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6. Stationary dilations

The results of the last section play a key role in showing that each weakly
harmonizable random field has a stationary dilation. It is a consequence of the

preceding work that for any stationary field Y : G -> Ll(P) with G an LCA

group, and each orthogonal projection Q : Ll(P) -> L%(P), the new random field

X(d) QY(g),geG, giving X : G -> Ll(P), is shown to be weakly
harmonizable. The dilation result yields the reverse implication. A "concrete"
version of this is given by the following theorem and an operator version will be

obtained later from it.

Theorem 6.1. Let G be an LCA group, X : G — Lq(P) XY a weakly
harmonizable randomfield. Then there is a super or extension Hilbert space C/Y

=> XY, a probability measure space (ß, 2, P) with CYY Ll(P), and a

stationary random field Y : G -> LffPj, such that X(g) QY(g), g e G,

where Q : Lq(P) - Ll(P) is the orthogonal projection with range LffP). If
moreover, XY — sp{X(g), g e G}, then Y determines CYY in the sense that

X sp{Y(g), g e G}. [Thus Jf is the minimal super space for XYTj

Proof The "consequence" above is easily proved. In fact, if Y : G - Ll(P) is

stationary, then Theorem 3.3 implies

Y(g) jo <9, s) geG, (63)

for a vector measure Z on G into C/Y Ll(P), with orthogonal increments (also

called orthogonally scattered) where G is the dual group of the LCA group G,

and < -, s) is a character of G. If Q : C/Y - X is any orthogonal projection, then

Z Q o Z is a stochastic measure on G into C/Y. Indeed,

|| Z || 2(G) sup {II £ atZ(A^ || I : I at | ^ 1, At cz G disjoint Borel, n ^ 1}
i l

sup {Il Q Z aiAAi) \\l-\ai \ ^ l,Ai a G, as above}
i 1

^ II 6 II2 sup {II £ flfZ^i) Hi : I I < 1, Ai c= G, as before}
i — 1

Il ô II2 sup { L L aiaj : I I < *> c *5 as before}
i=U=l

where F^n/fj-) (Z(Xj, Z^))
Il Ô \\2\F\(Ô)< F(Ô)<oo, (64)
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since F is the spectral measure of Z and so is finite and Q is a contraction. Hence

Z has finite semivariation and is clearly a-additive, so that it is a stochastic

measure. By Theorem 3.3, X given by X(g) — QY(g) <#, 5) Z(ds), # e G, is

weakly harmonizable. (Note that the same conclusion holds if Q is replaced by

any bounded linear operator on X. If the range of the projection Q is not finite

dimensional, then X need not be strongly harmonizable!)
To go in the reverse direction, the (possibly) augmented space Jf => XF has to

be constructed. Consider X : G -> Jf Lq(P)9 the given weakly harmonizable
random field. In order to get simultaneously the additional structure demanded

in the last part, let JF sp{X(g\ g e G} also. Then, as before, there is a

stochastic measure on G into such that

X(g) Jg <9, s> Z(ds) e XF, g eG. (65)

By Theorem 5.5, with XF, there exists a finite Radon regular Borel)
measure p on G such that

S Ig f(t)Z(dt)Hi< k I /(£) I2 e C0(G). (66)

Now define a mapping y : ^(G x G) -> R+ by the equation

v(A, B) p{AnB), A, Be ®(G), (67)

where &(G) is the Borel a-ring of G and similarly ^(G x G). Then v is a bimeasure
of finite Vitali variation on ^(G) x @(G) and since this ring generates ^(G x G),
t; extends to a Radon measure on the latter a-ring. Morevoer, it is clear that v

concentrates on the diagonal of the product space G x G. If Cb(G) denotes the
Banach space of bounded continuous scalar functions on G with uniform norm,
then

Je Je fis,t)v(ds,dt)Jô f{s, s)q(ds), / e Cb(G x G). (68)

Let F(A, B)(Z(A), Z(B)) so that F : .#(G x -> C is a bimeasure of finite
semivariation, from (65). Thus using the D-S and MT-integration techniques as
before,

0 «S II f(s)Z(ds)111Jô jô f(dt),f e Cb(G). (69)

Letting /(s, t) /(s) f(t) in (68), a v -one has from (66)-(69),
0 Je I fis) I2 n(ds) - Il Je f(s)Z(ds) ||1

Je Je fis)ff) Mds, dt) - F(ds, dt)-]

Je Je f(s)f(t)a(ds, dt), f e Q(G). (70)
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So a is positive semi-definite and a 0 iff v P, i.e., if F concentrates on the

diagonal. This corresponds to X being stationary itself. Excluding this trivial
case, a =£ 0, and (70) is strictly positive, if / 1. It follows from (70) that
["> *]': C&(G) x Cb(G) - C defines a nontrivial semi-inner product, where

IfdJJe Jg f(s)g{t)a(ds,dt),f, g e Cb(G). (71)

