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1. INTRODUCTION

If # is a complex Hilbert space and X : R — 5 is a mapping, then the curve
{X(t), t € R} is often called a second order (or Hilbertian) stochastic process, and
if R is replaced by R”, n > 2, it is called a (Hilbertian) random field. Following
Khintchine who developed the initial theory (1934), the process (or field) is called
weakly stationary if r : (s, t) o (X (s), X(t)), termed the covariance function of the

! Work supported in part under the ONR Contract No. N00014-79-C-0754
(Modification No. PO0001). The material is presented in two talks—at the annual So. Calif.
Pro&abllatg Clggtierence on December 22, 1980, and the SCFAS meeting at Northridge, CA
on May

6 1vzlxll\sfls (1979) subject classification: Primary—60G12, 60G35, 60G60; Secondary—
Key words and Phrases : Weakly and strongly harmonizable process, V-boundedness,
stationary dilations, DS- and MT-integrals, bimeasures, filtering, classes (KF) and (C),

multidimensional processes, p-absolutely summing operators, associated spectra of
processes.
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process, is continuous and depends only on s — t, where (-, -) is the inner product
in #. Thus r(s, t) = r(s—t). But thenr: R — Cis a continuous positive definite
function and by the classical Bochner theorem (1932), r is expressible as:

f0) = [e® Fd\), teR, (1)
R

for a unique positive bounded Borel measure F on R. This F is called the spectral
measure of the process. Because of the above connection with the Fourier
transform theory, important advances have been made on the structural analysis
of such stationary processes. For instance, according to a celebrated theorem of
Crameér and Kolmogorov, each such stationary process admits an integral
representation :

X(@t) = [e*Z@r), teR, (2)

R

where Z is an #-valued “orthogonally scattered” measure on the Borel sets of R
(i.e., Z is o-additive and (Z(A), Z(B)) = F(AnB)), and the vector integral in (2) is
suitably defined. Stationary processes find important applications in such areas
as meteorology, communication and electrical engineering among others. The
well developed theory and applications are now included in many monographs
(cf. e.g. Doob [6, Ch. X-XII], Yaglom [44]), and especially for applications one
may refer to Wiener’s pioneering work [43].

While stationary processes (the qualification “weakly” will be dropped)
admit a deep and beautiful mathematical theory, there are many problems for
which stationarity is an unacceptable restriction. For instance, in econometrics
and in the signal detection problems related to the navy, among others, it is quite
desirable that the covariance function r be not so restricted as to be a function of
asingle variable. This necessitates a relaxation of stationarity and then (1) cannot
obtain. To accommodate such problems while still retaining the methods of
harmonic analysis, Loéve has introduced in the middle 1940’s the first weakening
called “harmonizability”. Thus a process { X(¢), t € R} = # is Loéve (to be called
strongly hereafter) harmonizable if its covariance is expressible as (cf. [23], p. 474)

s, t) = [ [ 2™ Fd\, d)), s teR, (3)
RR

for a unique positive definite F: R x R —» C of bounded variation (in the
classical Vitali sense) in the plane. If F of (3) concentrates on the diagonal of
R x R, (3) reduces to (1). Loéve also gave a representation of X(t) analogous
to (2), but now Z(-) will only satisfy (Z(4), Z(B)) = F(A, B). Even though r(-, -)
of (3) is bounded and uniformly continuous, one does not have an
elegant characterization of a harmonizable covariance analogous to (1). In fact
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Loéve raised this problem ([23], p. 477). A solution of it was presented in ([34],
Thm. 5), but it is not effective in the sense that the conditions are not easily
verifiable, although the characterization reduces to Bochner’s theorem in the
stationary case.

