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9. MULTIVARIATE EXTENSION AND RELATED PROBLEMS

Here a multidimensional extension of weakly harmonizable processes and
the filtering problem on them will be briefly discussed. Even though some results
have direct k-dimensional analogs (k>2), there are some new and non-trivial
problems in this case for a successful application of the theory. The infinite
dimensional case will not be considered here since the key finite dimensional
problems are not well-understood and resolved.

Let L§(P, CH (= L, =, P; C*) be the space of equivalence classes of
measurable functions f:Q — C¥ the complex k-space, such that (i) | f |?

k
= > | fi|?is P-integrable, and (i) E(f) = (o f(0)P(d®) = 0, or equivalently,
i=1

— jg ®)P(dw) = 0, i=1,..,k,

where f = (f}, .., fo), | f ] is the Euclidean norm of f in C* and (, X, P) is a
probability space. If f,ge LP, C*), define | f |2 = (f, f) where the inner
product is given by

(f,9) = o (f(®), g(@)P(do) = :/:1 Ja fl®)g(@)P(dw).

Then & = L{(P, C*) becomes a Hilbert space of k-vectors with zero means. If k
= 1, one has the space considered in the preceding sections (# = L3(P, C)).

Definition 9.1. Let G be an LCA group. Then a mapping X : G — & is a
weakly or strongly harmonizable vector (or k-dimensional) random field (or
process) if for each a = (ay, ..., ;) € C¥, the mapping

k
Y, = ( ; G - K

is a (scalar) weakly or strongly harmonizable random field (or process).
Similarly a vector stationary, Karhunen, or class (C), processes are defined by
reducing to the scalar cases.
It is immediate from this definition that the component processes are also
harmonizably or stationarily etc. correlated according to the class they belong.
Thus if r, is the covariance function of the Y,-process and R is the covariance

matrix of the X-process, so that ryg, h) = E(Y, (g)?(h)) and R(g, h)
= E(X'(9)X X(h)) where X(g) is a k-th order (row) vector and “t” denotes the
usual transpose of a vector or matrix, then rJdg. h) = aR(g, h)a’. With this
notation, the integral representations of multivariate weakly and strongly
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harmonizable random fields can be obtained, using Theorem 3.3, in a
straightforward manner.

THEOREM 9.2. Let G bean ICAgroupand X :G —» X = LYP,CY, a
weakly continuous bounded mapping. Then X is weakly harmonizable iff there is
a stochasticmeasure Z onG —» & (orif Z(A) = (Z(A), ... Z(A)), A < G is
a Borel set, then each Z; is a stochastic measure on G - Jf,j = 1, .., k), such
that

X(g) = [a<9,5> Zds), ge€G, (99)
where G is the dual group of G. The mapping X is strongly harmonizable if
further the matrix F = (F;,j,1=1,..,k) with

F(A’ B) = ((ZJ(A)a ZI(B))’ j’ I = 1’ 3 k)

is of bounded variationon G, orequivalently each F; isofbounded variationon
G. The covariance matrix R is representable as:

R(g, h) = (¢ 5 <g,s) <h,t) Fds,dt), g, heG, (100)

where the right side is the M T-integral, or the Lebesgue-Stieltjes integral, defined

componentwise, accordingly as X is weakly or strongly harmonizable, and where

F is a positive definite matrix of bounded bimeasures or of Lebesgue-Stieltjes

measures. Conversely, if R(-, ‘) 1is a positive definite matrix representable as

(100), then it is the covariance matrix of a multivariate harmonizable random field.
Sketch of proof : Let a € C* be arbitrarily fixed and consider

Y, = a- X(= aX").

If X is weakly harmonizable, so that Y, is also, then by Theorem 3.3 (trivially
extended when R is replaced by G), there is a stochastic measure Z, on G — #
such that

Y;z(g) = _[G <g> S> Za(ds)7 ge G.

From this and the definition of Y,, it follows that Z ,(4) : C* — # is linear and
continuous. Hence thereisa Zon G — Z** (= Z, by reflexivity) such that Z (A)
= a- Z(A), and it is evident that Z is c-additive on #(G) » & so that it is a
stochastic measure. It follows from the properties of the D-S integral that:

Y(9) = a- X(9) = [a<g, s> a-Z(ds) = a- [z <g,s> Z(ds),  (101)

(1344

where the last integral defines an element of . This implies (99) since “a” is
arbitrary and X(-) as well as the integral operator are continuous. The converse
is similarly deduced from the corresponding part of Theorem 3.3.
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If X is strongly harmonizable, then so is Y, and if F, is its covariance
bimeasure, then F, = aFa' where

F(A, B) = ((Z{A), Z(B)),j» | = 1,2,.., k).

Now taking special values for a in C¥ it follows immediately that each
component F; of F is of bounded variation. Interpreting (100) componentwise,
the result follows from the scalar case. The same representation holds with the
MT-integration for the weakly harmonizable case. All other statements,
including the converses, are similarly deduced. This terminates the sketch.