If^o {/: [//]' 0,/ e Cb(ô)},andCb(ô)/A^0 is the factor space,
let [•, •] : XF Y x j C be defined by

[(/), (3)1 [/, <?]', / e (/) e g 6 to) 6 (72)

Then [•, •] is an inner product on x and define 0 as its completion in [•, •]. Let

7i0 : Cb(G) - Xf o be the canonical projection. Thus XF0 is nontrivial and need

not be separable. Now let us replace XF0 by Lq(P') on a probability space
(£T, Z', P'). This can be done based on the Fubini-Jessen theorem where F can

even be taken to be a Gaussian measure (for the real see [36], pp. 414-415).
The complex case is similar. A quick outline is as follows : Let {hb i g /} c 0 be

a CON set. If (Qf, Zf, Pf) is a probability space determined by a complex
Gaussian variable, so that one can take Qf C, Zf Borel a-algebra of C, and

Pi{A) (27r)~1 J exp A e E;, (£ £t + 7^7 £2),

let (£T, Z', P') 0 (Qf, Zf, Pt) the product space given by the Fubini-Jessen
iel

theorem. If Af(co) co(i), co e Q! CJ, the coordinate function, then £(2Q 0

and E(\Xi\2) 1. Also {Xh i g /} forms a CON basis of $£ sp{Xf, i g 1}

c= Lq(F). The correspondence x : ht -> extended linearly, sets up an

isomorphism of J#"0 ont° and

II x(hi) II2 - E(|X]2) 1 - îgJ.

Then by polarization one has [/ii5 hj] p(x(/ii)x(/zi)), so that x is an isometric

isomorphism of onto ^ ^o(-P')> as desired.

If 7t T ° 7T0 I fI T(7t0(/)) 6 ' C= L§(F), / £ C„(G), is the composite

(canonical) mapping, let X^t) n(et( • g Jf" where (t, 5), is a character

of G at t g G. Note that e0 1 £ c/F0, so tc0(1) can be identified with the constant
1 g Cb(G). Thus

X,(0) x(l), P(|x(l)|2) 1

Let sppf^t), t e G} <= Then there exists a probability space

(Q", Z", P"), as above, such that XF" c L2(P"). Finally set X? © in the
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direct sum of Hilbert spaces Lq(P) and Lq(P )• If (^> L P)

(D, E, P) <g> (Cl", E", P") then one can identify, in a natural way, Jf <= Lq(P).

Define 7(t) X(t) + X^t),teG, so that (X(f), X^t)) 0 since 1 Jf" in

jf. Then (7(t), teGjcXc L&P), and if ß : JT - Jf {Jf ® {0}} is the

orthogonal projection, one has X(t)QY(t), It remains to show that

Y: G -> Lq(P) is stationary. By construction 7(0) X(0) + X^O) and this is

X(0) only when Xt(Ö) 0 which can happen iff Jf" {0}, i.e., when no

enlargement is needed.

To verify stationarity, consider

r(s, t) 7 (s),7(f))(X(s), X(t)) + (X^s), X^t)) since III,
J« Je (s. X) (t/X)F(dX, dX')+ Je (s, X) (tjJ)cc(dX, dX'\

by (69) and (72) and these are MT-integrals,

|g f& (5> ft X')v(dX, dX'\ since a v — F

Je (s, X) (t, X)ii(dX), by (68),

jö (s —t, X)p(dÂ), by the composition of characters. (73)

Since p is a finite positive measure, (73) implies

r(s + /z, t + h) r(s,t) r(s — t),

and so the Y : G -» Lq(P) is stationary. The construction also implies that

sp{7(0, t e G} JT in the case that sp{X(t), t e G). This completes the

proof.
The following is a useful deduction :

Corollary 6.2. Every vector measure v : @(G) - where G is an

LCA group, ^(G) heim? Borel algebra, ami zs a Hilbert space, has an

orthogonally scattered dilation.

Proof. Since G G consider the mapping X : G 3#* defined as the D-S

integral X(g) jG (g, X) v(dX). Then X is K-bounded; so it is weakly
harmonizable. By the above theorem there are an extension Hilbert space JC

=> 34?, an orthogonal projection Q : JC -> JT, with range XY, and a stationary
field Y : G ^ 3f such that X(g) ßT(g). Let Z be the stochastic measure
representing Y, (cf. Theorem 3.3). Hence for each he 3^ one has (Z : J^(G) -> JC)

JG (g, X) (v(dX), h) (X(g), h) {QY(g\ h) Jô (g, X) (ß o Z(dX\ h).