Other extensions of stationarity, of interest in applications, soon appeared.
In 1947, Karhunen introduced a class of processes whose covariance r can be
expressed as:

s, t) = f g(s, M)g(t, M)F(dA) , s,teR, 4)

where {g(t, "), t € R} is a family of Borel functions in I*(R, F(d})), with F as a
bounded (or o-finite) Borel measure on R. If g(t, A) = €™, then for bounded F (4)
reduces to (1). In 1951, Cramér has introduced in [3] a further generalization, to
be called class (C) here, which contains both (3) and (4), by requiring only that r
be representable as:

(s, 1) = [ [ gls, Mgit, \)F(d\, dV), s, teR, (5)

for a family {g(t, -), t € R} of Borel functions and a positive definite F of finite
local (i.e., on each relatlvely compact rectangle) Vitali variation in R?, such that
(5) holds. The corresponding stochastic integral representation of X(t),
generalizing (2), was also given. Both (4) and (5) have only a superficial contact
with the methods of Fourier analysis. However, a very general concept which
fully utilizes the advantages of Fourier analysis and which contains the Loéve
harmonizability was introduced by Bochner in 1953 under the name V-
boundedness [2]. It turns out that (cf. Thm. 4.2 below) a second order process is
V-bounded iff (= if and only if) it is the Fourier transform of a general vector
measure on R into a Banach space Z. Independently of the work of [2], Rozanov
[40], in 1959, considered a generalized concept again under the name
“harmonizable”, but which is different from Loéve’s definition. It will be called
weakly harmonizable here. It turns out that, in this case, the covariance function r
of the process is formally expressible in the form (3) relative to a positive definite
F which 1s merely of Fréchet variation finite. The integral in (3) then cannot be
defined in the Lebesgue sense, and a weaker Morse-Transue integral [26]
appears in this work.

Even though each of these generalizations is inspired by the stationarity
notion of Khintchine, each is different from one another, and their interrelations
have not been fully established before. One of the main purposes of this paper is
to present a detailed and unified structural analysis of these processes and
obtain their characterization. This exposition utilizes some elementary aspects of
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vector measure theory which obviates a separate definition of the “stochastic
integral” for each representation of the process under consideration in the form
(2). From this analysis one finds that Loeve’s definition is more restrictive than
Rozanov’s and that Bochner’s concept is mathematically the most elegant and
general. Further in the Hilbert space context, it is shown that Bochner’s and
Rozanov’s concepts coincide. It was already noted in [2] that Loéve’s definition
1s subsumed by V-boundedness. An interesting geometrical feature is that the
Bochner class of second order processes is always a projection of a stationary
family in a Hilbert space. Bochner’s concept, as indicated above, is based on
Fourier vector integration, and this abstract point of view yields different
characterizations, one of which extends a scalar result of Helson [12] on
characterizing Fourier transforms of signed measures, to separable reflexive
Banach spaces. A further relation is that a process of the Bochner-Rozanov class
in Hilbert space is a strong limit of a sequence of Loeve harmonizable processes,
uniformly on compact subsets of the line R.

A first comparative study of the Bochner and Loeve classes in Hilbert space
was given by Niemi in his thesis [29]. Then in [30] and [31] he essentially
established that the V-boundedness in Hilbert space is the projection of a
stationary family, extending a special case by Abreu [1]. The latter point was
clarified and the same result was reestablished by a slightly different method in
[25]. A further extension of the last work was announced in [39]. A key
domination inequality, on which the projection results depend, is based on some
work of Grothendieck. In particular, the methods of [25], [30] and [31] rest on
Pietsch’s form of this Grothendieck inequality. The work of the present paper
utilizes some properties of the p-summing operators of [22]. I believe that the
latter point of view yields a better-understanding of the structure of the problem,
with a more general solution and additional insight, not afforded by the earlier
work. Thus the present paper is aimed at a comprehensive, unified and extended
treatment of the structure of the Bochner-Rozanov class. It may be remarked
that an essentially equivalent characterization of Bochner’s Hilbert space
version can be obtained using the results from an early paper due to Phillips
[33], which seems to have been overlooked by almost all vector measure
theorists and stochastic analysts. It is, in a sense, subsumed under a relatively
recent paper by Kluvanek [21]. But most of all, Bochner’s paper [2] has not been
accorded the central place it deserves in probabilistic treatments on the subject.
I hope that the present work will bring some of the many fundamental ideas
of [2] to the forefront.

