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326 M. M. RAO

6. STATIONARY 'DILATIONS

The results of the last section play a key role in showing that each weakly
harmonizable random field has a stationary dilation. It is a consequence of the
preceding work that for any stationary field Y : G — L3(P) with G an LCA
group, and each orthogonal projection Q : L3(P) —» L3(P), the new random field
X(g) = QY(g9),ge G, giving X:G — LP), is shown to be weakly
harmonizable. The dilation result yields the reverse implication. A “concrete”
version of this is given by the following theorem and an operator version will be
obtained later from it.

THEOREM 6.1. Let G bean LCA group, X :G — LP) = # a weakly
harmonizable random field. Then there is a super ( or extension ) Hilbert space A

> #, a probability measure space (Q, £, P) with A = LiP), and a

stationary random field Y :G — LYP), such that X(g) = QY(g), g€ G,

where Q: LYP) —» L%(P) is the orthogonal projection with range L2(P). If

moreover, H = ;;{X(g), ge G}, then Y determines A in the sense that
¥ = :9;{ Y(9), g€ G}. [Thus A is the minimal super space for #.]

Proof. The “consequence” above is easily proved. In fact, if Y:G — L(P)is
stationary, then Theorem 3.3 implies

Y(g) = jG <ga S> Z(dS), g e G > (63)

for a vector measure Z on Ginto #~ = L2(P), with orthogonal increments (also
called orthogonally scattered) where G is the dual group of the LCA group G,
and (-, s> is a character of G. If Q : A& — X is any orthogonal projection, then
Z = Qo Z is a stochastic measure on G into . Indeed,

“ Z|1%G) = sup {|| ¥ aZ(A)}:1a;l <1, 4; = G disjoint Borel, n > 1}
i=1
= sup {1 Q Y aZ(4) |3:1a| < 1,4; < G, as above}
i=1
<QIPsup {| Y aZ(A)l%:1a;| <1, 4; = G, as before}
i=1

= || Q ||* sup {Zl 'Zl aa; F(4;nA): | a;| < 1,4; < G as before}
i=1j=

where F(4,nA4)) = (Z(A), Z(A)) ,
= | QI*I F|(G) < F(G) < w0, (64)
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since F is the spectral measure of Z and so is finite and Q is a contraction. Hence
7 has finite semivariation and is clearly c-additive, so that it is a stochastic
measure. By Theorem 3.3, X given by X(g9) = QY(9) = [z <9, &) Z(ds), g € G, is
weakly harmonizable. (Note that the same conclusion holds if Q is replaced by
any bounded linear operator on . If the range of the projection Q is not finite
dimensional, then X need not be strongly harmonizable!)

To go in the reverse direction, the (possibly) augmented space ¥ = J# hasto
be constructed. Consider X : G —» # = L}(P), the given weakly harmonizable
random field. In order to get simultaneously the additional structure demanded
in the last part, let J# = E;{X (9), g € G} also. Then, as before, there is a
stochastic measure on G into s such that

X(g) = [z <g, s) Z(ds) € #, geG. (65)

By Theorem 5.5, with % = J#, there exists a finite Radon (= regular Borel)
measure | on G such that

I fe f(OZ(d) |5 < | f(©) 1P wdD), [ e CyG). (66)
Now define a mapping v: (G x G) - R* by the equation |
v(4, B) = W(ANB), A, B e B(G), (67)

where %(G) is the Borel o-ring of G and similarly #(G x G). Then vis a bimeasure
of finite Vitali variation on 8(G) x %(G) and since this ring generates B(G x G),
v extends to a Radon measure on the latter o-ring. Morevoer, it is clear that v
concentrates on the diagonal of the product space G x G. If C,(G) denotes the
Banach space of bounded continuous scalar functions on G with uniform norm,
then

jG jG f(S, t)U(dS, dt) = jG f(S’ S)H(d5)> f € Cb(G X G) - (68)

Let F(A4, B) = (Z(A), Z(B)) so that F: B(G x G) - C is a bimeasure of finite
semivariation, from (65). Thus using the D-S and MT-integration techniques as
before,

0 <o f(5)2(ds) 13 = [&fo fOf(OFds,dr),  feCylG).  (69)

Letting f(s, t) = | f(s)- f(t) in (68), @ = v — F one has from (66)-(69),
0< fo! f(s)1? uds) — || [ f(s)Z(ds) |13

= ¢ [o F()S(0) [o(ds, dt) — F(ds, de)]
= [ fo f()fOlds, dr), [ eCy0). (70)
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So a is positive semi-definite and o« = 0 iff v = F, i.e., if F concentrates on the
diagonal. This corresponds to X being stationary itself. Excluding this trivial
case, o # 0, and (70) is strictly positive, if f = 1. It follows from (70) that
[, -] : CG) x C,G) — C defines a nontrivial semi-inner product, where

[f 91 = [a[a f(s)gt)ulds, dt),  f,g€ CyG). (71)