By an analogous reasoning, it is evidently possible to assert that there is a 2-
majorant of Z, and the X-process has a (vector) stationary dilation. These results
are of real interest in the context of the important filtering problem which can be
abstractly stated following Bochner [2].

If X : G - % is a random field, a (not necessarily bounded) linear operator
A:Z — Ziscalled a filter of X, if A commutes with the translation operator on
X, 1e, if (t,X) (g9) = X(hg), then 1,(AX) = A(1,X), where the domain

dom (A) o {1,X(9),9€ G, he G}.
The problem is to find solutions X of the equation:
AX = Y(e%Z), (102)

such thatif Y is a given weakly or strongly harmonizable random field so must X
be.

For the stationary case, a general concept of filter was discussed by Hannan
[11].Ifk = 1, A = ) aA, is a reverse shift operator with G = R (so A,X(t)
i=1

= X(¢t—1)) and Y is stationary, then this problem was completely solved by
Nagabhushanam [28], and by Kelsh [19] in the strongly harmonizable case. In
both these studies, the conditions are on the measure function F of (33). If k > 2,
under the usual assumptions on the random fields, the following new questions
arise with (99) and (100). Frequently employed general forms of A include the
constant coefficient difference, differential, or integral operators, or a mixture of

m

these. For instance, if A = Z A J-Dj, where the A; are k-by-k constant matrices,
j

and D/ = ¥k (G = R)then(102) takes the following form in order that it admit

a (weakly) harmonizable solution for a harmonizable Y where X9 denotes the
mean-square j-th derivative (assumed to exist):
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fre™ Z @d\) = Y(1) = (AX) (1) Z A; X (k—j)
= 3 A, [g €AY Z,(dD)
j=0
= jR T(\) - €™ Z (d)), (103)

where T(A) = Z A; e”YMiLy, called the generator of A in [2], and Z,, Z, are

j=0
the representing stochastic measures of X - and Y-processes. Clearly the existence
of solutions of (102) depends on the coefficients A4;’s determining the analytical
properties of the generator T(-). If the process is strongly harmonizable then
(103) implies (*-denoting conjugate transpose)

Rs, 1) = [g [g € F (dh, dV)
= [g [r € T(WF (dh, dX) (T(V)e™)*, (104)

where F, and F, are the k-by-k matrix covariance bimeasures of X- and Y-
processes. For a special class of strongly harmonizable k-vector processes,
recently Kelsh [19] found sufficient conditions on the generator T(-) for a
solution of (102) when differential operators are replaced by difference operators
so that {A : T(X) = 0} is finite. The solution here hinges on the properties of the
structure of the space:

LZ(FX) = {T:R - B(CY, || [g [ TO)F(d), dX)T*(X) | < o0} . (105)

Since the integral in (105) defines a positive (semi-) definite matrix, its trace gives
a semi-norm. The measure function F being a matrix bimeasure, several new
problems arise for an analysis of the I*(F,)-space. For the weakly harmonizable
case, an extension of the MT-integration, to include such integrals, should be
established. The resulting theory can then be utilized for the multivariate
filtering study. Even if k = 2, the problem is non-trivial, involving the rank
questions of F,. Application of the dilation results to the filtering problem has
some novel features, but it does not materially simplify the problem.

Another interesting point is to seek “weak solutions” of the filtering equation
(102) in the sense of distribution theory. This idea is introduced in [2]. f % is a
class of functions on R (e.g. the Schwartz space Cg,(R)) with a locally convex
topology, then one says that (102) has a (weak) solution iff for each f € ¥

fr fOY(0)dt = [p fOAX@W)dt = [xAS) X (D)t , (106)
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where A : 9 — ¥ is an operator, associated with A, defined by the last two
integrals above. It is an “adjoint” to A. For instance, if A is a differential operator
with T(-) as its generator, if k = 1 and X, Y are stationary, then A is given by

AN O = g Te=MNfMFdL), fe¥ (107)

where F . is the spectral measure function of the X-process. Clearly many other
possibilities are available. Thus there are a number of directions to pursue the
research on these problems, and the paper [2] has a wealth of ideas of great
interest here.

This essentially includes what is known about weakly harmonizable random
fields and processes, as far as their structure is concerned. Since the class (C) of
Cramér and its weak counterpart (cf. Definition 3.1) and the Karhunen class of
processes, defined by (31), are natural generalizations of harmonizable and
stationary classes, it is reasonable to ask whether the latter is a dilation of the
former, i.e.,, is the analog of Theorem 6.1 true for weakly class (C)? A restricted
version can be establshed by the same methods, but the parallel generalization
does not hold. (See [38] on this point.) This question will be briefly discussed
here in order to include it in the set of problems raised by the present study.