Finally, the concept of the spectral measure F of (1), so appropriate and
natural in the stationary case (since it is positive and bounded) does not appear in

7
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a similar form for the harmonizable (or other nonstationary) processes, since F'is
usually complex valued as in (3) or (5). To overcome this problem, in the late
1950’s, Kampé de Fériet and Frenkiel ([15], [16]) and independently Parzen
[32] and Rozanov [40] have defined an “associated spectrum” for a class of
second order processes X : R — L3(P). These are processes for which

= |h|
lim lj’. (X(s), X(s+|hl))ds = Ah), heR, (6)

T— o

exists. Since A') is clearly positive definite, one can apply the Bochner
representation theorem as in (1), in many cases. The resulting positive bounded
measure F for this 7is called the associated spectrum of the process X. This class,
to be termed class (KF), contains not only stationary processes but, among
others, many almost periodic ones [35]. With the present methods it is shown in
Section 8 that every weakly harmonizable process has an associated spectrum
from which in fact several other properties can be obtained. A distinguishing
feature of the weakly harmonizable case from the stationary, Cramér, Karhunen,
or Loéve definitions is that the theory of bimeasures and the consequent
(nonabsolute) integration of Morse and Transue ([26], [27], [42], [45], [46])
play a vital role in their analyses. This difference has not been fully appreciated in
the literature. (The most comprehensive characterizations of the harmonizable
class are summarized in Theorems 7.3 and 7.4.) For vector valued processes, in
both the weak and strong cases, some new technical problems have to be
resolved. The same is true of random fields. All these aspects have important
applications and some indications are given in Sections § and 9. A summary of
some of these results is included in [37]. For greater accessibility and
convenience, the next three sections are devoted to harmonizable processes and
most of the remaining five consider the more general random fields with a
natural transition. However, an essentially self-contained exposition (modulo
some standard measure theory) is presented here.

Notation: The following notation is used: R for reals, C for complex
numbers, Z for integers, R” for the n-dimensional number space, and LCA for
locally compact abelian. A step function is a mapping taking finitely many values
on disjoint measurable sets, and a simple function on a measure space is a step

function vanishing outside of a set of finite measure. Overbar denotes complex
conjugation.
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2. HARMONIZABILITY

For the work of this paper it is convenient to take the Hilbert space J# as the
standard function space. Namely, let (QQ, Z, P) be a probability space and

IX(P) (= IQ, =, P))

be the space of (equivalence classes of) scalar square integrable functions (= ran-
dom variables) on Q, and set

H = LYP) = {f e L¥(P): [ fdP = 0} .

Q

This choice does not really restrict the generality since any abstract Hilbert space
is known to be realizable isometrically as a subspace of L*(P) on some
probability space (cf. e.g., [36], p. 414). From this point of view, a process
{X(t), t e R} = L3(P) is stationary if its covariance r satisfies r(s, t) = r(s—t),
where

s, 1) = E(X()X() = [ X(5)X(©)dP = (X(s), X()), s teR,

and E is also called the “expectation” (= integral). Since r(*) is of positive type
(= positive [semi-] definite), assuming it to be jointly measurable (this is implied
by the measurability of the random function {X(t), t € R}), it follows that r
admits the representation

Ht) = [ F(d), aalt) (Leb). (1)

It may be remarked that in the original (1932) version, Bochner assumed that ()
is actually continuous, but soon afterward in (1933) F. Riesz showed that
measurability itself yields this (slightly weaker) form (1'). This was also used in
[33]. :
For a stationary process {X(t), t € R}, one easily verifies that it is mean
continuous (ie., E(X(s) — X(t)]*) » 0 as s — 1) iff the covariance r(, ") is
continuous on the diagonal of R x R. Thus the measurability of r and the
validity of (1') everywhere implies already the mean continuity of the stationary
process! So for certain applications of the type noted earlier, it is desirable to
weaken the hypothesis of stationarity retaining some representative features.
This was done by Loéve, and it is restated in the following form:

Definition 2.1. A process X : R — L}(P) is strongly harmonizable if its
covariance r is the Fourier transform of some covariance function p of bounded
variation, so that one has
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r(s, 1) = | | et i o(dh, dN) s,teR. (3)
RR
It was noted in the Introduction that there is no efficient characterization of r
given by (3'). There is however a more visible drawback of this concept. Since
strong harmonizability is derived from stationarity, so that the latter class is
included, consider a “truncated series” {X(n), ne Z} of a stationary series
{X(n), n € Z} defined as: X(n) = X(n) for finitely many n, and X(n) = 0 for all
other n € Z. Then {X(n), n € Z} is easily seen to be strongly harmonizable. But if
X(n) = X(n), for infinitely many n, and = 0 for all other n, then {)Z (n),neZ}
need not be strongly harmonizable, as the following example illustrates.
Let (Q, X, P) be separable and {f,neZ} < L§P) be a complete
orthonormal set. Then r(m, n) = 3,_, = r(m—n). So the sequence is stationary
and (1") becomes

14

. di
rim—n) = J‘e’(’"‘")x—é—, mnel.
n

Now consider the truncated series, f, = f,,n > 0, and = 0 for n < 0. Then

Am, n) = E( fmz,) = 1ifm = n > 0, = 0 otherwise. But 7 does not admit the
representation (3'). For, otherwise, Am, n) will be the Fourier coefficient of the
representing p (of bounded variation) which is only nonvanishing on the ray
(m = n>0)in Z*.Itis a consequence of an important two dimensional extension
by Bochner of the classical F. and M. Riesz theorem that p must then be
absolutely continuous relative to the planar Lebesgue measure with density p'.
But this implies Am,n) - 0 as |m| + |n| - oo by the Riemann-Lebesgue
lemma, and contradicts the fact that Am, n) = 1, for all positive m = n and n
— o0. Hence 7 cannot admit the representation (3') so that {f,, ne Z} is not
strongly harmonizable. This example is a slight modification of one due to
Helson and Lowdenslager ([13], p. 183) who considered it for a similar purpose,
and also appears in [1] for a related elucidation.

The above example and discussion lead us to look for a weakening of the
conditions on the covariance function, since it is reasonable to expect each
truncation of a stationary series to be included in a generalization, retaining the
other properties as far as possible. Such an extension was successfully obtained in
two different forms in the works of Bochner [2] and Rozanov [40]. The precise
concept can be stated and its significance appreciated only after some
preliminary considerations.

The measure function p of (3') has the following properties:

(1) p is positive definite, i.e.
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n n

p(S> t) = p(ta S)7 z Z aia; p(sia Sj) 2 0 > a; e C »

i=1 j=1

(i) p is of bounded variation, i.e.

sup{i i [ | Ip(ds,dt)y|:A4,Bje%,

i=1j=1 A4 B
iJ

disjoint} < o0,
where # 1s the Borel c-algebra of R. If F: # x # — C is defined by F(4, B)
= |4 (5 p(ds, dt), it follows from (i) and (ii) that there exists a complex Radon
measure p on R? such that F(4, B) = w(A x B),where A x Be # ® #,and pis
positive definite. On the other hand, the defining equation of F implies that F is
positive definite (so (i) holds with p(s;, s;) replaced by F(4,, 4;)) and (ii) becomes

V(F) = sup{i i lF(Ai_,Bj)I:Ai,B,-e,%,

i=1j=1
disjoint} < oo .
But (3') is meaningful, if p is replaced by F under the following weaker conditions.
Let F: 4 x % — C be positive definite and be o-additive in each variable
separately. Equivalently, if #(R, %) is the vector space of complex measures on
B, let V(A) = F(A,"), Aec # so that v:# — M (R, &) is a vector measure. By
symmetry, V: B — F(,, B) is also a vector measure on 4 — #(R, #). But
MR, B) = % is a Banach space under the total variation norm, and hence v (as
well as V) has finite semivariation by a classical result (cf. [8],1V.10.4). This means,

1V ®) = sup (I 3 av(4) I.: 1] < 1, 4, € %, disjoint} < oo.

