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332 M. M. RAO

7. (CHARACTERIZATIONS OF WEAK HARMONIZABILITY

In this section a different type of characterization, based on the V-
boundedness concept crucially, of weak harmonizability as well as a
comprehensive statement embodying all the other equivalences of this concept
are given. The comparison will illuminate the structure of this general class of
processes. However, it is interesting and useful to obtain a characterization of V-
boundedness for a general Banach space, and then specialize the result for the
harmonizable case.

In this context let us say that X : G — %, a Banach space, is a generalized (or
vector ) Fourier transform if G is an LCA group, and if there is a vector measure
v:%B(G) » & such that X(g) = f& <g, s> v(ds), g € G. In [33], Phillips has
extended the fundamental scalar result of Bochner’s V-boundedness to certain
Banach spaces with G = R. Later but apparently independently, the LCA group
case was given by Kluvanek in ([21], p. 269). In the present terminology this can
be stated as follows:

ProposiTION 7.1. Let G bean LCAgroupand % a Banach space. Thena
mapping X : G —» & is a generalized Fourier transform of a regular vector
measure v:B(G) > X (ie., for givene >0 and E e B(G), there exist an
openset O andacompactset C with O > E > C suchthatforeach F < O
— C,Fe®B(G) one has | v(F)| <e¢) iff X is weakly continuous and V-
bounded (in the sense of Definition 4.1 ). ’

On the other hand, when & = C, a different kind of characterization was
given by Helson [12]. A vector extension of this is used for the weak
harmonizability problem, and will be presented here. Let I¥(G) be the Lebesgue
space, k > 1, on G relative to a Haar measure, denoted dg. Similarly I¥G) is
defined on the dual group G, and L%(G) for &-valued function space. Let

LVG) = {f: /() = [6 <t.s) f(s)ds, [ e LY G} = Co(G),

a similar definition for L}{G), the integrals in the latter being in the sense of
Bochner, and .Z, (G) (> L}G)), 4, (G) being the space of vector measures on G
into & with semivariation norm.

The following result contains the desired extension:

THEOREM 7.2. Let G bean LCA group, ¥ areflexive separable Banach
space,and X : G - X bebounded. Then X isa generalized Fourier transform
of a vector measure v on G into & iffforeach pe IXG) themapping Y,
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='(Xp):G > % isin My (G), ie,iff Y, isthe Fourier transform of a vector
measure on G into Z.

Proof. Suppose X is a generalized Fourier transform of v on G to Z, so that

X(g) = Je<g,s)vds), g€G. (77)

By hypothesis p € [1(G) so that p = f for a unique f € L!(G). Hence X(g)p(g) is
well defined, and if | € Z*, then by the scalar theory one has
(X(9) - plg) = P@IX(9) = [ <9 > f(s)ds [ {g, t> > v(dH)

= [g <g, ) (lovx f)ds, since (lovx f)" = (lov) - f the “s+” denoting
convolution,

= [ <9, ) ki(s)ds , (78)

where k;, = o v * f e I}(G) by the classical theory (cf. [24], p. 122 and p. 142).
Also ki (s): Z* — C is additive, and

L) e < TSIl v -0

as| — 0in Z*. Hence k(s) » Oasl — Ofora- a- (s), so that k(s) = k(s) () for a
k(s) e Z** = & by reflexivity, and for a - a - (s). Thus k() is Pettis integrable on
G, and the mapping Z,(‘): A |, k(s)ds, defines a o-additive bounded set
function into %, a vector measure, by known results in Abstract Analysis.
Consequently,

(X(9)) - p(g) = [5<g, s> 1> Z,ds)

= l([& <9, s Z(ds)), le *. (79)
Since Z, 1s a vector measure, | Z, || (G) < o, and | € &* is arbitrary, one has
Y(9) = X-p)©@) = [6<9,5> Zds)e%, geG, (80)

to be well-defined. Also

1Y@, = 1p@ 1 X@) |, <1 f1:1X@)1,

sothat|| Y, |, < || f I, | X ||, < coand by (80) Y, is the Fourier transform of
the vector measure Z, on G into Z. Hence Y, € .# ,(G). This proves the direct
part. The converse implication is more involved. '

