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where | F || = || F || (R x R). It should be noted, however, that the integrability
of (f, g) generally need not imply that of (| f], |g]), and the MT-integral is not an
absolutely continuous functional in contrast to the Lebesgue-Stieltjes theory, as
already shown by counterexamples in [26] and [27]. Fortunately a certain
dominated convergence theorem ([27], Thm. 3.3) is valid and this implies some
density properties which can and will be utilized in our treatment below. Also f
is termed F-integrable if (f, f) is MT-integrable. Our definition above i1s
somewhat more restrictive than that of [27], but it suffices for this work. For the
theory of [27], the space B(R, 4, C) in (12) and (13) is replaced by C,,(R), its
subset of continuous functions with compact supports, with the locally convex
(inductive limit) topology. Note that, thus far, no special properties of R were
used in the definition of the MT- integral, and the definition and properties are
validif R isreplaced by an arbitrary locally compact space ( group in the present
context ). This remark will be utilized later on.
With this necessary detour, the second concept can be given as follows:

Definition 2.2. A process X : R — LP), with r(, ‘) as its covariance
function, is called weakly harmonizable if

(s, 1) = I(€"0, e") = [ [ &~ F(d), d)), s, t € R, (18)
RR

relative to some positive definite bimeasure F of finite semivariation where the
right side is the MT-integral.

In particular r is bounded and continuous (by (17) and Thm. 3.2 below).
Moreover, if F is of bounded variation, then the MT-integral reduces to the
Lebesgue-Stieltjes integral and (18) goes over to (3). The following work shows
that the process of the counterexample following Definition 2.1 is weakly
harmonizable. The same counterexample also shows that harmonizable
processes generally do not admit shift operators on them, in that there need not
be a continuous linear operator

T, X(t) > X(t+s)e L3(P), teR

on L3(P). This is in distinction to certain other nonstationary processes of
Karhunen type (cf. [9]).

3. INTEGRAL REPRESENTATION
OF A CLASS OF SECOND ORDER PROCESSES

In order to introduce and utilize the “V-boundedness” concept of Bochner’s,
it will be useful to have an integral representation of weakly harmonizable
processes. This is done by presenting a comprehensive result for a more general
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class including the (weakly) harmonizable ones. It is based on a method of
Cramér’s [3], and the resulting representation yields by specializations both the
harmonizable, stationary, Cramér class of [3], as well as the Karhunen class
(restated below). This is detailed as follows.

Recall that if (Q,, .«7) is a measurable space (i.e., o7 is a c-algebra of sets of Q)
and Z a Banach space, then a mapping Z : o/ — % is called a vector measure if Z
1s o-additive, or

o 0] Q0

Z(UAL): ZZ(AI)’ AlEJj,
i=1 i=1

disjoint, the series converging unconditionally in the norm of Z. If = L(P)

where (), £, P)is a probability space, then a vector measure is sometimes termed

a stochastic measure. The integration of scalar functions relative to a vector

measure Z is needed, and it will be in the sense of Dunford-Schwartz ([ 8], IV.10).

This may be briefly outlined here. If . f=> ax 4p A; € o, disjoint, define as

i=1
usual

n

(4 f(5)Z(ds) = Y aZ(AnA)eZX, Aed. (19)

i=1

Now if g : Q, — C is .&/-measurable, and g, are .«/-step functions such that g,
— g pointwise, one says that g is D-S integrable whenever for each 4 € ./,

{Jagu9)Zds),n > 1} =« &

is a Cauchy sequence. Then the limit, denoted g 4, of this sequehce is called the
integral of g on A, and is dénoted as

ga = [49(5)Z(ds) = lim [, g,(s)Z(ds), Aes. (20)
Itis a standard (but non-obvious) matter to show that the integral is well-defined,
independent of the sequence used, and the mapping A — [, g(s)Z(ds) is o©-
additive on 7, and g — [, g(s)Z(ds) is linear. Also

1 fa9)Z@s) | < gl 1Z1(4), geBE& «,C), (21)

where || Z || () is the semivariation of Z (cf. (7)) which is always finite on the o-
algebra 7. [If o/ is only a &-ring and Q, ¢ &/, then Z need not have finite
semivariation on «¢.] The dominated convergence theorem is true for the D-S
integral. (See [8], IV.10, for proofs and related results. The latter exposition is
very readable and nice.)
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The general class noted above is the following:

Definition 3.1. A process X : R — L(P), with covariance r(;, °), is said to be
weakly of class (C) (C for Cramér) if (i) there exists a covariance bimeasure F on
R x R of locally bounded semivariation in the sense that

F(A, B) = F(B, A), Z Z a;d; F(A, Ay) =2 0, a; e C.
i=1j=1
Here A, € 8,1 < i < n, bounded, and for each bounded Borel 4 = R, if Z(A)
= {A n B: Be %}, then

| F(AxA) =sup {|} » ab;F(4;B)|:la;| <1,]b;l <1,

i=1j=1

A;, Bj € B(A), disjoint} < o0 ;

(ii) there exists an MT-integrable (for F) family g, : R — C of Borel functions,
t € R, such that I(|gy, |g) < oo, s € R, where I denotes the MT-integral relative
to F, in terms of which one has (g,(\) is also written as g(t, 1)):

r(s, 1) = I(gs, g) = i i g(Mg{A)F(dr, dx),  s,teR. (22)

Remark. Note that in this definition F can be given by a covariance
function p asin (3') since, for 4 = [a, b)and B = [c, d) one defines (A*F) (4, B)
as the increment p(b, d) — p(a, d) — p(b, ¢) + p(a, c) and extend it to # x A.
Alsoin (22)itis possible that | F || (R x R) = oo. If F has finite variation on each
compact rectangle of R?, then F determines a locally bounded complex Radon
measure, and the above class reduces to the family defined by Cramér in [3], and
called class (C) and analyzed in [35]. If | F || (R xR) < oo, then one can take
g(A) = g(t,\) = €™ so that the weakly harmonizable class is included. Again it
may be noted that R can be replaced by a locally compact space or an abelian
group in (22) so that R” or the n-torus T" is included.

To present the general representation, it is necessary also to note the validity
of the D-S integration embodied in (20), (21) when the set functions are defined
on arbitrary o-rings instead of c-algebras, assumed in [8]. Further our measure
Z : B — X has the property that it is Baire regular in the sense that for each
- Ae ? and € > 0, there exist a compact C € &, open U € # such that C = A
c U and | Z(D) || < & for each De %, D =« U — C, where % is the Baire
(= Borel here) o-ring of R. Even if R is replaced by a general locally compact
space S, with # as its Baire o-ring and Z : Z — & o-additive, one has Z to be
Baire regular having a unique regular extension to the Borel o-ring & of S.

L’Enseignement mathém., t. XXVIII, fasc. 3-4. 21
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Actually Z concentrates on a o-compact Baire set S, = S. Moreover if Z is
weakly regular in that x* o Z is a scalar regular signed measure, x* € Z*, then Z
s itself regular. (See [21], pp. 262-263 for proofs with only simple modifications
of the arguments given in [8], IV.10.) In each case the measure Z has finite
semivariation on bounded sets in % (cf. (7) where 4 is replaced by the ring
generated by all bounded Baire sets for S). If #, < 4 is the class of all bounded
sets (a set is bounded if it is contained in a compact set), then it is a 6-ring, and the
D-S integration of a scalar function relative to Z : 4, — % holds as noted above.
With this understanding the following is the desired general result.

THEOREM 3.2. Let X :R — L3(P) be a process which is weakly of class
(C) in the sense of Definition 3.1, relative to a positive definite bimeasure F of
locally finite semivariation, and a family {g,, s € R} of Borel functions such that
each |g,| is MT-integrable for F. Then there exists a stochastic measure
Z: B, > LYP) where B, is the d-ring of bounded Borel sets of R, and
€, £, P) is an enlargement of (Q, X, P) so L%P) > L(P), such that

(i) E(Z(A)- Z(B)) = (Z(A), Z(B)) = F(4, B), A, Be &,
(i) X(¢) = [ g(t, VZ(dN), teR, (23)

where the integral is in the D-S sense for the 6-ring %,.

