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314 M. M. RAO

F:R x R = Coflocally finite N-variation (let N’ be the associate norm of N),
and there exists a family {g,, t € R} of Borel functions which are MT-integrable
relative to F, such that

(s, 1) = fu [x gMGH)F(@N, dV), s, 1€ R, 3y
and where locally finite N-variation is meant the following:
0 > || FlMAxA)=sup {|I(fg|:N(f) < LN@<1}. (39

Here f, g are Borel step functions, with supp(f) = A4, supp(g) = A4, A € A,,, the
o-ring of bounded Borel sets of R.

(b) A process X : R — L&(P) is of classy(C) if its covariance function r is of
classy (C) so that it is representable as (33).

Itisclearthatif N() = || - ||, sothat N'() = | - ||, the N-variation is simply
the 1-semivariation of Definition 3.1 and that

HE Ny = [ Flly(=[1FI).

Remark. Without further restrictions, classy (C) need not contain the weak
or strong harmonizable processes. However if N is restricted so that, letting

INP) = {f € M(P): N(f) < o0}, I(P) = L(P) = L)(P),

where p = P is a probability, then every class, (C) will contain both the weak
and strong harmonizable families, as an easy computation shows. If N()

= | - ||;, then class; (C) is the class which corresponds to the covariance
bimeasure of finite semivariation. This includes the classical Loéve and Rozanov
definitions. Again this definition holds, with only a notational change, if R is
replaced by a locally compact group G. A brief discussion on some analysis of
these classes which extend the present work is included at the end of the paper.

4. V-BOUNDEDNESS, WEAK AND STRONG HARMONIZABILITY

The definition of weak harmonizability is of interest only when an effective
characterization of it is found and when its relations with strong harmonizability
are made concrete. These points will be clarified and answered here. Now
Theorem 3.3 shows that a weakly harmonizable process is the Fourier transform
of a stochastic measure and this leads to a fundamental concept called V-
boundedness (‘V’ for “variation”), introduced much earlier by Bochner [2],
which is valid in a more general context. This notion plays a central role in the
theory and applications of weakly harmonizable processes (and fields) which are
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shown to be V-bounded in the context of L3(P). Further this characterization
facilitates a use of the powerful tools of Fourier analysis of vector measures. The
desired concept is as follows (cf. [2], and also [33]):

Definition 4.1. A process X : R — %, a Banach space, is V-bounded if X(R)
liesin a ball of &, X as an Z'-valued function is strongly measurable (i.e., range of
X is separable and X ~}(B) € # for each Borel set B = %), and if the set C is
relatively weakly compact in &, where

C={a fOXWdt: [ fl.<1LfelR)}cZ, (35)

and where f(t) = [g f(Me™dM, [g f(1)X(t)dt being the Bochner integral. If 2 is
reflexive then the condltlon on C may be replaced by its boundedness. (Here if
the measurability of X is strengthened to weak continuity, then it actually
implies the strong [and even uniform] continuity.)

Let us establish the following basic fact when & = L3(P):

THEOREM 4.2. A process X :R — LP) isweakly harmonizableiff X is

V-bounded (ie., || X(t) |, < My < co,teR, and the set in (35) is bounded)
and weakly continuous.

Proof: For the direct part, let X be weakly continuous and V-bounded.
Then

| Je fOX®dt Il < cll f llw f € DR, (36)

by Definition 4.1. Let % = {f: f e [}(R)} = C,(R), the space of complex

continuous functions vanishing at “00”; the inclusion holds by the Riemann-

Lebesgue lemma. Moreover, % is uniformly dense in Co(R), since % is a real

algebrain Cy(R) and separates points of R so that the Stone-Weierstrass theorem

applies (cf. [24], §26.B). Let # : [ — j feN)dr, t e R, where e (L) = ™.
R

Then & : I['(R) - Co(R) is a one-to-one contractive operator. Consider the
mapping
T:% % = L§P), by T(f) = [z fOX(t)dt e ¥ .

This is well-defined, and the following diagram is commutative :

e

“

L(R)

Ti(f) = fr fOX()dt € Z . \/

By hypothesis T is bounded and by the density of % in Co(R), it has a norm
preserving extension T to Co(R). Now T will be given an integral representation
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using a classical theorem due to Dunford-Schwartz ([8], VL.7.3) since T is a
weakly compact operator because Z is reflexive. ‘