Thus, for the converse, let Xp = Y, € M r (G) for each p € I}(G). Since & is
reflexive, by Proposition 7.1, it is enough to establish that the (weakly

continuous) X is V-bounded (cf. Definition 4.1). This is accomplished in two
stages.
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Let us first define an operator t: I}(G) —» LYG) by the equation

f)) =pX=Y, p=7f, felXG). (81)

Then (tf) e .4y (G) by hypothesis for each f e IXG). Clearly t is linear. It is also
bounded. To see this, let us show that it is closed so that the desired assertion
follows by the closed graph theorem. So let f,, f € I}(G), f, —» f innorm, and A,
= 1f, - hin Jy(G). Then (cf. [21], p. 268)

W o= T <l fi=fli—>0and [[h, —h|,<|h,—h]| -0,
as n — oo. But then
hn = (tf) =X -f,-» hand f, > f uniformly.
| XF =R IS < I XH=D G+ 1| X = hlls)
SNXO I fo—=F16) + Ihy— Rl () >0, as n> 0,5€6.
Hence Xf = h = (1f)", and ©f = h (by uniqueness). So 7 is closed.
Next let us verify the key property of V-boundedness for X. Since Y, is

continuous for each p e [X(G), it follows that X is weakly continuous. Let
h € I}(G). Consider the operator T : ING) —» Z defined by

T = T(h) = [ X(g)h(g)dg, | A, < 1. (82)

Since the correspondence h «» A is 1 — 1, T is well defined on [}(G), and it is to be
shown that T : [}(G) —» & is bounded when the former is endowed with the
uniform norm. [Note: h below is different from h above!]

Let h € I}(G) be arbitrarily fixed and {e,, o € I} = I}(G) be an approximate
unit (cf. [24], p. 124) so that | e, ||, = 1, ¢, > 0 and || (e,—eg) * A ||; —» O as
o B ~ “0”. Now (te,) = X-é, (= X,, say). The hypothesis implies
X, € -/Z@(G), ael, and

| (Xo—Xph [ (8) = | e,—ep) Il () < | (e,—ep) * ) I,
<t (ea—ep) ¥h ], = 0,  teG, (83)

since T was shown to be bounded. Thus X, — X uniformly. Since % € [X(G)
= Co(G) and is uniformly dense in the latter, it follows that | X, ||, < C < oo,
and the operator T, defined below is bounded uniformly in «:

T(h) = [ X0h(dd:, heIXG). (84)
G

 But X is the uniform limit of X S so it is also bounded, and hence T of (82) is
. bounded. Moreover, for f € Cyo(G) (= Cy(G)) of compact supports,
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| T(hf) — T I, = | (5}<X—Xa) (Oh()f (t)dt ||,
< (X=X)f - {1 HO 1 dt =0,

by (83), as o .~ “00”. Hence || T(hf) |l 7= | T(hf) | ;. and
Thf) = hm f X (Oh(t) f(t)dt (= !;X(t)h(t)f(t)dt). (85)

If | € 2%, (85) implies, with h & IX(G) A Coo(G) = Coo(G),
(IT) (h) = hmf (X hwdt (= hm(l° 2 (h).
On the other hand,
= [ (X))t = [ (I((te,) )h) (t)dt
= [ h(t) - [Jo <g, t) (ve,) (9)dg)dt
= [& [ h(t) <g, t) l(te,) (g)dtdg, by Fubini’s theorem,

— [5 l(te,) (9)h(g)dg, by Fubini again.

Thus for all h e Cy(g) = L}G),

[ECT)M < I hlulllve) e < TR - TEHTTH-ealy- (86)
Taking suprema on || [ || < 1, and noting that | e, |; = 1, (86) implies
Tl <Thllth. (87)

Thus (85) and (87) yield that | T(h) | < ¢ ||k |, with ¢ = || T || < oo. Since
Coo(G)is dense in I}(G), the same holds for all h € I}(G). So X is V-bounded. Since
Z 1is reflexive, Proposition 7.1 now applies and yields (77) for a unique vector
measure v on G into Z. This completes the proof.

