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F : R x R - C of locally finite N-variation (let N' be the associate norm of N),
and there exists a family {gv te R} of Borel functions which are MT-integrable
relative to F, such that

Ks, f) j„ JR gs(X)g-t(X')F{dXR, (33)

and where locally finite A-variation is meant the following :

00 > Il F I\n(A x A) sup { I /(/, g) I : N'(f) ^ 1, N'(g) ^ 1} (34)

Here f g are Borel step functions, with supp(/) c= A, supp(g) a A, A e &0, the

ô-ring of bounded Borel sets of R.

(b) A process X : R -> Ll(P) is of classN(C) if its covariance function r is of
classN (C) so that it is representable as (33).

It is clear that if iV(-) || • || l so that N'{-) || • || the iV-variation is simply
the 1-semivariation of Definition 3.1 and that

\\F\\N Il F Ij («a || F II).

Remark. Without further restrictions, classN (C) need not contain the weak

or strong harmonizable processes. However if N is restricted so that, letting

LN(P) {/ g M(P) : N(f < oo}, L°°(JP) c lF(P) c L\P),

where p P is a probability, then every class^ (C) will contain both the weak
and strong harmonizable families, as an easy computation shows. If N(-)

|| • || l5 then class! (C) is the class which corresponds to the covariance
bimeasure offinite semivariation. This includes the classical Loève and Rozanov
definitions. Again this definition holds, with only a notational change, if R is

replaced by a locally compact group G. A brief discussion on some analysis of
these classes which extend the present work is included at the end of the paper.

4. T-boundedness, weak and strong harmonizability

The definition of weak harmonizability is of interest only when an effective

characterization of it is found and when its relations with strong harmonizability
are made concrete. These points will be clarified and answered here. Now
Theorem 3.3 shows that a weakly harmonizable process is the Fourier transform

of a stochastic measure and this leads to a fundamental concept called V-

boundedness (' F' for "variation"), introduced much earlier by Bochner [2],
which is valid in a more general context. This notion plays a central role in the

theory and applications of weakly harmonizable processes (and fields) which are
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shown to be F-bounded in the context of Ll(P). Further this characterization

facilitates a use of the powerful tools of Fourier analysis of vector measures. The

desired concept is as follows (cf. [2], and also [33]):

Definition 4.1. A process X : R -> SC, a Banach space, is V-bounded if Jf(R)
lies in a ball of SC, X as an ^-valued function is strongly measurable (i.e., range of
X is separable and X~1(B) e for each Borel set B a SC), and if the set C is

relatively weakly compact in SC, where

C {jR f(t)X(t)dt : 1 / ||u < 1, / g L^R)} c X (35)

and where f(t) jR f(X)eiadX, jR f(t)X(t)dt being the Bochner integral. If SC is

reflexive then the condition on C may be replaced by its boundedness. (Here if
the measurability of X is strengthened to weak continuity, then it actually
implies the strong [and even uniform] continuity.)

Let us establish the following basic fact when SC Lq(P) :

Theorem 4.2. A process X : R -* Ll(P) is weakly harmonizable iff X is

V-bounded (i.e., || X(t) ||2 ^ M0 < co,t e R, and the set in (35) is bounded)
and weakly continuous.

Proof : For the direct part, let X be weakly continuous and F-bounded.
Then

Il jR f(t)X(t)dt||2< c II / L / 6 R), (36)

by Definition 4.1. Let {f :feL'(R)} <= C0(R), the space of complex
continuous functions vanishing at "oo"; the inclusion holds by the Riemann-
Lebesgue lemma. Moreover, is uniformly dense in C0(R), since is a real
algebra in C0(R) and separates points of R so that the Stone-Weierstrass theorem
applies (cf. [24], §26.B). Let & : /1-> J f(k)ët(k)dX, t e R, where et(X) eia.

R

Then : l}(R) C0(R) is a one-to-one contractive operator. Consider the
mapping

T : -> X Lg(P), by T(f) JR f(t)X(t)dt e SC

This is well-defined, and the following diagram is commutative :

R) Z ^ 9
Ti(f) JR f(t)X(t)dt e %

9C

By hypothesis T is bounded and by the density of <W in C0(R), it has a norm
preserving extension T to C0(R). Now T will be given an integral representation
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using a classical theorem due to Dunford-Schwartz ([8], VI.7.3) since T is a

weakly compact operator because 9E is reflexive.