To invok¢ the above cited theorem, however, it should first be observed that
the result holds even if the space C(S) of continuous (scalar) functions on a
compact space S (for which it is proved) is replaced by Cy(¥) with a locally
compact space &. Here & = R. Indeed, let % be the one-point (at “c0”)
compactification of & and consider the space C(¥). Now C(¥) can be identified
with the subspace {f € C(#): f(w0) = 0}. Since T : Co(¥) — Z is continuous
and Cy(¥) is an “abstract M-space”, there is a continuous operator T : C(&)
— & such that T | Co(#) = T. This follows from the fact that for any Banach
space Z containing a subspace which is an abstract M-space, there is a projection
of norm one on & onto that subspace, by the well-known Kelley-Nachbin-
Goodner theorem (cf. e.g., [8], p. 398), and T = T o Q. Hence by the Dunford-
Schwartz theorem noted above, there is a vector measure Z on % into & such
that

T() = [, /020, € CF). (37

and | T | = || Z |(&), the-integral on the right being in the D-S sense. Define
Z: B(F) > X as Z(A) = Z(¥NA), A e B(&). Then Z is a vector measure and
| Z | < || Z|. Moreover, if f, = f |, then

T(f) = [y fo(Z(d) + [rey f(0)Z(dt), [ € C(F)

= T/, since  f(o0) = 0.
Hence T(f) = T(f), fe Co(#) with | T | < | T| = | T || < || T|, and
1) = |4 f(®)Z(d), f € Co(¥) - - (38)

Thus writing R for & from now on (the above general case is needed later), it
follows that

| Tl = sup {ll fa f(OZ(@d0) | : f € CoR), | [ Il < 1} = | Z [(R)
= | Z (R,

and T and Z correspond to each other uniquely. Since T | # = T, this implies

T (f) = fa f(O2Z(d) = [g f(OX(D)L, f € L(R), (39)

and | T || = | Z [(R).
Let [ € £*. Then (39) becomes (since a continuous operator commutes with
the D-S integral, cf. [8], p. 324 and p. 153, and Z'* is the adjoint space of %),

fof(0) loZ(dt) = [af(t) loX(t)dt . (40)
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In (40) now both are ordinary Lebesgue integrals, and hence using the Fubini
theorem (for signed measures) on the left one has:

[r f(0)dt [g eM)] o Z(dL) = (g f(t)] o X(t)dt
Subtracting and using the same theorem of ([8], p. 324),
[ fOU|g eMZ(d)) — X(t)dt = 0,1e Z*, f € L'(R). (41)

It follows that the coefficient of f vanishes a.e., (everywhere as it is continuous).
Since / € Z* is arbitrary it finally results that the quantity inside / is zero, for each
t € R. Thus

X(t) = [g e(MZ(@dN) = [g €™ Z(d\), teR. (42)

Hence X is weakly harmonizable by Theorem 3.3.

For the converse, let X : R — L}(P) be weakly harmonizable. Then X admits
a representation of (42) by Theorem 3.3. Since | Z | (R) < oo, (21) implies
| X() I, < My < oo for all teR, and as [ - X(*) is the Fourier transform of
loZ,1e Z*, X is weakly continuous. Consider the Bochner integral for (f X) ()
as '

(] fOX(@de) = [ fO1 - X(0dt = Jf0)- [ e0)@oZ)(@hyde 43)
since / » X is the Fourier transform of a signed measure
= i 1) Z(d)\)dt, by Fubsini’s theorem,
= i Z(d\)
= z(ljt Z(dM)), by ([81, p. 324) again. (44)

Since | € £* is arbitrary, (44) implies

i fOX(dt = [ fFW)Z@N) e X . (45)

R

Hence, using (21), ohe has

I If X@Odtl, < I S 1N ZIR) =cl [, feL'®), (46)

where ¢ = | Z || (R) < 0. It therefore follows that the set
{i fOX@dt: | [, <1, fe R} < LiP),

and is bounded. Since 4 is reflexive, X is V-bounded. This completes the proof.
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Remarks. 1. Since V-boundedness concept is defined for general Banach
spaces (for a treatment of this case, cf. [33]), and its Hilbert space version is
equivalent to weak harmonizability, by the above theorem, the latter term will be
used in the Hilbert space context. (Using the general definition of V-boundedness,
a characterization of a process X : R — %, a reflexive space, which is a Fourier
transform of a vector measure is given in Theorem 7.2 below. It extends a result of
[12])

2. The preceding proof is arranged so that if R is replaced by a locally
compact abelian (LCA) group G, the result and proof hold with essentially no
change. The functions {e,('), t € G} will then be group characters. Thus the result
takes care of G = R";so the (weakly) harmonizable random fields are included.
Precise statements and further results in the general case will be given later.

If % is the set of all weakly harmonizable processes on R — L3(P) = %, and
T € B(Z), the algebra of bounded linear operators on %, then Y(¢)
= TX(t), t € R defines a process which can be written as:

Y(t) = T(Jg €*Z(d)) = [g €NT<Z) (d}), (47)

by ([8], p. 324), and it can be seen that Z = T o Z: % — & is a stochastic
measure, | Z | (R) < | T ||| Z || (R) < oo. Hence Y € #". Thus one has:

COROLLARY 4.3. B(%)- W = W, orin words, the linear space of weakly
harmonizable processes is a module over the class of all bounded linear
transformations on X = L}(P).