Conversely, if {X(t),teR} is a process defined by (23) relative to a
stochastic measure Z:%B, — LYP) and a Borel family {g,teR}, D-S
integrablefor Z and A, thenitisweakly of class (C) relativeto F defined

by
F(4, B) = E(Z(A)- Z(B)), A, Be®%,,

and each |g,|,t€R, is MT-integrable for F. Moreover, if

H#y = sp{X(t),teR)}
and
Hy = spiZ(A), A B,)

in L%P), then #y = #, when and only when the {g,teR} has the
property that

[ | fVg\)F@, d\) = 0, all teR,
R R

implies fj fA)FMYF(dX, dN) = O both being MT-integrals.
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Proof: The basic layout is that of [3]. The integrals used there will have to
be replaced by the D-S and MT-integrals appropriately. Since the changes are
not immediately obvious, the essential details are spelled out so that in
subsequent discussions, such arguments can be compressed.

For the direct part, let the process be weakly of class (C). Then its covariance r
admits a representation (with the MT-integration) as:

(s, 1) = E(X(9)X(1) = i i[ g(MgA)F(dA, dN') . (24)

Since F is a positive definite bimeasure, if

LE = {f: i i S)FYF@N, dN) = (f, f)F < o, fis MT-integrable for F},

and since I(f, f) = (f, f)r = 0, the earlier discussion implies {LZ, (, )¢} is a
semi-inner product space, and g, € L, t e R. Let T: L2 — 3, be defined by
T g,+— X(s), extending it linearly. Then (24) implies

(Tgsa Tgt))fx = (gs9 gt)Fa S, te R. (25)

Thus T is an isometric mapping of A7 = sp{g,,t e R} = L2 onto #, where #y
is the space given in the statement of the theorem.

Suppose first that A¢is dense in LZ. By ([27], Thm. 11.1) every Borel function
with I*(| f1, | fI) < oo isin L, so that, in particular x , € L for each A € %, since
F is locally of finite semivariation. By the density of A2 in L2 and the isometry,
there is a Z, € # 'y such that Ty, = Z,. If A, Be A, then

E(ZA ) Z_B) = (TXAa TXB)XX = (XAa XB)F = F(Aa B) ’
and if A n B = @ also holds, then

E(|ZAuB_ZA—ZB|2) = (XAUB—XA_XBv XAUB_XA_XB)F =0
since F is additive in both Vcomponents. Thus Z.,: By —» #y = LP) is

additive. If {4,}? = By, A = U A, e B,, then

n=1

E(Z,— _i ZW)=BIZ . +Z =Y 7]
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asn — oo, since F is continuous at () from above (cf. discussion after (7)). This Z
1s c-additive on %4, and hence is a stochastic measure of finite semivariation on
each compact set there. Clearly #, = #y. Since {g,, t € R} is dense in L3,
x4 € Lz, and each g, is assumed MT-integrable for F, there is a sequence g,

= Y a;g,, = %4 in L3 so that (§,— % g.—x)r — 0. Hence by the isometry

E(Y aX(t)—Z4*) — 0,as n — oo. It now follows easily that {Z ,, A € B,} is
i=1

dense in J# . Thus #, = # ,, and each element in 5, corresponds uniquely
to an element of L}, the completion of L} and where elements h e L3 with
(h, W) = 0 and O are identified. Let Y(t) be defined as:

Y(t) = [ gMZ@dr) eH, = Hx. (26)

Here the right side is the D-S integral on the d-ring 4, which can be defined by a
slight modification of the work of ([8], IV.10), as noted in [21]. Thus,

(Y(s), Y (I g Z(dM), j g{\)Z(d)))

= | {9d1) gt(k’)F(dk, d\)
RR

which holds if g, is a #,-measurable step function and then the general case
follows by ([27], Thm. 3.3 or [46], p. 126), since | g, | is MT-integrable in our
sense. Now by definition (I-i-m denoting L*(P)-mean):

Z(A) = T(x,) = T(limg,), where g, >y, in Lf

= I'i'm T(§) = Ii'm Y, 4, T(q,)

i=1

=1im )Y X)) =1imX, (say)

i=1

The L2(P)-limits imply

E(X(5)Z(4)) = lim E(X(s)X,)

n

= lim i a; E(X(s))?(ti)) = lim Zn: a; r(s, t;)

n i=1

n

m Y a [ [ 009, (MF(dh, i)

i=1

= [ [ g\ )F (@A, d)) .
RR

R T T L e BRTINAT T e
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By isometry,if, = Y. b, Z(A,), one gets fi, <> T, where h, = ) b; x4, € L,

j=1 j=1

X(s)Z,) = iigs (MG ()F (N, dV) .