To invoke the above cited theorem, however, it should first be observed that
the result holds even if the space C(S) of continuous (scalar) functions on a

compact space S (for which it is proved) is replaced by C0(Sf) with a locally
compact space Sf. Here R. Indeed, let SP be the one-point (at "oo")
compactification of Pf and consider the space C(ßP\ Now C0(SP) can be identified
with the subspace {/ e C{SP) : /(oo) 0}. Since f : C0(PP) -> 9C is continuous
and C0(PP) is an "abstract M-space", there is a continuous operator T : C(SP)

- such that T | C0(PP) T. This follows from the fact that for any Banach

space ^containing a subspace which is an abstract M-space, there is a projection
of norm one on St onto that subspace, by the well-known Kelley-Nachbin-
Goodner theorem,(cf. e.g., [8], p. 398), and T T ° Q. Hence by the Dunford-
Schwartz theorem noted above, there is a vector measure Z on y into such

that

T(f) J- f(t)Z(dt\ f e C(&), (37)

and || f || || Z || (y7), the integral on the right being in the D-S sense. Define

Z : &(£?) as Z(A) Z(<9*nA), A e $(£Z). Then Z is a vector measure and
Il Z II < Il Z II. Moreover, if f0 -f\y,then

T(f fy fo(t)Z(dt) + f,{oor f e cm
T[f0), since /( co) 0

Hence T(f)f(/), / e C0(^) with || T||< 1 || || H 4 II ?||, and

tf) Syf(t)Z{dt),f6 C0m • (38)

Thus writing R for -V from now on (the above general case is needed later), it
follows that

H Tw sup {II Jr f(t)Z(dt) || : / e C0(R), II / L < 1} - fl z ||(R)

II 2 ll(K),

and T and Z correspond to each other uniquely. Since f | <3t => this implies

T (/) jR f(t)Z(dt) f(t)X(t)dt, f e R), (39)

and || T|| || Z H(R).

Let I e SC*. Then (39) becomes (since a continuous operator commutes with
the D-S integral, cf. [8], p. 324 and p. 153, and SC* is the adjoint space of,/').

y\t) bZ{dt)jR/(t) loX(t)dt. (40)
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In (40) now both are ordinary Lebesgue integrals, and hence using the Fubini
theorem (for signed measures) on the left one has :

fR fm fB e,(i)i o zm jE m ° xw.
Subtracting and using the same theorem of ([8], p. 324),

Jr /(0/(Jr et(X)Z(dX) - X(t))dt 0, l e 3C\ f e L/R). (41)

It follows that the coefficient of / vanishes a.e., (everywhere as it is continuous).
Since / g is arbitrary it finally results that the quantity inside / is zero, for each

t e R. Thus

m Jr et(X)Z(dX) fR eux Z{dX\ te R (42)

Hence X is weakly harmonizable by Theorem 3.3.

For the converse, let X : R -> Lq(P) be weakly harmonizable. Then X admits
a representation of (42) by Theorem 3.3. Since || Z || (R) < oo, (21) implies
|| X(t) || 2 ^ M0 < oo for all t e R, and as / ° X(-) is the Fourier transform of
I ° Z, I e &*, X is weakly continuous. Consider the Bochner integral for (/X) (•)

as

/(J f(t)X(t)dt) I /(f)/ o x(r)dt f /(f) • J (ZoZ) (<ft,)df, (43)
R R RR

since I ° X is the Fourier transform of a signed measure

J J f(t)et(X)l o Z{dX)dt, by Fubini's theorem,
R R

J /Ml o Z(<ft)
R

'(l.A'1'-)Z(^/-)), by ([8], p. 324) again. (44)
R

Since I e is arbitrary, (44) implies

J /(f)*(f)df I f(X)Z(dX) eX. (45)
R R

Hence, using (21), one has

|| I f(t)X(t)dtb< II / L II 2 ll(R) C II / L, / 6 LX(R), (46)

where c || Z || (R) < oo. It therefore follows that the set

{J f(t)X(t)dt:|| / L < 1, / e If(R)} «= L2o(P)
R

and is bounded. Since % is reflexive, X is F-bounded. This completes the proof.
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Remarks. 1. Since F-boundedness concept is defined for general Banach

spaces (for a treatment of this case, cf. [33]), and its Hilbert space version is

equivalent to weak harmonizability, by the above theorem, the latter term will be

used in the Hilbert space context. (Using the general definition of F-boundedness,
a characterization of a process X : R -> #*, a reflexive space, which is a Fourier
transform of a vector measure is given in Theorem 7.2 below. It extends a result of
[12].)

2. The preceding proof is arranged so that if R is replaced by a locally
compact abelian (LCA) group G, the result and proof hold with essentially no
change. The functions (ef(-), t e G} will then be group characters. Thus the result
takes care of G R" ; so the (weakly) harmonizable random fields are included.
Precise statements and further results in the general case will be given later.

