisfying 1 < z, < p,. Then by (5.6) and (5.7),

+ Z H(a,z,). (5.8)
Forl <a<v, take z, = . With this choice, we have

Z H(a’ Za) < xpl_k z pl < XPD1 A

1<a<v 1<a<v

« xpy?elPt—hv, (5.9)

For v < a < p,v, the quantity (z—1) v — a log z in (5.7) is minimized by
taking z = a/v = z,. With this choice of z,, we have 1 < z, < p, and

P2(P2—2z) ' < p,(pa—py)t <1+ py,
SO

H (a, z)) < ¢30 (py) xpi ™" e 7D 2 (%™ %/a’e ™).

By Stirling’s formula, a%~* > a!a™'/?, so we get

Z H (a, z,) < c40 (py) xpy? v'/2 707 P1A 2 (2:2)

v<a$p1v v<a<p v a!
1

< C40 (py) xpy? v1/2 Pt - DotpiA (5.10)

L’Enseignement mathém., t. XXVIII, fasc. 1-2.
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For p;v < a < Q, we let all the numbers z, have the same value p; (1+0),
where 0 is a real number about which we assume only that0 < 6 < p,p; ! — 1
(the last inequality being needed in order to have z, < p,). With this choice of z,,
(5.7) yields

H (a, z,)

» “q
plv<a$Q

< p2{p; — Py (1+0)} ' xp* exp {(p1—1+p,0) v+A) + 4p, (1+0)}

x Y (1+6)7°. (5.11)

plv<a$Q

The last sum on the right does not exceed

Y (1+60)° < (1+60)07 1 (14+6) 717, (5.12)

a> v
pl

After combining this estimate with (5.11), we would like to minimize the
contribution of the essential terms €% 971 (140) 7. Since

log (1+0) =6 —0%2 for 0>0, (5.13)

we have
pOv — log @ — p,vlog (1+0) < —log 6 + p,v0?/2,

and here the right-hand side would be minimized by taking 6 to be (p,v)™*/2.

However, we must also choose 0 < p,p; ! — 1 (so that z, < p,). If we take
0 = (2pv'/?)7 1, (5.14)
then because of our assumption that v > 1, we have

0<(2p) ' <ppi'—-1.
Combining (5.11), (5.12), (5.13), and (5.14), and observing that

p2{p> — p1 (14+0)} 7! < py (pp—py—1/2)7*
=1+ (p,+1/2) (Pz—Pl,_l/z)_l < €41 (P1) >

we obtain finally
H(a,z) <c ) xpp? vl ept-DvtpA (5.15)
> Za 42

plv<aSQ




PRIME FACTORS OF AN INTEGER 51

The theorem now follows from (5.8), (5.9), (5.10), and (5.15). Q.E.D.
Since

Ex)< Y pt=log;x+0(1) for x>2,

p<x

one would always want to choose v < log, x. Thus (1.23) is superior to (5.4)
whenever y > (log, x)'/2. Furthermore, consideration of derivatives shows that

y — v — ylog(yv) <(p;—1)v — ylog p, for 0 <v<y<p,

and hence Lemma 5.3 is superior to Theorem 1.21 whenever

l1<v<y<ppo— o2,
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