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HARMONIZABLE PROCESSES: STRUCTURE THEORY '

by M. M. Rao

Dedicated to the memory of Prof. S. Bochner
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1. INTRODUCTION

If # is a complex Hilbert space and X : R — 5 is a mapping, then the curve
{X(t), t € R} is often called a second order (or Hilbertian) stochastic process, and
if R is replaced by R”, n > 2, it is called a (Hilbertian) random field. Following
Khintchine who developed the initial theory (1934), the process (or field) is called
weakly stationary if r : (s, t) o (X (s), X(t)), termed the covariance function of the

! Work supported in part under the ONR Contract No. N00014-79-C-0754
(Modification No. PO0001). The material is presented in two talks—at the annual So. Calif.
Pro&abllatg Clggtierence on December 22, 1980, and the SCFAS meeting at Northridge, CA
on May

6 1vzlxll\sfls (1979) subject classification: Primary—60G12, 60G35, 60G60; Secondary—
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process, is continuous and depends only on s — t, where (-, -) is the inner product
in #. Thus r(s, t) = r(s—t). But thenr: R — Cis a continuous positive definite
function and by the classical Bochner theorem (1932), r is expressible as:

f0) = [e® Fd\), teR, (1)
R

for a unique positive bounded Borel measure F on R. This F is called the spectral
measure of the process. Because of the above connection with the Fourier
transform theory, important advances have been made on the structural analysis
of such stationary processes. For instance, according to a celebrated theorem of
Crameér and Kolmogorov, each such stationary process admits an integral
representation :

X(@t) = [e*Z@r), teR, (2)

R

where Z is an #-valued “orthogonally scattered” measure on the Borel sets of R
(i.e., Z is o-additive and (Z(A), Z(B)) = F(AnB)), and the vector integral in (2) is
suitably defined. Stationary processes find important applications in such areas
as meteorology, communication and electrical engineering among others. The
well developed theory and applications are now included in many monographs
(cf. e.g. Doob [6, Ch. X-XII], Yaglom [44]), and especially for applications one
may refer to Wiener’s pioneering work [43].

While stationary processes (the qualification “weakly” will be dropped)
admit a deep and beautiful mathematical theory, there are many problems for
which stationarity is an unacceptable restriction. For instance, in econometrics
and in the signal detection problems related to the navy, among others, it is quite
desirable that the covariance function r be not so restricted as to be a function of
asingle variable. This necessitates a relaxation of stationarity and then (1) cannot
obtain. To accommodate such problems while still retaining the methods of
harmonic analysis, Loéve has introduced in the middle 1940’s the first weakening
called “harmonizability”. Thus a process { X(¢), t € R} = # is Loéve (to be called
strongly hereafter) harmonizable if its covariance is expressible as (cf. [23], p. 474)

s, t) = [ [ 2™ Fd\, d)), s teR, (3)
RR

for a unique positive definite F: R x R —» C of bounded variation (in the
classical Vitali sense) in the plane. If F of (3) concentrates on the diagonal of
R x R, (3) reduces to (1). Loéve also gave a representation of X(t) analogous
to (2), but now Z(-) will only satisfy (Z(4), Z(B)) = F(A, B). Even though r(-, -)
of (3) is bounded and uniformly continuous, one does not have an
elegant characterization of a harmonizable covariance analogous to (1). In fact
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Loéve raised this problem ([23], p. 477). A solution of it was presented in ([34],
Thm. 5), but it is not effective in the sense that the conditions are not easily
verifiable, although the characterization reduces to Bochner’s theorem in the
stationary case.

Other extensions of stationarity, of interest in applications, soon appeared.
In 1947, Karhunen introduced a class of processes whose covariance r can be
expressed as:

s, t) = f g(s, M)g(t, M)F(dA) , s,teR, 4)

where {g(t, "), t € R} is a family of Borel functions in I*(R, F(d})), with F as a
bounded (or o-finite) Borel measure on R. If g(t, A) = €™, then for bounded F (4)
reduces to (1). In 1951, Cramér has introduced in [3] a further generalization, to
be called class (C) here, which contains both (3) and (4), by requiring only that r
be representable as:

(s, 1) = [ [ gls, Mgit, \)F(d\, dV), s, teR, (5)

for a family {g(t, -), t € R} of Borel functions and a positive definite F of finite
local (i.e., on each relatlvely compact rectangle) Vitali variation in R?, such that
(5) holds. The corresponding stochastic integral representation of X(t),
generalizing (2), was also given. Both (4) and (5) have only a superficial contact
with the methods of Fourier analysis. However, a very general concept which
fully utilizes the advantages of Fourier analysis and which contains the Loéve
harmonizability was introduced by Bochner in 1953 under the name V-
boundedness [2]. It turns out that (cf. Thm. 4.2 below) a second order process is
V-bounded iff (= if and only if) it is the Fourier transform of a general vector
measure on R into a Banach space Z. Independently of the work of [2], Rozanov
[40], in 1959, considered a generalized concept again under the name
“harmonizable”, but which is different from Loéve’s definition. It will be called
weakly harmonizable here. It turns out that, in this case, the covariance function r
of the process is formally expressible in the form (3) relative to a positive definite
F which 1s merely of Fréchet variation finite. The integral in (3) then cannot be
defined in the Lebesgue sense, and a weaker Morse-Transue integral [26]
appears in this work.