If iC is the set of all weakly harmonizable processes on R - Lq(P) #f, and

T g B(#T), the algebra of bounded linear operators on $f, then Y(t)

TX(t), te R defines a process which can be written as :

Y(t) T(j„ eiaZ(dX)) JR (dX), (47)

by ([8], p. 324), and it can be seen that Z T ° Z : f f is a stochastic

measure, || Z || (R) ^ || T || || Z || (R) < oo. Hence Y e iV. Thus one has:

Corollary 4.3. B(3>) • HZ iC, or in words, the linear space of weakly
harmonizable processes is a module over the class of all bounded linear

transformations on 9C — Lq(P).
Since each stationary process X is trivially strongly (hence weakly)

harmonizable, if P : % -> $£ is any orthogonal projection, then Y PX e 7F,
i.e. weakly harmonizable by Corollary 4.3. In particular if {Xn, ne Z) a % is an

orthonormal sequence, &0 sp(Xn, n> 0), let QjfX) — be the orthogonal
projection and Yn QXn Xn if n > 0, 0 if n ^ 0. The process
{Yn, n e Z} g iT, but it is not strongly harmonizable. Thus the class of weakly
harmonizable processes is strictly larger than the strongly harmonizable class.

(The latter is not a module over B{3£))

In spite of the above comment, each weakly harmonizable process can be

approximated "pointwise" by a sequence of strongly harmonizable ones. This

observation is essentially due to Niemi [29]. The precise result is as follows :

Theorem 4.4. Let X : R -> Lq(P) be a weakly harmonizable process. Then

there exists a sequence ofstrongly harmonizable processes Xn
: R - Lq(P) such

that Xn(t) -+ X(t), as n - oo, in Lq(P) uniformly (in t) on compact
subsets of R. If R is replaced by an LCA group G the same result holds with

{Xn, ne 1} being a net ofsuch process. The convergence is here in l}{P)-mean.)
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Proof. By hypothesis, there is a stochastic measure Z : a X Lq(P),

such that

X(t) j et(k)Z(dX\ te R
R

Thus X : R -» % is a continuous mapping. If 34?x sp{X(t), te R} c: #*, then

the continuity of X (and the separability of R) implies 34?x is separable. Hence

there exists a sequence {cp„, n > 1} c= ^ which is a complete orthonormal

(CON) basis for &x, so that
oo

*(0 £ <P„(*(0> <Pn)> teR, (48)
n 1

the series converging in the (norm) topology of 34?x for each t. Define

X„(t) i teR. (49)
k= 1

Claim : {Xn(t)9 teR},« ^ 1, is the desired sequence. [In the general LCA group
case {cp„, ne 1} is a net of CON elements of 34?x, since G, hence 34?x, need not be

separable. Otherwise the same argument works with trivial modifications.]
To verify the claim, it is clear that Xn(t) -> X(t) in 34?x for each t e R. To see

that Xn is strongly harmonizable, let

lk : X h- (X, cp,), X e J?x.

Then lk e 34?% for each k. Hence using the standard properties of the D-S integral,
one has

Ut) £ <P Mm)Î et(X)Z(dX))
k=1 k= 1

since X is weakly harmonizable,

t <P*Jr e&)lk°Z(dk) JR e,(X)UdX), (50)
k 1

where Çn(-) £ Wkh ° z(')- Let Gn(A, B) — (Çn(Z), Çn(B)). Then G„ is of finite
k i

total variation. Indeed, if lk o Z, which is a signed measure (hence has finite
variation) on R, let

qfc(A, R) (cpfc^(^), cPkHk(B)) lik(A)Hk(B)

So G„(A, B) £ \ik{A)[ik(B). Since
* i

I H/U) I I Hk(ß) I «Ï (I Htl (R))2 < CO
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for each k, it follows that each r|fc and hence Gn for each n has finite variation so

that each Xn is strongly harmonizable.

It was already noted that X being weakly harmonizable, it is strongly
continuous. [This is true even if R is replaced by an LCA group G (cf. [21],
p. 270).] So if X c= R is a compact set, then its image X(K) c c Lq(P) is

also (norm) compact. But J^x being a Hilbert space it has the (metric)
approximation property. [This means the identity on Jfx can be uniformly
approximated by a sequence (net) of (contractive) degenerate, or finite rank,

operators on each compact subset of Then Xn(t) -> X(t) in for each t e R

implies, by a result in Abstract Analysis in the presence of the approximation
property, that the convergence holds in ÜT uniformly on compact subsets of 9C.

This and the fact that X(K) is compact implies that Xn(t) - X(t) in Ll(P\
uniformly for t e K c R. In the general LCA case, the same holds with nets

replacing sequences. This completes the proof.