1

Transferred to F, this translates to:

| F)(RxR) =sup {Y ¥ aa; F(A, A): A; € %, disjoint,

i=1 j=1
la;| <1} < 0. (7)

When (7) holds, F: %4 x # — C will be called a C-bimeasure of finite
semivariation. [It should be noted that the o-additivity of F(;, ‘) in each of its
components can be replaced by finite additivity and continuity of F from above
at @ in that | F(A4,, A,)| - 0 as 4, | ©.] The desired genes‘zilization follows

from (7) if it is written in the following form. Let ¢ = ) a;x,, and
i=1
\1’ - 2 ij'Bj’ Aieg, BJE.@
j=1

and each collection is disjoint. Set
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n n

Io, V) = Y ), aib;F(A, B)). (8)
i=1j=1
Clearly I is well-defined, does not depend on the representation of @ or {, and
I(®, ®) = 0. So (o, V) = I(e, ¥) is a semi-inner product on the space of #-step
functions. Hence by the generalized Schwarz’s inequality one has:

| I, ) |? < I(@, @) IV, V) - 9)

Taking suprema on all such step functions ¢, s such that

loll, <LVl <1

(Il - II, is the uniform norm), one deduces from (9) and (7) that

| F || (RxR) < sup {I Z Z aib—jF(AiaBj)lzlail <1,

i=1j=1
|b;| < 1, A, B;e 8, disjoint} < || F | (RxR), (<V(F)). (10)

Thus || F || (R x R) can be defined either by the middle term (as in [40]) or by (7).
For a bimeasure, || F || (R xR) is also called Fréchet variation of F (cf. [26],
p. 292) and V(F) the Vitali variation, (cf. [26], p. 298).

It should be emphasized that a set function F which is only a bimeasure (even
positive definite), need not define a (complex) Radon measure on R?. In fact such
bimeasures do not necessarily admit the Jordan decomposition, as counter
examples show. Thus integrals relative to F (even if || F || (R xR) < o0) cannot
generally be of Lebesgue-Stieltjes type. Treating v: A+ F(A,'), A€, as a
vector measure into (R, %), one can employ the Dunford-Schwartz (or D-S)
integral (cf. [8], IV.10), or alternately one can use the theory of bimeasures as
developed in ([26], [27]) and [42]. This is the price paid to get the desired
weakened concept, but it will be seen that a satisfactory solution of our problem
1s then obtained, and both these integrations will play key roles.

Let us therefore recall an appropriate integration concept to be used in the
following. In ([40], p. 276) Rozanov has indicated a modification without
detailing the consequences. (This resulted in a conjecture [40, p. 283] which will
be resolved in Section 8 below.) Instead, a different route will be followed : namely
the integration theory of Morse and Transue will be used from [27] together with
a related result of Thomas ([42], p. 146). However, the Bourbaki set up of these
papers is inconvenient here, and they will be converted to the set theoretical (or
ensemble) versions and employed.

Let F: % x # — Cbeabimeasure, i.e. F(,, B), F(A, ‘) are complex measures
on %. Hence one can define as usual ([8], I11.6),
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I(f, 4) = [a f(t) Fdt, 4). (11)

for bounded Borel functions f : R — C. Then I(f, ) is a complex measure. In
fact I, : 8 — (B(R, 4B, C))*, the B(R, %, C) being the Banach space of bounded
complex Borel functions under the uniform norm, is a vector measure. So one
can use the D-S integral (recalled at the beginning of the next section), defining

Ii(f,9) = (I gold)(f)eC,  fgeBR,%,C). (12)

Similarly starting with F(A, -) one can define I,(f, g). In general
I,(f,9) # 1,(1, 9). (13)

In fact the Fubini theorem does not hold in this context. For a counterexample,
see ([27], §8). If there is equality in (13), then the pair (f, g) is said to be integrable
relative to the bimeasure F, and the common value is denoted I(f, g) and
symbolically written as (f, g need not be bounded):

1f.0) = {1 1(5)OFds, do. | (14)

This is a Morse-Transue (or MT-) integral. While a characterization of MT-

integrable functions is not easy, a good sufficient condition for this can be given

as follows, (cf. [27], Thm. 7.1; [42], Théoréme in §5.17). If f; g are step functions,

so that f = ) a4, 9 = ), bjxs, then clearly I(f, g) always exists and
i=1 j=1 ’

n

= J,

i=1j

!IM:

