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300 : M. M. RAO

2. HARMONIZABILITY

For the work of this paper it is convenient to take the Hilbert space J# as the
standard function space. Namely, let (QQ, Z, P) be a probability space and

IX(P) (= IQ, =, P))

be the space of (equivalence classes of) scalar square integrable functions (= ran-
dom variables) on Q, and set

H = LYP) = {f e L¥(P): [ fdP = 0} .

Q

This choice does not really restrict the generality since any abstract Hilbert space
is known to be realizable isometrically as a subspace of L*(P) on some
probability space (cf. e.g., [36], p. 414). From this point of view, a process
{X(t), t e R} = L3(P) is stationary if its covariance r satisfies r(s, t) = r(s—t),
where

s, 1) = E(X()X() = [ X(5)X(©)dP = (X(s), X()), s teR,

and E is also called the “expectation” (= integral). Since r(*) is of positive type
(= positive [semi-] definite), assuming it to be jointly measurable (this is implied
by the measurability of the random function {X(t), t € R}), it follows that r
admits the representation

Ht) = [ F(d), aalt) (Leb). (1)

It may be remarked that in the original (1932) version, Bochner assumed that ()
is actually continuous, but soon afterward in (1933) F. Riesz showed that
measurability itself yields this (slightly weaker) form (1'). This was also used in
[33]. :
For a stationary process {X(t), t € R}, one easily verifies that it is mean
continuous (ie., E(X(s) — X(t)]*) » 0 as s — 1) iff the covariance r(, ") is
continuous on the diagonal of R x R. Thus the measurability of r and the
validity of (1') everywhere implies already the mean continuity of the stationary
process! So for certain applications of the type noted earlier, it is desirable to
weaken the hypothesis of stationarity retaining some representative features.
This was done by Loéve, and it is restated in the following form:

Definition 2.1. A process X : R — L}(P) is strongly harmonizable if its
covariance r is the Fourier transform of some covariance function p of bounded
variation, so that one has
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r(s, 1) = | | et i o(dh, dN) s,teR. (3)
RR
It was noted in the Introduction that there is no efficient characterization of r
given by (3'). There is however a more visible drawback of this concept. Since
strong harmonizability is derived from stationarity, so that the latter class is
included, consider a “truncated series” {X(n), ne Z} of a stationary series
{X(n), n € Z} defined as: X(n) = X(n) for finitely many n, and X(n) = 0 for all
other n € Z. Then {X(n), n € Z} is easily seen to be strongly harmonizable. But if
X(n) = X(n), for infinitely many n, and = 0 for all other n, then {)Z (n),neZ}
need not be strongly harmonizable, as the following example illustrates.
Let (Q, X, P) be separable and {f,neZ} < L§P) be a complete
orthonormal set. Then r(m, n) = 3,_, = r(m—n). So the sequence is stationary
and (1") becomes

14

. di
rim—n) = J‘e’(’"‘")x—é—, mnel.
n

Now consider the truncated series, f, = f,,n > 0, and = 0 for n < 0. Then

Am, n) = E( fmz,) = 1ifm = n > 0, = 0 otherwise. But 7 does not admit the
representation (3'). For, otherwise, Am, n) will be the Fourier coefficient of the
representing p (of bounded variation) which is only nonvanishing on the ray
(m = n>0)in Z*.Itis a consequence of an important two dimensional extension
by Bochner of the classical F. and M. Riesz theorem that p must then be
absolutely continuous relative to the planar Lebesgue measure with density p'.
But this implies Am,n) - 0 as |m| + |n| - oo by the Riemann-Lebesgue
lemma, and contradicts the fact that Am, n) = 1, for all positive m = n and n
— o0. Hence 7 cannot admit the representation (3') so that {f,, ne Z} is not
strongly harmonizable. This example is a slight modification of one due to
Helson and Lowdenslager ([13], p. 183) who considered it for a similar purpose,
and also appears in [1] for a related elucidation.

The above example and discussion lead us to look for a weakening of the
conditions on the covariance function, since it is reasonable to expect each
truncation of a stationary series to be included in a generalization, retaining the
other properties as far as possible. Such an extension was successfully obtained in
two different forms in the works of Bochner [2] and Rozanov [40]. The precise
concept can be stated and its significance appreciated only after some
preliminary considerations.

The measure function p of (3') has the following properties:

(1) p is positive definite, i.e.