Since each stationary process X is trivially strongly (hence weakly)
harmonizable, if P : & — & is any orthogonal projection, then Y = PX € #/,
i.e. weakly harmonizable by Corollary 4.3. In particularif {X,, ne Z} = Zisan

orthonormal sequence, £, = S_I;(X »Nn>0), let (%) = &, be the orthogonal
projection and Y, = QX, =X, if n>0,=0 if n<0. The process
{Y,,neZ} e, butitis not strongly harmonizable. Thus the class of weakly
harmonizable processes is strictly larger than the strongly harmonizable class.
(The latter is not a module over B(%).)

In spite of the above comment, each weakly harmonizable process can be
approximated “pointwise” by a sequence of strongly harmonizable ones. This
observation is essentially due to Niemi [29]. The precise result is as follows:

THEOREM 4.4. Let X :R — L3(P) be aweakly harmonizable process. Then
there exists a sequence of strongly harmonizable processes X, : R — L4(P) such
that X,(t) - X(t), as n— oo, in LYP) uniformly (in t) on compact
subsetsof R. If R isreplaced by an LCA group G the same result holds with
{X,,nel} beinganetofsuchprocess. (Theconvergenceisherein I*(P)-mean.)
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Proof. By hypothesis, there is a stochastic measure Z : % —» Z = L3(P),
such that
X(0) = [ e(MZ(@h), teR.
R
Thus X : R —» % is a continuous mapping. If #'x = S—p;{X(t), te R} = Z, then
the continuity of X (and the separability of R) implies 5y is separable. Hence

there exists a sequence {@, n > 1} = &y which is a complete orthonormal
(CON) basis for Z'y, so that

- i ouX(0, 9), teR, (48)

the series converging in the (norm) topology of # yx for each t. Define

n

X, (1) = ) odX(®), 9) teR. (49)

Claim: {X,(t), t € R}, n > 1,is the desired sequence. [In the general LCA group
case {@,, n € I} is a net of CON elements of # 4, since G, hence 5y, need not be .
separable. Otherwise the same argument works with trivial modifications.]

To verify the claim, it is clear that X ,(t) » X(¢) in 4 for each t € R. To see
that X, is strongly harmonizable, let

L X — (X, @), XeHy.

Then I, e #°% for each k. Hence using the standard properties of the D-S integral,
one has

X(t) = k; ol X () = kzl ¢ LlJr €M Z(dN))
since X is weakly harmonizable,

Pifr &Ml o Z(d)) = [ e (MG (dM), | (50)

Il
.
TP

where () z @il © Z(). Let G,(4, B) = ((,(A), {(B)). Then G, is of finite

k=1
total variation. Indeed, if i, = [ o Z, which is a signed measure (hence has finite
variation) on R, let

N4, B) = (Quhti(4), 014(B)) = mu(A)n(B) .

So G,(A, B) Z t(A)p(B). Since

| i (A) | | m(B) | < (| Hy | (R))2
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for each k, it follows that each 1, and hence G, for each n has finite variation so
that each X, is strongly harmonizable.

It was already noted that X being weakly harmonizable, it is strongly
continuous. [This is true even if R is replaced by an LCA group G (cf. [21],
p. 270).] So if K = R is a compact set, then its image X(K) = #x < Li(P) is
also (norm) compact. But s, being a Hilbert space it has the (metric)
approximation property. [This means the identity on 4, can be uniformly
approximated by a sequence (net) of (contractive) degenerate, or finite rank,
operators on each compact subset of # ,.] Then X ,(t) - X(t)in & foreachte R
implies, by a result in Abstract Analysis in the presence of the approximation
property, that the convergence holds in Z uniformly on compact subsets of Z.
This and the fact that X(K) is compact implies that X,(t) —» X(¢) in L3(P),
uniformly for t € K < R. In the general LCA case, the same holds with nets
replacing sequences. This completes the proof.

Remark. Even though the weakly harmonizable process is bounded and
weakly (hence strongly here) continuous with some nice closure properties
demonstrated above, it does not exhaust the class of all bounded continuous
processes in L3(P). This can be seen from Theorem 3.2 by a suitable choice of a
vector measure of finite local semivariation but which is not of finite
semivariation. The following example demonstrates this point. Let I}(R) be
identified with .#(R) of regular signed measures on R by the Radon-Nikodym
theorem (ie. f € [}R) < j(.) f(t)dt € #(R)). Now it is known that there are
nontrivial functionsin Co(R) — %, where %, = {{i: pe #(R)}. Let f € Co(R)
— %. For instance '

-1 | x|
f(x) = sgn(x) (loglx) ™" Hgxiz a1 + - fTixi<a)  X€ER,

is known to be such an f. Let @ € L3(P), | @ |, = 1. Let [ € (L(P))* such that
I(p) = 1. Consider the trivial process X, : t — f(t)p. Then X, : R — L§(P) is
bounded and continuous but not weakly harmonizable, since otherwise there
exists a stochastic measure Z such that (by Theorem 3.3)

Xo() = [ e(MZ(@), and

f() = (X)) = | &) (I°Z) (d}).