F(4, B) (15)

Next define for any ¢ > 0, ¥ > 0, Borel functions,
fo, ) =sup {{ 1) 111 fI<olgl <V fig

Borel step functions}
and if u, v are any positive functions,

I*(u, v) = inf {I{@, ¥): @ = u, ¥ > v, @, I are Borel} . (16)

Now the desired result from the above papers is this: If (£, g) is a pair of complex
Borel functions such that I,(f, g) and I,(f, g) exist in the sense of (12) and (13),
and I*(|f] ,lg]) < oo, then (f, g) is MT-integrable for the C-bimeasure F. In the
case that the bimeasure F is also positive definite and has finite semivariation,
then each pair (f,g) of bounded complex Borel functions is MT-integrable
relative to F. Moreover, using the notations of (7), one has

ISP I<TFEL- 1Sl g, (17)

Yoo . S5
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where | F || = || F || (R x R). It should be noted, however, that the integrability
of (f, g) generally need not imply that of (| f], |g]), and the MT-integral is not an
absolutely continuous functional in contrast to the Lebesgue-Stieltjes theory, as
already shown by counterexamples in [26] and [27]. Fortunately a certain
dominated convergence theorem ([27], Thm. 3.3) is valid and this implies some
density properties which can and will be utilized in our treatment below. Also f
is termed F-integrable if (f, f) is MT-integrable. Our definition above i1s
somewhat more restrictive than that of [27], but it suffices for this work. For the
theory of [27], the space B(R, 4, C) in (12) and (13) is replaced by C,,(R), its
subset of continuous functions with compact supports, with the locally convex
(inductive limit) topology. Note that, thus far, no special properties of R were
used in the definition of the MT- integral, and the definition and properties are
validif R isreplaced by an arbitrary locally compact space ( group in the present
context ). This remark will be utilized later on.
With this necessary detour, the second concept can be given as follows:

Definition 2.2. A process X : R — LP), with r(, ‘) as its covariance
function, is called weakly harmonizable if

(s, 1) = I(€"0, e") = [ [ &~ F(d), d)), s, t € R, (18)
RR

relative to some positive definite bimeasure F of finite semivariation where the
right side is the MT-integral.

In particular r is bounded and continuous (by (17) and Thm. 3.2 below).
Moreover, if F is of bounded variation, then the MT-integral reduces to the
Lebesgue-Stieltjes integral and (18) goes over to (3). The following work shows
that the process of the counterexample following Definition 2.1 is weakly
harmonizable. The same counterexample also shows that harmonizable
processes generally do not admit shift operators on them, in that there need not
be a continuous linear operator

T, X(t) > X(t+s)e L3(P), teR

on L3(P). This is in distinction to certain other nonstationary processes of
Karhunen type (cf. [9]).

3. INTEGRAL REPRESENTATION
OF A CLASS OF SECOND ORDER PROCESSES

In order to introduce and utilize the “V-boundedness” concept of Bochner’s,
it will be useful to have an integral representation of weakly harmonizable
processes. This is done by presenting a comprehensive result for a more general
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class including the (weakly) harmonizable ones. It is based on a method of
Cramér’s [3], and the resulting representation yields by specializations both the
harmonizable, stationary, Cramér class of [3], as well as the Karhunen class
(restated below). This is detailed as follows.

Recall that if (Q,, .«7) is a measurable space (i.e., o7 is a c-algebra of sets of Q)
and Z a Banach space, then a mapping Z : o/ — % is called a vector measure if Z
1s o-additive, or

o 0] Q0

Z(UAL): ZZ(AI)’ AlEJj,
i=1 i=1

disjoint, the series converging unconditionally in the norm of Z. If = L(P)

where (), £, P)is a probability space, then a vector measure is sometimes termed

a stochastic measure. The integration of scalar functions relative to a vector

measure Z is needed, and it will be in the sense of Dunford-Schwartz ([ 8], IV.10).

