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3. REPRESENTATIONS OF NON-COMPACT
SEMISIMPLE GROUPS

In section 2 we interpreted the equation
(3.1) Homg; (V, Hg’j (G/P, Ey)) = Hom,, ., ; (W*, H’ (n, V'¥))

in (2.16) as a precise extension of Frobenius reciprocity to higher cohomology;

also see (2.8), (2.12), and (2.14). There we used d cohomology and assumed that
our space G/P = K/K n P was compact. In this section we shall see yet another
extension of Frobenius reciprocity where K is replaced by a real non-compact

semisimple group and d cohomology is replaced by “square integrable” ¢
cohomology. In this non-compact context the discrete series defined in the
introduction will play the analogous role of the dual objects K of equivalence
classes of irreducible unitary representations of K. The analogue of the
generalized Borel-Weil theorem (Theorem 2.25) for example will be formulated
for the discrete series. This is Schmid’s solution of the Kostant-Langlands
conjecture.

In this section G will now denote a real non-compact connected semisimple
Lie group with finite center and K will denote a maximal compact subgroup of G.
If m1s any unitary representation of G on a Hilbert space H and f € L, (G) we let

(3.2) n(f) = J f(x)m(x)dx
G

so that = (f) is a bounded operator on H satisfying n (f * g) = = (f) = (g) for f,
g€ L (G). * denotes convolution and dx denotes Haar measure on the

unimodular group G. The following fundamental theorem of Harish-Chandra is
valid ([20]).

THEOREM 3.3. If m is an irreducible unitary representation of G and
f € CX(G) isacompactly supported smooth function on G then the operator
n(f) is of trace class. Moreover the equation @, (f) = trace n (f),
S € CZ(G), defines a distribution ®, on G inthe sense of L. Schwartz. Q,
depends only on the unitary equivalence class [t] of wn. For two such classes
[,], [t2] we have O, = O, if and only if [m,] = [r,].
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The distribution @, is called the (global) character of « (or of [r]). The fact
that n (f) is of trace class is a consequence of the following fundamental deep
fact: There is an integer N > 1 such that for any irreducible unitary
representations ©, ¢ of G and K we have

(3.4) the multiplicity of 6 in 1| < N dimension of ¢ .
K

®, is invariant under all inner automorphisms of G and if & is the algebra of bi-
invariant differential operators ') on G then the space of distributions
{Z ®,|ZeZ} has dimension one. That is ©, is Z-finite and is in fact an
eigendistribution of %. By Harish-Chandra’s profound regularity theorem for
invariant Z-finite distributions [24] one may conclude that ®, is a locally
integrable function on G which is actually analytic on the regular points G’ of G.
G’ is an open dense set in G such that the complement G — G’ has Haar measure
Zero.

We now recall Harish-Chandra’s character formula for the discrete series.
We assume that G admits a Cartan subgroup H such that H < K. From the
introductory remarks we recall that this assumption guarantees precisely that G
has a discrete series. In order to avoid certain technical difficulties we shall
assuime moreover for simplicity that G is linear and that its complexification G€is
simply connected. Let g, k, h denote the complexifications of the Lie algebras g,
ko, ho of G, K, H respectively. As in section 2 we let A denote the set of non-zero

roots of (g, h) and we let 26 = z+ o for a choice of positive system of roots A*
aeA

(o, &
Thus exp X — e*™ is a well defined character of H, x € h,,.

< A. Again we say that A € h* is integral if 2 is an integer for each a in A.

THEOREM 3.5 (Harish-Chandra, 1964). Let A € h* be integral and suppose
that (A+90,0) # 0 for every o in A?). Then there exists a discrete series
representation w, of G such that

6
(3.6) (—1)"sgn J] (A+8,0) ) detoele™
® (exp X) = acAt ce WK
a - 2 (/2 _ ,—a(x)2
T e

') We may identify 2 with the center of the universal enveloping algebra of the
complexified Lie algebra of G.

2) That is A + & is regular.
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for x € hy, where 2m = dim G/K and Wy is the Weyl group of (K, H). Moreover
every discrete series representation is equivalent to some m, where A € h* is
integraland A + §isregularand m,, is equivalent to 7, if and onlyif o (A +9)
= A, + 0 for some o in Wy (see [26]).