N ={f:[/if] =0, feCyB)},and #, = C,(G)/.AN,is the factor space,
let [,-]: 5, x #, — C be defined by

(/) (@) =[fgl, felf)eH,gelgeH,. (72)

Then [, -]is aninner product on #; and define J# , as its completionin [, -]. Let
Ty : Co(G) = H#, be the canonical projection. Thus #, is nontrivial and need
not be separable. Now let us replace #, by L3(P’) on a probability space
(', Z', P’). This can be done based on the Fubini-Jessen theorem where P’ can
even be taken to be a Gaussian measure (for the real 5, see [36], pp. 414-415).
The complex case is similar. A quick outlineis as follows: Let {h;, i € I} < #,be
a CON set. If (Q, X;, P;) 1s a probability space determined by a complex
Gaussian variable, so that one can take Q; = C, £, = Borel o-algebra of C, and
| t]?

P(4) = 2m)~! { exp <— T) dt,dt,, AeZ,(t =1t +/—1t,),
A

let (Q,%,P) = Q® (Q, Z, P, the product space given by the Fubini-Jessen
iel

theorem. If X (w) = w(i), ® € Q@ = C!, the coordinate function, then E(X,) = 0

and E(|X,?) = 1. Also {X, i€} forms a CON basis of & = sp{X,iel}

c L3(P). The correspondence .1:h; — X, extended linearly, sets up an

isomorphism of #, onto %, and

I w(h) I3 = E(X4?) = 1 = [h, h], iel.

Then by polarization one has [h;, h;] = E(r(h,.)r(—hj—)), so that 1 is an isometric
isomorphism of #, onto ¥ < I(P’), as desired.

If 1t = tomg: f - 1(ne(f)) € # = LYP), f e CyG), is the composite
(canonical) mapping, let X,(t) = (e - )) € # wheree,: s — (t, 5),is a character
of Gatt € G. Note thate, = 1¢ A", so ny(1)can be identified with the constant
1 € C,(G). Thus

X,(0) = (1), E(e()P) = 1.

Let #" = QB{X (), te G} = #'. Then there exists a probability space
(Q", =", P"), as above, such that #” < I?(P"). Finallyset #° = # & #”,in the
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direct sum of Hilbert spaces L3(P) and L§P"). If @, £, 13~)
= (Q, %, P)® (Q", X', P") then one can identify, in a natural way, A~ < L3(P).
Define Y(t) = X(t) + X,(), t € G, so that (X(1), X,(t)) = 0 since #" L A" in
A Then {Y(1),te G} ¢ A < LiP),andif Q: A4 > H# = (A# @ {0}} is the
orthogonal projection, one has X(t) = QY(), te G. It remains to show that
Y : G —» L3(P) is stationary. By construction Y(0) = X(0) + X ,(0) and this is
X(0) only when X,(0) = 0 which can happen iff #" = {0}, i.e, when no
enlargement is needed.
To verify stationarity, consider

Hs, 1) = (Y(s), Y(8) = (X(s), X)) + (X1(s), X1(t)) since X L X,

= o fo (s ) (& M)F(@L, dV) + [5 fo (5, ) (1, M)aldh, dN),
by (69) and (72) and these are MT-integrals,

= &[5 (s, ) (&, M)o(dh, dX), since o = v — F

= {5 (5, M) (&, Mu(d]), by (68),
= jG (s—t, Mu(dr), by the composition of characters. (73)

Since p is a finite positive measure, (73) implies
rs+h t+h) = r(s, 1) = fls—1),

and so the Y :G — L2(P) is stationary. The construction also implies that
—sg{ Y(t), t € G} = A in the case that # = Q{X (t), t € G}. This completes the
proof.

The following is a useful deduction:

COROLLARY 6.2. Every vector measure v :2%B(G) — # where G is an
LCA group, %(G) being its Borel algebra, and 3 is a Hilbert space, has an
orthogonally scattered dilation.

Proof. Since G = G consider the mapping X : G — # defined as the D-S
integral X(g) = [ <g, L) v(dA). Then X is V-bounded; so it is weakly
harmonizable. By the above theorem there are an extension Hilbert space 4
> A, an orthogonal projection Q : A — X', with range /#, and a stationary
field Y: G —» 2 such that X(§) = QY(g). Let Z be the stochastic measure
representing Y, (cf. Theorem 3.3). Hence for each h € # one has (Z : B(G) » %)

fo @ M) (vdL), h) = (X(@), h) = (QY(@), h) = [ (@ M) (Q > Z(d), h).

These are now scalar (Lebesgue-Stieltjes) integrals. By the classical uniqueness
theorem of Fourier analysis for such integrals, one has
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(V(4) — Q o Z(A), h) = o,Ae@(G),heyf.

Hencev = Q o Z. Since Z is orthogonally scattered by virtue of the fact that Y is
. stationary, the result follows.