So again by the MT-integrability of gy(‘), the preceding result yields
E(X(s)Y(®) = | | gMgN)F(dAr, d)\) .
R R
It follows from this that

E(X(s) — Y(s)?) = E(1X(s)2) + E(Y(s)?) — E(X(9)Y(s)) — E(Y(s)X(s)) = 0.

Hence X(s) = Y(s) a.e., s € R. So (26) implies (23) in the event that A7 is dense in
L:.

For the general case, where A2 = L2 © AZis nontrivial and where the “bar”
again denotes completion, let {h, t € R} be a basis of A% If R=R+Risa
disjoint sum to give a new index set, let §, = g, for s € R, and = h,for s € R, then
(g, s€ I%} is dense in L2. So by the preceding case, on extending T to t from L}
— L(P), where (Q, £, P) is possibly an enlargement of (Q, £, P) by adjunction
(cf, e.g., [36], p. 82), with 1y, = Z, € L4P), one has

Y(s) = i gMZ@dr) e Li(P). (27)

Observe that all g, are Borel and MT-integrable in this procedure. Hence, as
before, ¥(s) = X(s) for s € R, and (23) holds again. In this case #, > #, and
the inclusion is proper.

Conversely, let {X(t),t € R} be a process defined by (23). Let F(4, B)

n

= (Z(A), Z(B))and g, = Y. a4, As» A, Bin B,. Then for the D-S integral (23)

i=1

one has

n n

I F (A, A) = sup {Z Z a,a; F(A;, A)) - A; € B(A), | a;] < 1}

i=1j=1
= sup {I Y, @ Z(A) 1311 < 1, 4, < B(4)
< Z|*A) < 0,AeB, .
Thus if X, = [g g,(M)Z(d)\), one has with h, another such step function,
E(X,;X5) = & [ gMhV)F(dh, L) . (28)

Now given g, € L; which is MT-integrable in our (restricted) sense (this is
analogous to a definition of [46]) and for which (23) holds, the gs can be
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approximated by suitable Borel step functions {g,}7 < L# such that g, — g,
pointwise | g, | < | g, | and similarly with g, — g, such that

1(g Gn) = 1(gs> 90, 1194, lg4l) < o .
Applying this to (28), one obtains

& fr 9 MGN)F(d), dN) = Tim [g fx (MG (MF(d, dV)
= Iim(X, , X;)
= lim(fg g(MZ(dM), [x Gu(X)Z(dN)

= (Jr 9(MZ(dL), [& 9M)Z(dN)),

since for the D-S integral the dominated convergence holds,
= (X(s), X(®)) = (s, ) - (29)

This shows {X(t), t € R} is of weakly class (C).

Regarding the last assertion, it is evident that{g,, s € R} is a basis in L iff
I(f,g,) = 0,t e Rimplies I(f, f) = 0. This s clearly necessary and sufficient for
H , = Ay since otherwise, (with possibly an enlargement of the underlying
probability space) #, o # y and #, = # 'y in the notation of (27). Thus the
proof is complete. 7

Remarks. 1. If F is of locally finite variation, then it defines a locally finite
(i.e., finite on compact sets) complex Borel (= Radon) measure in the plane R?,
and then the MT-integrals for F reduce to the Lebesgue-Stieltjes integrals. Thus
I(g,, g,) < ooisequivalent to the classical theory, and the above result specializes
to Cramér’s theorem of [ 3]. However, for the general case of bimeasures (as here),

the MT-theory (or a form of it) appears essential.

2. The above theorem is true if R is replaced by a locally compact space, since
no special property of R is used. Only the concept of boundedness is needed.

When || F |[(RxR) < oo, so that F is of finite semivariation on R?, then by
([27], Thm. 11.1) each bounded Borel function g is MT-integrable for F. Taking
g,(\) = €™ in the above theorem, one deduces from this result the important
representation given by Rozanov ([40], p. 279). The last statement is not too
hard to establish. [A separate proof of it is also found in ([29], p. 36).]