These are now scalar (Lebesgue-Stieltjes) integrals. By the classical uniqueness
theorem of Fourier analysis for such integrals, one has



330 M. M. RAO

(v(^) - Q o Z(A), h) 0, A e <%(G), h g

Hence v Q ° Z. Since Z is orthogonally scattered by virtue of the fact that Y is

stationary, the result follows.
With the last theorem, a more perspicuous version of the dilation problem for

a weakly harmonizable random field can be given. This, however, depends also

on an interesting theorem of Sz.-Nagy [41] and will be presented. Recall from the

classical theory of stationary processes ([6], p. 512 and p. 638) every such process
{Yt, t g R} c= Lq(P), can be expressed as Yt Ut Y0, where {Ut,t g R} is a group
of unitary operators acting on Ll(P) (first on sp{ Yt, t e R} and then, for instance,
define each Ut as an identity on the orthogonal complement of this subspace).

The spectral theory of Ut then yields immediately the corresponding integral
representation of Yt's. The same result holds if R is replaced by an LCA group G.

The corresponding operator representation for harmonizable processes (or
fields) is not so simple. Its solution will be presented in the following theorem.

Recall that a family T : G -> B(ST), SC a Hilbert space, is of positive type if T{ — g)

— T(g)* (adjoint operator) and for each finite set {xSl,..., xSn} of ST indexed by J
{s1? s2, -, s„} c G, one has

Z Z (T(si ls«)*5i> xsJ > o • (74)
i=i j=i

Theorem 6.3. Let G be an LCA group and X : G -> Ll(P) a

Hilbert space, be weakly harmonizable. Then there exists a super Hilbert space

Ll(P) ZD SC on an enlarged probability space (ß, 2, P), a random

variable Y0e JT a weakly continuous family {T(g), g e G] of contractive

linear operatorsfrom XY to 9C with T(0) as the identity on (^0 being the

neutral element of G), such that, when its domain is restricted to 9C, it is of
positive type, in terms ofwhich X(g) T(g)Y0, g g G. Conversely every weakly

continuous contractive family {T(g), g e G} of the above type from any super

Hilbert space Jf ^ *3C into SC which, when restricted to SC is ofpositive type,

defines a weakly harmonizable process X : G -» SC, by the equation X(g)
T(g)Y0 for any Y0 g SC, T(0) being identity on SC.

Proof. The direct part is an operator-theoretic reformulation of Theorem

6.1. Briefly, let X : G -+ Lq(P) SC be weakly harmonizable. Then there exist a

Lq(P) zd ST and a stationary Y: G - JT such that X(g) QY(g), g g G,

by Theorem 6.1 with Q as the orthogonal projection on X and range ST. But

Y(g) U(g)Y(0) where {U{g),geG} is a (strongly) continuous group of

unitary operators on CCY. Let T(g) QU(g), g g G. It is asserted that

{T(g), g g G} is the desired family.
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Indeed, T(0) Q identity on 9C\ and || T(g) || ^ Il Q II II U(g) || ^ 1.

The continuity of U(g)on G clearly implies the weak continuity of %)'s. To

verify the positive definiteness onlet hSl,hSn be a finite set in .'f. Then letting

T(g) T(g) |r one has T(-g) (Ti (g))*since
(f(-g)hSl,hS2) (QU(-g)hSl,hS2) (U*

(hSi,U(g)hS2),sinceQhs. and U**(g) U(g),

(QhSi,U(g)hS2)(hSl,QU(g)hS2)
(hsi,T(g)hS2) (T(g)*hsi,hS2),X, 1,2. (75)

Similarly,

t t (T(s;\)hSi,hs)=£ X (0U
i 1 j 1 i i j 1

X X
i=ij=i

X W»., II2 ^ o. (76)
i 1

The converse depends explicitly on an important theorem of Sz.-Nagy ([41],
Thm. Ill ; this is an extension of a classical result of Naïmark). According to this

result if T( • T(-) | f, then there is a super Hilbert space Jf x (Jf x may be

quite different from Jf) and a weakly (hence strongly) continuous group
{V(g), g e G} of unitary operators on Jf x such that T(g) QiTfef) |r, ßi being
the orthogonal projection of onto $f. Here JT x can be chosen as JT

sp{K(g)^, g e G}. If x0 g is arbitrary, then x0 e n X, and

T(g)x0 T(g)x0 Q1V(g)x0 X(g), (say), g g G

But {!%) F(ôf)x0, gl g G) c= jf x is a stationary process so that by the first
paragraph of the proof of Theorem 6.1, {X0(g\geG} a & is weakly
harmonizable. Thus for each x0 e {T(g)x0, g e G} is weakly harmonizable,
and this completes the proof.

Remark. In the converse direction one can take JT % However in the
forward direction, it is not always possible to take Y0 in so that 2T(0) 70, as

the example following Definition 2.1 shows. Thus there is an inherent asymmetry
in the statement of this theorem, and the mention of the super Hilbert space X in
the enunciation cannot be avoided. It should also be noted that the above quoted
theorem of Sz.-Nagy [41] can be deduced also from Naïmark's theorem and
Theorem 6.1. See [38] for a further discussion on this point.
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