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5. It is possible to formulate Frobenius reciprocity for unitary
representations on a Hilbert space J-f (D) of i^-solutions of an invariant elliptic
differential operator D on homogeneous bundles over a homogeneous space

G/H whose isotropy subgroup H is compact modulo the center of G. Here G is a

connected unimodular Lie group (not necessarily semisimple) subject to some
mild structural constraints. In [33] Connes and Moscovici show that (D)

decomposes as a finite direct sum of irreducible unitary representations all of
which are square-integrable modulo the center of G and occur with finite
multiplicity. They derive for (D) a reciprocity analogous to that expressed for
the Z^-cohomology spaces in Theorem 3.15 and Theorem 4.3.
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