The factor (— 1) sgn H+ (A + 98, o) in (3.6) can be expressed in an alternate

aeA

form: Let A,, A, denote the set of non-compact and compact roots respectively.
Thus by definition o € A, (or Ay) if g, < p§ (or if g, kS = k) where

(3.7) | go = ko + Do

is a Cartan decomposition of go. Let A} = AT n A, and A = A" n Ay Then
it is easy to check that

(3.8) (—1)" sgn H (A+0,a) = (—1)ia
where
(3.9) g | (e AY [ (A+38, ) > 0} |

+ [ {oee A | (A+6, o) < 0} |

and | S| is the cardinality of a set S. One notes the similarity in appearance of
Harish-Chandra’s character formula (3.6) and Weyl’s character formula of
Theorem 2.22. _

~ For an integral A € h* such that A + & is regular we continue to denote the
corresponding discrete series representation of Theorem 3.5 by n,. Let ¥,
— G/H denote the C* line bundle over G/H induced by the character (which we
have seen is well-defined) exp x — e* ™ of H, x € h,. Let P denote the Borel
subgroup of G€ corresponding to the subalgebrap = h + Z+ g_,of g. Then

ae A

G n P = H so that by general principlés, see [40], [78], G/H is an open G orbit
in G¢/P and thus G/H has a G invariant complex structure such that, at the
origin, n = E+ g_, 1s the space of anti-holomorphic tangent vectors; and

ae A

moreover %, also has a holomorphic structure !). G/H may therefore be
considered as a non-compact analogue of the space K/K n P of section 2 with
%4 playing the analogous role of E,. Thus given the Borel-Weil theorem
(Theorem 2.25) one naturally inquires whether the representation n, occurs on a
0 cohomology space of differential forms with coefficients in .#,. This question
was posed (more precisely) first by B. Kostant and R. Langlands in 1965. Since
G/H is non-compact we should consider L,-cohomology. Namely we proceed as

') The G invariant complex structures on G/H correspond to the choices of positive
root systems A™.

L’Enseignement mathém., t. XXVIII, fasc. 1-2. . 2
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follows. Let A"/ (G/H, &£ ,) denote the space of complex smooth compactly
supported forms of type (0,j) on G/H with values in %, ; cf. remarks pre-
ceding (2.10). With respect to natural G invariant hermitian metrics on the
fibres of ¥, and on the tangent bundle of G/H A% 7 (G/H, . ,) has the structure
of a complex inner product space and the Cauchy-Riemann operator

8 A (GIH, £,) - A>T (G/H, £ )
has a formal adjoint
0* N> (G/H, #,) —» A% (G/H, L) .
As usual let
[0 =00* +0%0: A%V (G/H, £ )
— A/ (G/H, &)

denote the corresponding complex Laplace-Beltrami operator. Let
LY 7 (G/H, £ ,) denote the Hilbert space completion of A%/ (G/H, £ ,) and set

(3.10) H®I (G/H, £ )
= {0 e LY’ (G/H, £,)| [0 ¢ = 0in the distribution sense} .

H ?é (G/H, & ,)is called the L,-cohomology (or harmonic) space attached to the
Hermitian line bundle Z,. The reader should consult [63] for a more general
definition of L,-cohomology spaces !). We take this opportunity to point out
that in [63] line 9 of page 96 should be corrected to read § = (5)* rather than
9 = (0"

One knows that Hg."é (G/H, %) is a closed subspace of

Ly 7 (G/H, £ )

and hence it is a Hilbert space. Moreover since the above hermitian metrics were
chosen to be G invariant, H (5),’ é (G/H, £,) carries a natural unitary
representation of G-namely that induced by left translation on forms; cf. (2.13).
We denote this representation by ntly /. The analogies with section 2 presist since

in the compact case classical Hodge theory represents the écohomology in (2. 1-1)
as solutions of a complex Laplacian . ]

Now Kostant and Langlands conjectured, in analogy with Theorem 2.25,
that the spaces Hgy’ ; (G/H, &) should vanish for each j if A + & is not regular
and if A + 0 is regular (as we have assumed) then one should have vanishing for

) The definition (3.10) suffices for our purposes since we are dealing with a
homogeneous space G/H where the metric is therefore automatically complete.

4l
i
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all but one j, say j = j,. Moreover the representations ny ’° and n, should
coincide ; see [51], [54]. Based on a vanishing theorem of P. Griffiths [40] some
results of Harish-Chandra [22] and a formal application of the Wood’s Hole
fixed point formula [54], Langlands predicted moreover that the value of j,
should be the number g, given in (3.9). Important progress towards the
verification of the Kostant-Langlands conjecture was made by W. Schmid in his
1967 thesis [77] and by Schmid [78], M. S. Narasimhan, and K. Okamoto in
1969 [60]. In 1973 W. Casselman and M. Osborne proved a version of Kostant’s
theorem on n cohomology (see Theorem 2.21) in the case where the coefficient
module (for g) 1s infinite dimensional but has an infinitesimal character [17].
Schmid used the Casselman-Osborne result decisively in [82] and thereby
settled the conjecture:

THEOREM 3.11 (W. Schmid, 1975). Let A € h* beanintegral element. If (A
+0,a) = 0 for some root o then the space

H%é (G/Ha g/\)

in (3.10) vanishes for each j. Suppose that A + & isregular. Let 7, be the
corresponding discrete series representation whose character is given by (3.6) in
Theorem 3.5. Let q, be the integer defined in (3.9 ). Then

H2J(G/H, &,) = 0
for j # qn and the natural unitary representation w 9% of G on
HO 48 (G/H, )

is irreducible and equivalent to T,.