R

Since | o Z € #(R), this would contradict the choice of f.
Here is an interesting consequence of the preceding theorem.




HARMONIZABLE PROCESSES: STRUCTURE THEORY 321

THEOREM 4.5. Let X :R — L3(P) be a weakly harmonizable process and
let Z:%B — L3P) be its representing measure by (30). Then there is
(nonuniquely) a fixed sequence of finite regular Borel measures B,: # — R™
such that for each f € Cy(R),

I lf‘ f®)Z(dy) ||, < lim inf || f {I5,,

n

(= lim inf []| f(2) |* B,d£)]"?) . (51)

Remark. Even though this result is deducible from the general Theorem 5.5
below, the present proof is elementary and has some interest and will be given
here. It leads to the general case.

Proof: By hypothesis, X(-) is represented by a stochastic measure Z (cf.
(30)), and by the preceding theorem there are strongly harmonizable X, —» X,
uniformly on compact subsets of R. Let {, be the representing measure of X, so
that {,, Z : # — L3(P), and

[ f)Z(d)) = lim | f(M)C(dN), (52)
R

n—o R

the limit existing in L(P) when f is a trigonometric polynomial. Since such
polynomials separate points of R and so are uniformly dense in Cy(R), and the
integrals in (52) define bounded operators from C,(R) into L3(P), it follows that
(52) holds for all f € Cy(R), by standard reasoning (cf. [8], I1.3.6). Hence

o = || fr SWZ(@N) |3 = lim || fg fFWCAN) 5, f € Co(R)

n— oo

= lim [g fg fV)S(\V)F(dA, dX), (53)

where F,(s, t) = ((,(— 0, s), {,(— o0, 1)) is a covariance function of bounded
variation for each n. Let | F,|(-,-) be the (Vitali) variation measure of the
bimeasure F,. Then the hermitian property of F, implies, in an obvious notation,
| F, | (A, B) = | F, | (B, A). Now define amapping B, : # — R* by the equation:
1
B(A) = | F,|(4,R) = E{IF,,I(A,R) +|F, (R, A}, Aea,

so that B, is a finite Borel measure, and

[“f(S) | F| (ds, dt) + Hf(t)anl(ds, dn]. (54)

B =

;ja JMB,(dN) =

Since F, is positive (semi-) definite,
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0 < o fr SO)fO)F (s, dt) < [& [& |f(6)f(0) || F, | (ds, dt)
1 .
< SUw [l S 1 F, | (ds,d) + [a Ju | S0 17 Fy | (ds, d0)]

since Iabl <(lal*> + 16172,
= Jx | f(9) 1> Bi(ds), by (54). (55)
This and (53) yield

of = | [ FVZ(@N) 3 = lim [g [g SO)SV)F(d, dV)

< liminf [ [ fM) ? B,(dN),  feCoR). (56)

This completes the proof.

Remark. For a deeper analysis of the structure of these processes, it is
desirable to replace the sequence {B,, n > 1} by a single Borel measure. This is
nontrivial. In the next section for a more general version, including
harmonizable fields, such a result will be obtained.

5. DOMINATION PROBLEM FOR HARMONIZABLE FIELDS

The work of the preceding section indicates that the weakly harmonizable
processes are included in the class of functions which are Fourier
transformations of vector measures into Banach spaces. A characterization of
such functions, based on the V-boundedness concept of [2], has been obtained
first in [33]. For probabilistic applications (e.g., filtering theory) the domination
problem, generalizing Theorem 4.5, should be solved. The following result
illuminates the nature of the general problem under consideration.

THEOREM 5.1. Let (Q, %) be a measurable space, Z a Banach space and
v:XZ > Z be a vector measure. Then there exists a (finite) measure | :Z

o(x)

— R*, a continuous convex function ¢ :R™ — R* suchthat —~ » o« as
X

x 2 00,00) = 0, and v has @-semivariation finite relativeto | inthe sense
that

Ivl,€) = sup ] (f)f(ﬂ))\'(dw) g 1 Sy <1} < 00, (57)

where || f |l,,, = inf {o0 > O:j\b(I—f—gﬂu) Wdo) < 1} < o0, and the
o
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