Even though each of these generalizations is inspired by the stationarity
notion of Khintchine, each is different from one another, and their interrelations
have not been fully established before. One of the main purposes of this paper is
to present a detailed and unified structural analysis of these processes and
obtain their characterization. This exposition utilizes some elementary aspects of
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vector measure theory which obviates a separate definition of the “stochastic
integral” for each representation of the process under consideration in the form
(2). From this analysis one finds that Loeve’s definition is more restrictive than
Rozanov’s and that Bochner’s concept is mathematically the most elegant and
general. Further in the Hilbert space context, it is shown that Bochner’s and
Rozanov’s concepts coincide. It was already noted in [2] that Loéve’s definition
1s subsumed by V-boundedness. An interesting geometrical feature is that the
Bochner class of second order processes is always a projection of a stationary
family in a Hilbert space. Bochner’s concept, as indicated above, is based on
Fourier vector integration, and this abstract point of view yields different
characterizations, one of which extends a scalar result of Helson [12] on
characterizing Fourier transforms of signed measures, to separable reflexive
Banach spaces. A further relation is that a process of the Bochner-Rozanov class
in Hilbert space is a strong limit of a sequence of Loeve harmonizable processes,
uniformly on compact subsets of the line R.

A first comparative study of the Bochner and Loeve classes in Hilbert space
was given by Niemi in his thesis [29]. Then in [30] and [31] he essentially
established that the V-boundedness in Hilbert space is the projection of a
stationary family, extending a special case by Abreu [1]. The latter point was
clarified and the same result was reestablished by a slightly different method in
[25]. A further extension of the last work was announced in [39]. A key
domination inequality, on which the projection results depend, is based on some
work of Grothendieck. In particular, the methods of [25], [30] and [31] rest on
Pietsch’s form of this Grothendieck inequality. The work of the present paper
utilizes some properties of the p-summing operators of [22]. I believe that the
latter point of view yields a better-understanding of the structure of the problem,
with a more general solution and additional insight, not afforded by the earlier
work. Thus the present paper is aimed at a comprehensive, unified and extended
treatment of the structure of the Bochner-Rozanov class. It may be remarked
that an essentially equivalent characterization of Bochner’s Hilbert space
version can be obtained using the results from an early paper due to Phillips
[33], which seems to have been overlooked by almost all vector measure
theorists and stochastic analysts. It is, in a sense, subsumed under a relatively
recent paper by Kluvanek [21]. But most of all, Bochner’s paper [2] has not been
accorded the central place it deserves in probabilistic treatments on the subject.
I hope that the present work will bring some of the many fundamental ideas
of [2] to the forefront.

Finally, the concept of the spectral measure F of (1), so appropriate and
natural in the stationary case (since it is positive and bounded) does not appear in

7
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a similar form for the harmonizable (or other nonstationary) processes, since F'is
usually complex valued as in (3) or (5). To overcome this problem, in the late
1950’s, Kampé de Fériet and Frenkiel ([15], [16]) and independently Parzen
[32] and Rozanov [40] have defined an “associated spectrum” for a class of
second order processes X : R — L3(P). These are processes for which

= |h|
lim lj’. (X(s), X(s+|hl))ds = Ah), heR, (6)

T— o

exists. Since A') is clearly positive definite, one can apply the Bochner
representation theorem as in (1), in many cases. The resulting positive bounded
measure F for this 7is called the associated spectrum of the process X. This class,
to be termed class (KF), contains not only stationary processes but, among
others, many almost periodic ones [35]. With the present methods it is shown in
Section 8 that every weakly harmonizable process has an associated spectrum
from which in fact several other properties can be obtained. A distinguishing
feature of the weakly harmonizable case from the stationary, Cramér, Karhunen,
or Loéve definitions is that the theory of bimeasures and the consequent
(nonabsolute) integration of Morse and Transue ([26], [27], [42], [45], [46])
play a vital role in their analyses. This difference has not been fully appreciated in
the literature. (The most comprehensive characterizations of the harmonizable
class are summarized in Theorems 7.3 and 7.4.) For vector valued processes, in
both the weak and strong cases, some new technical problems have to be
resolved. The same is true of random fields. All these aspects have important
applications and some indications are given in Sections § and 9. A summary of
some of these results is included in [37]. For greater accessibility and
convenience, the next three sections are devoted to harmonizable processes and
most of the remaining five consider the more general random fields with a
natural transition. However, an essentially self-contained exposition (modulo
some standard measure theory) is presented here.

Notation: The following notation is used: R for reals, C for complex
numbers, Z for integers, R” for the n-dimensional number space, and LCA for
locally compact abelian. A step function is a mapping taking finitely many values
on disjoint measurable sets, and a simple function on a measure space is a step

function vanishing outside of a set of finite measure. Overbar denotes complex
conjugation.
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