Remark. The necessity proof also holds (and thus the theorem) if [}(G) is
replaced by

M(G) = {f:{i(t) = [5<g, t> Wdg), pe #(G), t e G},

where #(G) is the space of regular signed Borel measures on G. In fact let
Y, = [iX, where p = [1 (is a function), so that for [ € Z*,

(Y1) = [ <9, t) ndg) - [5 <s, £y 10 Z(ds) = (I-2) (1
= (o2)” () = [ <g £> (1*Z) (dg)),
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using the convolution products appropriately (cf., e.g. [21]). Hence uxZ is a
vector measure on G and

[ wZ | (G < RIGZ1(6) < .

Thus Y, is a Fourier transform of pxZ. Identifying ING) o M(G) as
fi: A |, f(0)de, the sufficiency proof of theorem and the above lines show that
I}(G) can be replaced by.Z (G) every where in that result. .

Taking 2 = LiP) so that V-boundedness is the same as weak
harmonizability, the above theorem together with Theorems 3.3, 6.3, yield the
following two summary statements on characterizations of weakly
harmonizable random fields.

THEOREM 7.3. Let G be an LCA group, X = Li(P) be separable and
X :G - & be aweakly continuous mapping. Then the following statements are
equivalent :

(1) X is weakly harmonizable.
(1) X is V-bounded.
(iii) X is the Fourier transform of a regular vector measure on G into %.

(iv) for each pe ING), the process Y, = Xp:G — L§P) is weakly
harmonizable and bounded.

Furthermore, the following implies (1)-(1v):

(v) if # = E{X(g),ge G} = %, then there exists a weakly continuous
contractive positive type family of operators {T(g),g € G} = B(s#) such
that T(0) = identity, and X(g) = T(g9)X(0), g € G.

In order to present a similar description of the dilation results, these
individual statements should be couched in terms of classes. Let us therefore
define various classes with = L3(P), separable.

v = the set of weakly continuous V-bounded random fields on G.

# = the set of weakly harmonizable random fields on G.

F = the class of all random fields which are Fourier transforms of regular
vector measures on G — 4.

M = themodule over [}(G) of all functions on G — & which belong to ./, (G),

ie, M = {X:G - X|X ING) < My (G)).

# = the class of all random fields on G — % which are projections of
stationary fields on G — £, where 4" o % is some extension (or super)
Hilbert space of .
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Then the following result obtains:

THEOREM 7.4. With the above notation, one has ¥ = M = P =V
=W

These two theorems embody essentially all the known as well as new results
on the structure of weakly harmonizable processes or fields. Some applications
and extensions will be indicated in the rest of the paper.

8. ASSOCIATED SPECTRA AND CONSEQUENCES

For a large class of nonstationary processes, including the (strongly)
harmonizable ones, it is possible to associate a (nonnegative) spectral measure
and study some of the key properties of the process through it. One such
reasonably large class, isolated by Kampé de Fériet and Frankiel ([15]-[17]),
called class (KF)in [35], is the desired family. This was also considered under the
name “asymptotic stationarity” by E. Parzen [32] (cf. also [14] with the same
name for a subclass), and by Rozanov ([40], p. 283) without a name. All these
authors, motivated by applications, arrived at the concept independently. But it
is Kampé de Fériet and Frankiel who emphasized the importance of this class
and made a deep study. This was further analyzed in [35].

If X : R — L}(P)is a process with covariance k(s, t) = E(X (s)f(t)), then it is
said to be of class (KF), after its authors [15]-[17], provided the following limit
exists for all he R:

1 T—Inl .

r(h) = lim — | k(s, s+|hl)ds = lim ry(h). (88)
T—-w 0 T—- o
It is easy to see that (- ), hence r(-), is a positive definite function when X(-)is a
measurable process. If X(-) is continuous in mean square, the latter is implied. It
is clear that stationary processes are in class (KF). By the classical theorem of
Bochner (or its modified form by F. Riesz) there is a unique bounded increasing
function F: R — R™ such that

rh) = [ge™ Fdt), a-a-(h)-(Leb). (89)

This F is termed the associated spectral function of the process X. Every strongly
harmonizable process is of class (KF). This is not obvious, but was shown in
([40], p. 283), and in [35] as a consequence of the membership of a more general
class called almost (strongly) harmonizable. The latter is not necessarily V-
bounded and so the weakly harmonizable class is not included. (Almost
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