With the last theorem, a more perspicuous version of the dilation problem for

a weakly harmonizable random field can be given. This, however, depends also "

on an interesting theorem of Sz.-Nagy [41] and will be presented. Recall from the
classical theory of stationary processes ([6], p. 512 and p. 638) every such process
{Y, te R} < L3(P),can be expressed as Y, = U,Y,, where {U,, t € R} is a group
of unitary operators acting on L3(P) (first on EE{ Y,, t € R} and then, for instance,
define each U, as an identity on the orthogonal complement of this subspace).
The spectral theory of U, then yields immediately the corresponding integral
representation of Y;’s. The same result holds if R is replaced by an LCA group G.
The corresponding operator representation for harmonizable processes (or
fields) is not so simple. Its solution will be presented in the following theorem.
Recall thatafamily T : G — B(¥), 4 a Hilbert space, is of positive type if T(—g)
= T(g)* (adjoint operator) and for each finite set {x, , ..., x, } of Z indexed by J
= {8y, S, -, Sy} = G, one has

i i (T(s; *s)xs X,) = 0. (74)
i=1 j=1
THEOREM 6.3. Let G be an ICA group and X :G — L3P) = %, a
Hilbert space, be weakly harmonizable. Then there exists a super Hilbert space
A = L¥P) > & on an enlarged probability space (&, £, P), a random
variable Y, e A a weakly continuous family {T(g), g € G} of contractive
linear operators from A~ to & with T(0) astheidentityon & (0 being the
neutral element of G ), such that, when its domain is restricted to %, it is of
positive type, in terms of which X(g) = T(g9)Y,, g € G. Conversely every weakly
continuous contractive family {T(g), g € G} of the above type from any super
Hilbert space A" 2 & into & which, whenrestrictedto Z is of positive type,
defines a weakly harmonizable process X :G — %, by the equation X(g)
= T(@)Y, forany Y,eXZ, T(0) being identity on Z.
| Proof. The direct part is an operator-theoretic reformulation of Theorem
6.1. Briefly, let X : G — L3(P) = % be weakly harmonizable. Then there exist a
A = LYP) o & and a stationary Y: G — X such that X(g) = QY(g9),g € G,
by Theorem 6.1 with Q as the orthogonal projection on %4 and range Z. But
" Y(g) = U(g)Y(0) where {U(g),g e G} is a (strongly) continuous group of
unitary operators on J . Let T(g) = QU(g),ge G. It is asserted that
{T(g), g € G} is the desired family.
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Indeed, T(0) = Q (= identity on %), and || T(g) | < I @ I I Ulg) | <
The continuity of U(g) on G clearly implies the weak continuity of T(g)’s.
verify the positive definiteness on &, let h,, ..., b, be a finite setin 2. Then lettmg
T(g) = T(g) |, one has T(—g) = (T(g))* since
(T(—g)hs,, h,) = (QU(—g)hy,, hs) = (UX(g)hs,, Qhs,)
= (h,, U(g)hs,), since Qh,, = hy, and U**(g) = U(g),
(QhS1’ U ) = (hsp QU(g) Sz)
= (hs,, T(g)hs,) = (T(g)*hs,, h,), by, € X, 0 = 1,2. (75)

Similarly,

 (QU(=s)Ulshs, )

I
e
IM:

z Z (T(sjflsi)hsp th) -
i=1j=1

- z i( (5)*Us)h, h)
= Y, Ulsdhy, > > 0. (76

The converse depends explicitly on an important theorem of Sz.-Nagy ([41],
Thm. II1; this is an extension of a classical result of Naimark). According to this
resultif T(+) = T(+) |-» then there is a super Hilbert space 4", > 2 (o4, may be
quite different from ) and a weakly (hence strongly) continuous group
{V(g), g € G} of unitary operators on ¢, such that T(g) = Q,V(g) |, Q; being
the orthogonal projection of 2", onto Z. Here 2", can be chosen as X%,

= 55{ V@)%, g e G}. If x, € Z is arbitrary, then xo € #°; n X', and
T(g)xo = T(@xo = Q:1V(g)xo = X(9),  (say), geG.

But {Y(g9) = V(g)xs g € G} = A, is a stationary process so that by the first
paragraph of the proof of Theorem 6.1, {X(g), g€ G} =« ¥ is weakly

harmonizable. Thus for each x, € &, {T(g)xo, g € G} is weakly harmonizable,
and this completes the proof.

Remark. In the converse direction one can take ¥ = & However in the
forward direction, it is not always possible to take Y, in Z, so that X(0) = Y,, as
the example following Definition 2.1 shows. Thus there is an inherent asymmetry
in the statement of this theorem, and the mention of the super Hilbert space 4" in
the enunciation cannot be avoided. It should also be noted that the above quoted
theorem of Sz.-Nagy [41] can be deduced also from Naimark’s theorem and
Theorem 6.1. See [38] for a further discussion on this point.
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