302 M. M. RAO

n n

p(S> t) = p(ta S)7 z Z aia; p(sia Sj) 2 0 > a; e C »

i=1 j=1

(i) p is of bounded variation, i.e.

sup{i i [ | Ip(ds,dt)y|:A4,Bje%,

i=1j=1 A4 B
iJ

disjoint} < o0,
where # 1s the Borel c-algebra of R. If F: # x # — C is defined by F(4, B)
= |4 (5 p(ds, dt), it follows from (i) and (ii) that there exists a complex Radon
measure p on R? such that F(4, B) = w(A x B),where A x Be # ® #,and pis
positive definite. On the other hand, the defining equation of F implies that F is
positive definite (so (i) holds with p(s;, s;) replaced by F(4,, 4;)) and (ii) becomes

V(F) = sup{i i lF(Ai_,Bj)I:Ai,B,-e,%,

i=1j=1
disjoint} < oo .
But (3') is meaningful, if p is replaced by F under the following weaker conditions.
Let F: 4 x % — C be positive definite and be o-additive in each variable
separately. Equivalently, if #(R, %) is the vector space of complex measures on
B, let V(A) = F(A,"), Aec # so that v:# — M (R, &) is a vector measure. By
symmetry, V: B — F(,, B) is also a vector measure on 4 — #(R, #). But
MR, B) = % is a Banach space under the total variation norm, and hence v (as
well as V) has finite semivariation by a classical result (cf. [8],1V.10.4). This means,

1V ®) = sup (I 3 av(4) I.: 1] < 1, 4, € %, disjoint} < oo.

1

Transferred to F, this translates to:

| F)(RxR) =sup {Y ¥ aa; F(A, A): A; € %, disjoint,

i=1 j=1
la;| <1} < 0. (7)

When (7) holds, F: %4 x # — C will be called a C-bimeasure of finite
semivariation. [It should be noted that the o-additivity of F(;, ‘) in each of its
components can be replaced by finite additivity and continuity of F from above
at @ in that | F(A4,, A,)| - 0 as 4, | ©.] The desired genes‘zilization follows

from (7) if it is written in the following form. Let ¢ = ) a;x,, and
i=1
\1’ - 2 ij'Bj’ Aieg, BJE.@
j=1

and each collection is disjoint. Set
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n n

Io, V) = Y ), aib;F(A, B)). (8)
i=1j=1
Clearly I is well-defined, does not depend on the representation of @ or {, and
I(®, ®) = 0. So (o, V) = I(e, ¥) is a semi-inner product on the space of #-step
functions. Hence by the generalized Schwarz’s inequality one has:

| I, ) |? < I(@, @) IV, V) - 9)

Taking suprema on all such step functions ¢, s such that

loll, <LVl <1

(Il - II, is the uniform norm), one deduces from (9) and (7) that

| F || (RxR) < sup {I Z Z aib—jF(AiaBj)lzlail <1,

i=1j=1
|b;| < 1, A, B;e 8, disjoint} < || F | (RxR), (<V(F)). (10)

Thus || F || (R x R) can be defined either by the middle term (as in [40]) or by (7).
For a bimeasure, || F || (R xR) is also called Fréchet variation of F (cf. [26],
p. 292) and V(F) the Vitali variation, (cf. [26], p. 298).

It should be emphasized that a set function F which is only a bimeasure (even
positive definite), need not define a (complex) Radon measure on R?. In fact such
bimeasures do not necessarily admit the Jordan decomposition, as counter
examples show. Thus integrals relative to F (even if || F || (R xR) < o0) cannot
generally be of Lebesgue-Stieltjes type. Treating v: A+ F(A,'), A€, as a
vector measure into (R, %), one can employ the Dunford-Schwartz (or D-S)
integral (cf. [8], IV.10), or alternately one can use the theory of bimeasures as
developed in ([26], [27]) and [42]. This is the price paid to get the desired
weakened concept, but it will be seen that a satisfactory solution of our problem
1s then obtained, and both these integrations will play key roles.

Let us therefore recall an appropriate integration concept to be used in the
following. In ([40], p. 276) Rozanov has indicated a modification without
detailing the consequences. (This resulted in a conjecture [40, p. 283] which will
be resolved in Section 8 below.) Instead, a different route will be followed : namely
the integration theory of Morse and Transue will be used from [27] together with
a related result of Thomas ([42], p. 146). However, the Bourbaki set up of these
papers is inconvenient here, and they will be converted to the set theoretical (or
ensemble) versions and employed.