Recall that a mapping X : R — L(P) is a Karhunen process if its covariance
function r(-, -) admits a representation

(s, 1) = [ g(MgMF@)), s teR,
R

relative to a family {g(-), s € R} of measurable functions and F which defines a
locally finite positive regular (or-Radon) measure on R and g, € I?(F) (cf. also
[10], p. 241). As an immediate consequence of Theorem 3.2 (cf. Remark 2

following its proof), an integral representation for Karhunen processes can be
given.

PropoSITION 9.3. Let S be a locally compact space and X : S — L3(P)
be a process of Karhunen class relative to a locally finite positive regular (or
Radon) measure F on S and a family {g,te S} = I*(F), the space of all
scalar square integrable functions on (S, %, F). Then there is a locally bounded
regular (or Radon ) stochastic measure Z : B, — L¥P) where B, = & isthe
0-ring of bounded sets, such that (i)

E(Z(A) - Z(B)) = F(ANB), A,Be %,,
i.e.,, Z is orthogonally scattered, and (ii) one has

X(t) = [s9MNZ@dr), tes, (108)
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where the right side symbol is a D-S integral (bf. also [42], §1 ). Conversely, if
X : S > L3(P) isaprocess defined by (108) relative to an orthogonally scattered

measure Z on S and {g,teS} satisfies the above conditions, then it is a

Karhunen process with respect to the family {g,te S} and F defined by
F(AnB) = (Z(A), Z(B)).. Moreover

Hy = sp{X(0),teS} = #, = sp{Z(A), A By} = LP)

and Hy = #, iff {g.teS} isdensein IXF).

A proof of this result is essentially given in ([10], p.242) and is a
simplification of that of Theorem 3.2. Even a multidimensional version is not
difficult, which in fact is analogous to that of Theorem 9.2 above. Actually, the
version in [10] is sketched for the k-dimensional case.

It follows from the arguments of the D-S theory of integration that a bounded
linear operator T and the vector integral such as that of (108) commute even if Z
1s of locally finite semivariation on the locally compact space S. This extension of
([8], IV.10) was proved in ([42], p. 79), and shown to be easy. Thus if X : §
— L3(P) is a Karhunen process, so that it is representable as in (108) and if
T € B(L§(P)), then it follows that

TX(t) = [s g(MT  Z(d}), (109)

and it is simple to see that Z = T o Z is a stochastic measure of locally finite
semivariation, but not necessarily orthogonally scattered. Hence by Theorem
3.2, TX is weakly of class (C).

In the opposite direction, for a process {X(s), s € S} € weakly class (C), one
cannot apply the theory of Section 5 above if only {g,, t € S} = I*(F,), and no
further restrictions are imposed, where I*(F,) is the space of functions g such that
| g | is MT-integrable relative to the covariance bimeasure F, representing X (cf.
(105), with k = 1). Suppose now that F, is such that if each g, is a bounded Borel
function and M(S) is the uniformly closed algebra generated by {g,, t € S} then
M(S) = IZ(F,). Let

Ty, = X(t) = g gdMZ(dM)
and extend T linearly to M(S). Then T € B(M(S), #) when ./(S) is given the
uniform norm. This forces F, to be of finite semivariation if at least one g, has

noncompact support. Under this assumption T is a 2-absolutely summing, and
Proposition 5.6 is applicable. Hence

T < flsw  feMES) (110)
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for a finite measure p on S. (A similar result seems possible if Z is restricted so
that T € B(IX(F,), #), defined above is Hilbert-Schmidt by [22], p. 302. But it is
not a good assumption here.) Thus one can repeat the proof of Theorem 6.1
essentially verbatim and establish a dilation result. Omitting the details of this
computation one obtains the following result. (For related remarks, details and
other results, see [38].)

THEOREM 9.4. Iet S be a locally compact space and
X:S - LyP) = H
be a Karhunen process relative to a Radon measure F and a family
{g,t€S} = IXF).

If Q:# — A is any (bounded) projection, then X(t) = 0X(t),teS, isa

process in weakly class (C). On the other hand if {X(t),t€ S} is an element of

weakly class (C), and so is representable in the form (108) for some family
{91 €S} = IZ(F,) where F, is a bounded covariance bimeasure of the

process (IX(F.) is defined above), and if each g, is also bounded, then there

exists an extension Hilbert space A~ > A, a probability space (Q, Z, P) with
A = LYP), and a Karhunen process Y :S — A such that

X(t) = QY(t), tes,

where Q is the orthogonal projection on A~ with range .

This result points out clearly the need to consider the domination problem
for other Banach spaces than those covered by the results of Section 5. Indeed the
associated abstract problem of classifying Banach spaces admitting a positive p-
majorizable measure for each vector measure from a probability space into that
space is essentially open. Also the preceding theorem and related analysis
presumably extend to classy (C)-processes of Definition 3.4. This will be of
independent interest in addition to its use in a treatment of the general filtering
theory on these processes. Other problems noted in the main text of the paper are
of both methodological and applicational importance for a future study.
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