Remark. Even though the weakly harmonizable process is bounded and

weakly (hence strongly here) continuous with some nice closure properties
demonstrated above, it does not exhaust the class of all bounded continuous

processes in Lq(P). This can be seen from Theorem 3.2 by a suitable choice of a

vector measure of finite local semivariation but which is not of finite
semivariation. The following example demonstrates this point. Let L*(R) be

identified with R) of regular signed measures on R by the Radon-Nikodym
theorem (i.e. / e I}(R) <-+ j(.} f(t)dt e J^(R)). Now it is known that there are

nontrivial functions in C0(R) — x where (W1 (p : p e Let / e C0(R)

— For instance

I x I

f{x) sgn(x) ((log|x|)+ — 'h\x\< e]), X e R

is known to be such an J Let cp e Lq(P), || cp ||2 1. Let I e (Lq(P))* such that
/(cp) 1. Consider the trivial process X0 : t Then X0 : R Ll{P) is

bounded and continuous but not weakly harmonizable, since otherwise there

exists a stochastic measure Z such that (by Theorem 3.3)

X0(t) j et(X)Z(dX), and
R

fit) l(X0(tj)j e,(X) (/oZ) (dX).
R

Since / ° Z e R), this would contradict the choice of f.
Here is an interesting consequence of the preceding theorem.
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Theorem 4.5. Let X : R - Lq(P) be a weakly harmonizable process and

let Z : & -* Ll(P) be its representing measure by (30). Then there is

nonuniquely a fixed sequence of finite regular Borel measures ßn:^ - R +

such that for each f e C0(R),

Il S f(t)Z(dt) Il 2 <lim inf |/||2fPn
R n

lim inf [J I f(t) I2 ß„(^)]1/2). (51)
n R

Remark. Even though this result is deducible from the general Theorem 5.5

below, the present proof is elementary and has some interest and will be given
here. It leads to the general case.

Proof : By hypothesis, X() is represented by a stochastic measure Z (cf.

(30)), and by the preceding theorem there are strongly harmonizable Xn - X,
uniformly on compact subsets of R. Let be the representing measure of Xn, so
that Z : & -> Lq(P), and

I mzmlim J f(X)Udl), (52)
R n-+ oo R

the limit existing in Ll(P) when / is a trigonometric polynomial. Since such

polynomials separate points of R and so are uniformly dense in C0(R), and the
integrals in (52) define bounded operators from C0(R) into L^(P), it follows that
(52) holds for all / e C0(R), by standard reasoning (cf. [8], II.3.6). Hence

*1 II 1„ f(X)Z(dX) 111 lim II JR AWJLdX) 111, R)
oo

lim fR jR dV), (53)
n~* oo

where Fn{s,t) (Ç„(- co, s), Ç„(— co, r)) is a covariance function of bounded
variation for each n.Let| Fn\(•,•) be the (Vitali) variation measure of the
bimeasure Fn. Then the hermitian property of Fn implies, in an obvious notation,
I F„ I (A, B) I F„ I (B, A). Now define a mapping ß„ : -» R+ by the equation :

ß„(/l) I FnI(A,R)1
{I F„ I (X, R) + I FJ (R, 4)}, /(si,

so that ßn is a finite Borel measure, and

f f(X)ßJdX) 1 [j J /(s) I F„ I (ds, JJ /(t) I Fn I (ds, dt)] (54)
R Z R R R R

Since Fn is positive (semi-) definite,
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o < f, Ir f(s)f(t)Fn(ds,dt)^ jR |„ |/(s)/(0 II F„ I dt)

< 1 [|r J. I /(s) I2 I FnI(<fa, dt) + fR JR | /(t) |2 | I (ds, dt)]

since | ab | ^ (| a |2 + | b |2)/2

Jr I f(s) \2 ßn(^). by (54). (55)

This and (53) yield

ao II Ir mZ{dX)II2lim fR fR mJdk')n

< lim inf J I m I2 ß„(<&), / e C0(R). (56)
n R

This completes the proof.

Remark. For a deeper analysis of the structure of these processes, it is

desirable to replace the sequence (ß„, n ^ 1} by a single Borel measure. This is

nontrivial. In the next section for a more general version, including
harmonizable fields, such a result will be obtained.

5. Domination problem for harmonizable fields

The work of the preceding section indicates that the weakly harmonizable

processes are included in the class of functions which are Fourier
transformations of vector measures into Banach spaces. A characterization of
such functions, based on the F-boundedness concept of [2], has been obtained
first in [33]. For probabilistic applications (e.g., filtering theory) the domination
problem, generalizing Theorem 4.5, should be solved. The following result

illuminates the nature of the general problem under consideration.

Theorem 5.1. Let (D, E) be a measurable space, 9C a Banach space and

v : E - be a vector measure. Then there exists a (finite) measure p : E

R + a continuous convex function (p : R+ -» R+ suchthat s oo as
x

x s oo, cp(0) 0, and v has (p-semivariation finite relative to p in the sense

that
Il v II (Ci) sup (Il I f(a>)v(d(£>): || / ^ 1} < co, (57)

V n

where || / \\^tVL inf {a > 0 : j* v|/ r ^ ^

j p(dco) ^ 1} < oo, and the
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