Remarks. In the preceding we have assumed for simplicity that G was
linear. It is now known that this assumption can be dropped in the statement of
Theorem 3.11. We may also drop the integrality of A in the statement of Theorem
3.11 and assume, more generally, only that A is real-valued on roots and extends
to a character of H. It is then still true that .%° A carries a holomorphic structure
see remark 3 in [78].

The point we wish to stress now is that just as Theorem 2.25 is derivable from
the Frobenius reciprocity relation (3.1), or (equivalently) from (2.18), Theorem
3.111slike-wise derivable from a non-compact analogue of (2.18). In [78] (lemma
6) Schmid obtains a direct integral decomposition of the L2-harmonic spaces
H?J(G/H, #,) using the Plancherel decomposition of L2 (G):
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(3.12) HY!(G/H, %) = J VEQ A (m) 5 dn

A

G

where #7 () is a certain formal harmonic space attached to the irreducible
unitary representation e G of G and #’ (n)e_ A 1s the subspace of #/ (n)
transforming under the action of H according to the character e *. The tensor
product in (3.12) is a tensor product of Hilbert spaces; V* is the contragradient
representation space of (r, V.) € G (where 1 acts on the Hilbert space V). Given
(r, V,) e G, #7 (n) is defined as follows. First let ¥ denote the space of K finite
vectors in V, (these are just the vectors in ¥, whose K translates span a finite-
dimensional subspace). In the usual way, via differentiation, V' is a g module
(theinduced action is skew-hermitian) and by restriction (as in section 2) V*is an
n module where we take

(3.13) n=Y g.,

aeAT

n has a natural Ady invariant inner product induced by the Killing form of g ; see
equation (2.4) of [78]. Thus we may consider the formal adjoint 6* of the Lie
algebra coboundary operator

0: VP ® An* > V2 ® An*
correéponding to the n module V. One has

THEOREM 3.14 (Lemma 3 of [78]). & + 0* has a unique self-adjoint
extension O + 0*. Also & + 0* s the only closed extension of 6 + &*.

Ve ® Aln* is dense in V, ® A’n* for each j (since V2 is.dense in V). By
definition #’ () is the kernel of & + &* considered as a closed densely defined
operator in V, ® A’n*. The H action on the cochains V® ® A/n* commutes
with 6 and also with 6* (since the n inner product is Adg invariant) which means
that #’ (m) (and the Lie algebra cohomology H’ (n, V)) inherits an H module
structure. The subspace #” (m), - 4 in (3.12) of vectors in A (m) transforming
according to the character e * under this H action is therefore well-defined.

In [82] (Theorem 3.1) Schmid proves the H module isomorphism

(3.15) H(n) ~ H (n, V)

From the Casselman-Osborn result [17] (which as we have pointed out i1s a
version of Kostant’s Theorem 2.21 for infinite dimensional g modules with an
infinitesimal character — V. being such an example),

HnV).p=0
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unless V' * has a specific infinitesimal character (this means that on V° the center
of the universal enveloping algebra Ug of g must act by a specific scalar). In
Harish-Chandra’s notation [20] this character is x_,_; where again 26
= Y a;here p e h*is integral or, more generally, p is real-valued on roots

aeA

and defines a character of H (see remarks following Theorem 3.11). On the other
hand, from the harmonic analysis of G it is known that only finitely many
irreducible unitary equivalence classes can have a fixed infinitesimal character
and that moreover if F < G is a finite set which is disjoint from the classes of
discrete series, then the Plancherel measure must vanish on F. Thus from these
observations one concludes from (3.15) that only discrete series modules (r, V)
can occur in the direct integral decomposition given in (3.12) and since the (w, V)
occur discretely we obtain (cf. Corollary 3.23 of [82]) the following refinement of
(3.12).

THEOREM 3.16 (Frobenius-Schmid reciprocity, 1975). As G modules
HYI(GH, L) = Y VEQH@nVY) 4

0,
(n, V) =
discrete class

This is the non-compact analogue of (2.18) (where the contragradient W* of the
inducing module W there is replaced by the contragradient e ~* of the inducing
character e?). Theorem 3.16 preceeds and implies (with the knowledge of n
cohomology, as in the compact case) Theorem 3.11.

4. REMARKS ON THE NILPOTENT CASE:
POLARIZATIONS AND HARMONIC INDUCTION

The Frobenius reciprocity in higher cohomology discussed in the two
preceding sections extends to a non-semisimple Lie group context as well.
Moreover consequent analogues of the Kostant-Langlands conjecture have
been proved. Most recently (within the past few months) remarkable and
complete results along these lines have been obtained (independently) for simply
connected nilpotent Lie groups by J. Rosenberg [74] and R. Penney [69]. Their
results are preceded by results of H. Moscovici and A. Verona [59];alsosee[15],
[58],[62],[67],[68],[75]. In this regard one of the central notions to consider 1s
that of a polarization. Itis defined as follows. Let g be areal Lie algebra, let A € g*
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