Let F: % x # — Cbeabimeasure, i.e. F(,, B), F(A, ‘) are complex measures
on %. Hence one can define as usual ([8], I11.6),
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I(f, 4) = [a f(t) Fdt, 4). (11)

for bounded Borel functions f : R — C. Then I(f, ) is a complex measure. In
fact I, : 8 — (B(R, 4B, C))*, the B(R, %, C) being the Banach space of bounded
complex Borel functions under the uniform norm, is a vector measure. So one
can use the D-S integral (recalled at the beginning of the next section), defining

Ii(f,9) = (I gold)(f)eC,  fgeBR,%,C). (12)

Similarly starting with F(A, -) one can define I,(f, g). In general
I,(f,9) # 1,(1, 9). (13)

In fact the Fubini theorem does not hold in this context. For a counterexample,
see ([27], §8). If there is equality in (13), then the pair (f, g) is said to be integrable
relative to the bimeasure F, and the common value is denoted I(f, g) and
symbolically written as (f, g need not be bounded):

1f.0) = {1 1(5)OFds, do. | (14)

This is a Morse-Transue (or MT-) integral. While a characterization of MT-

integrable functions is not easy, a good sufficient condition for this can be given

as follows, (cf. [27], Thm. 7.1; [42], Théoréme in §5.17). If f; g are step functions,

so that f = ) a4, 9 = ), bjxs, then clearly I(f, g) always exists and
i=1 j=1 ’

n

= J,

i=1j

!IM:

F(4, B) (15)

Next define for any ¢ > 0, ¥ > 0, Borel functions,
fo, ) =sup {{ 1) 111 fI<olgl <V fig

Borel step functions}
and if u, v are any positive functions,

I*(u, v) = inf {I{@, ¥): @ = u, ¥ > v, @, I are Borel} . (16)

Now the desired result from the above papers is this: If (£, g) is a pair of complex
Borel functions such that I,(f, g) and I,(f, g) exist in the sense of (12) and (13),
and I*(|f] ,lg]) < oo, then (f, g) is MT-integrable for the C-bimeasure F. In the
case that the bimeasure F is also positive definite and has finite semivariation,
then each pair (f,g) of bounded complex Borel functions is MT-integrable
relative to F. Moreover, using the notations of (7), one has

ISP I<TFEL- 1Sl g, (17)

Yoo . S5
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where | F || = || F || (R x R). It should be noted, however, that the integrability
of (f, g) generally need not imply that of (| f], |g]), and the MT-integral is not an
absolutely continuous functional in contrast to the Lebesgue-Stieltjes theory, as
already shown by counterexamples in [26] and [27]. Fortunately a certain
dominated convergence theorem ([27], Thm. 3.3) is valid and this implies some
density properties which can and will be utilized in our treatment below. Also f
is termed F-integrable if (f, f) is MT-integrable. Our definition above i1s
somewhat more restrictive than that of [27], but it suffices for this work. For the
theory of [27], the space B(R, 4, C) in (12) and (13) is replaced by C,,(R), its
subset of continuous functions with compact supports, with the locally convex
(inductive limit) topology. Note that, thus far, no special properties of R were
used in the definition of the MT- integral, and the definition and properties are
validif R isreplaced by an arbitrary locally compact space ( group in the present
context ). This remark will be utilized later on.
With this necessary detour, the second concept can be given as follows:

Definition 2.2. A process X : R — LP), with r(, ‘) as its covariance
function, is called weakly harmonizable if

(s, 1) = I(€"0, e") = [ [ &~ F(d), d)), s, t € R, (18)
RR

relative to some positive definite bimeasure F of finite semivariation where the
right side is the MT-integral.

In particular r is bounded and continuous (by (17) and Thm. 3.2 below).
Moreover, if F is of bounded variation, then the MT-integral reduces to the
Lebesgue-Stieltjes integral and (18) goes over to (3). The following work shows
that the process of the counterexample following Definition 2.1 is weakly
harmonizable. The same counterexample also shows that harmonizable
processes generally do not admit shift operators on them, in that there need not
be a continuous linear operator

T, X(t) > X(t+s)e L3(P), teR

on L3(P). This is in distinction to certain other nonstationary processes of
Karhunen type (cf. [9]).

3. INTEGRAL REPRESENTATION
OF A CLASS OF SECOND ORDER PROCESSES

In order to introduce and utilize the “V-boundedness” concept of Bochner’s,
it will be useful to have an integral representation of weakly harmonizable
processes. This is done by presenting a comprehensive result for a more general
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