THEOREM 3.3. Let X :R — L}(P) beaprocesssuchthat || X(t) |, < M
< oo, t € R, and be weakly continuous. Then the process is weakly harmonizable
relative to some covariance bimeasure F of finite semivariation (cf. Definition
2.2) iff there is a stochastic measure Z :J%B — LE(P) such that for each A, B in

B, F(A, B) = (Z(A), Z(B)) and
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X(t) = [g €™ Z(d\), teR, (30)

the right side symbol being the D-S integral and | Z |(R) < co. Moreover, X
is strongly harmonizable iff the covariance bimeasure F of Z in (30)is of
bounded variation in R2 (cf. Definition 2.1). In either case the harmonizable
process X is uniformly continuous, and is represented as in (30).

Suppose that in the representation (23) the Z-process is orthogonally
scattered implying (Z(A), Z(B)) = 0 whenever A n B = (. Then

F(A, B) = (Z(A), Z(B)) = F(AnB),

where F is the covariance bimeasure and F is a positive locally finite measure on
% so that it is o-finite there. Then

s, ) = EX.X) = [x gMGME@) | )

A process whose covariance function R satisfies this condition is termed a
Karhunen process. Moreover, if F is a finite measure and g4A) = €**, the
resulting one is the classical (Khintchine) stationary process. In both these cases
there are no weak type extensions.

Let us introduce a further generalization of the (weak) Cramér class to
illuminate the above Definition 3.1, and for a future analysis. Let (, Z, p) be a
measure space and M(p) be the space of scalar p-measurable functions on . Let
N():M(u) - R™ be a function norm in that for f f, in M(u), (i) N(f)
= N(f) =2 0,)0 < £, 1= N(/f) 1, (1) N(af) = | a| N(f),a e Cand (iv) N(f
+g) < N(f) + N(g). The functional N has the weak Fatou property if

0< f,7 f,lim N(f) < 0o = N(f) < w0,

and has the Fatou property if instead N(f,) T N(f) (< o0). The associate norm N’
of N is defined by:

N'(f) = sup {| [o(f9) (@)(dw) | : N(g) < 1}. (32)
One sees that N’ is a function norm with the Fatou property. If

NO)=|"ll,1<p< o0,
then

NO=1llpgp ' +qg'=1.

The general concept alluded to above is as follows:

Definition 3.4. (a) Ifr: R x R — Cisacovariance function, it is said to be
of classy (C) relative to a function norm N, if there is a covariance bimeasure
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F:R x R = Coflocally finite N-variation (let N’ be the associate norm of N),
and there exists a family {g,, t € R} of Borel functions which are MT-integrable
relative to F, such that

(s, 1) = fu [x gMGH)F(@N, dV), s, 1€ R, 3y
and where locally finite N-variation is meant the following:
0 > || FlMAxA)=sup {|I(fg|:N(f) < LN@<1}. (39

Here f, g are Borel step functions, with supp(f) = A4, supp(g) = A4, A € A,,, the
o-ring of bounded Borel sets of R.

(b) A process X : R — L&(P) is of classy(C) if its covariance function r is of
classy (C) so that it is representable as (33).

Itisclearthatif N() = || - ||, sothat N'() = | - ||, the N-variation is simply
the 1-semivariation of Definition 3.1 and that

HE Ny = [ Flly(=[1FI).

Remark. Without further restrictions, classy (C) need not contain the weak
or strong harmonizable processes. However if N is restricted so that, letting

INP) = {f € M(P): N(f) < o0}, I(P) = L(P) = L)(P),

where p = P is a probability, then every class, (C) will contain both the weak
and strong harmonizable families, as an easy computation shows. If N()

= | - ||;, then class; (C) is the class which corresponds to the covariance
bimeasure of finite semivariation. This includes the classical Loéve and Rozanov
definitions. Again this definition holds, with only a notational change, if R is
replaced by a locally compact group G. A brief discussion on some analysis of
these classes which extend the present work is included at the end of the paper.

4. V-BOUNDEDNESS, WEAK AND STRONG HARMONIZABILITY

The definition of weak harmonizability is of interest only when an effective
characterization of it is found and when its relations with strong harmonizability
are made concrete. These points will be clarified and answered here. Now
Theorem 3.3 shows that a weakly harmonizable process is the Fourier transform
of a stochastic measure and this leads to a fundamental concept called V-
boundedness (‘V’ for “variation”), introduced much earlier by Bochner [2],
which is valid in a more general context. This notion plays a central role in the
theory and applications of weakly harmonizable processes (and fields) which are
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