This may be briefly outlined here. If . f=> ax 4p A; € o, disjoint, define as

i=1
usual

n

(4 f(5)Z(ds) = Y aZ(AnA)eZX, Aed. (19)

i=1

Now if g : Q, — C is .&/-measurable, and g, are .«/-step functions such that g,
— g pointwise, one says that g is D-S integrable whenever for each 4 € ./,

{Jagu9)Zds),n > 1} =« &

is a Cauchy sequence. Then the limit, denoted g 4, of this sequehce is called the
integral of g on A, and is dénoted as

ga = [49(5)Z(ds) = lim [, g,(s)Z(ds), Aes. (20)
Itis a standard (but non-obvious) matter to show that the integral is well-defined,
independent of the sequence used, and the mapping A — [, g(s)Z(ds) is o©-
additive on 7, and g — [, g(s)Z(ds) is linear. Also

1 fa9)Z@s) | < gl 1Z1(4), geBE& «,C), (21)

where || Z || () is the semivariation of Z (cf. (7)) which is always finite on the o-
algebra 7. [If o/ is only a &-ring and Q, ¢ &/, then Z need not have finite
semivariation on «¢.] The dominated convergence theorem is true for the D-S
integral. (See [8], IV.10, for proofs and related results. The latter exposition is
very readable and nice.)
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The general class noted above is the following:

Definition 3.1. A process X : R — L(P), with covariance r(;, °), is said to be
weakly of class (C) (C for Cramér) if (i) there exists a covariance bimeasure F on
R x R of locally bounded semivariation in the sense that

F(A, B) = F(B, A), Z Z a;d; F(A, Ay) =2 0, a; e C.
i=1j=1
Here A, € 8,1 < i < n, bounded, and for each bounded Borel 4 = R, if Z(A)
= {A n B: Be %}, then

| F(AxA) =sup {|} » ab;F(4;B)|:la;| <1,]b;l <1,

i=1j=1

A;, Bj € B(A), disjoint} < o0 ;

(ii) there exists an MT-integrable (for F) family g, : R — C of Borel functions,
t € R, such that I(|gy, |g) < oo, s € R, where I denotes the MT-integral relative
to F, in terms of which one has (g,(\) is also written as g(t, 1)):

r(s, 1) = I(gs, g) = i i g(Mg{A)F(dr, dx),  s,teR. (22)

Remark. Note that in this definition F can be given by a covariance
function p asin (3') since, for 4 = [a, b)and B = [c, d) one defines (A*F) (4, B)
as the increment p(b, d) — p(a, d) — p(b, ¢) + p(a, c) and extend it to # x A.
Alsoin (22)itis possible that | F || (R x R) = oo. If F has finite variation on each
compact rectangle of R?, then F determines a locally bounded complex Radon
measure, and the above class reduces to the family defined by Cramér in [3], and
called class (C) and analyzed in [35]. If | F || (R xR) < oo, then one can take
g(A) = g(t,\) = €™ so that the weakly harmonizable class is included. Again it
may be noted that R can be replaced by a locally compact space or an abelian
group in (22) so that R” or the n-torus T" is included.

To present the general representation, it is necessary also to note the validity
of the D-S integration embodied in (20), (21) when the set functions are defined
on arbitrary o-rings instead of c-algebras, assumed in [8]. Further our measure
Z : B — X has the property that it is Baire regular in the sense that for each
- Ae ? and € > 0, there exist a compact C € &, open U € # such that C = A
c U and | Z(D) || < & for each De %, D =« U — C, where % is the Baire
(= Borel here) o-ring of R. Even if R is replaced by a general locally compact
space S, with # as its Baire o-ring and Z : Z — & o-additive, one has Z to be
Baire regular having a unique regular extension to the Borel o-ring & of S.

L’Enseignement mathém., t. XXVIII, fasc. 3-4. 21
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Actually Z concentrates on a o-compact Baire set S, = S. Moreover if Z is
weakly regular in that x* o Z is a scalar regular signed measure, x* € Z*, then Z
s itself regular. (See [21], pp. 262-263 for proofs with only simple modifications
of the arguments given in [8], IV.10.) In each case the measure Z has finite
semivariation on bounded sets in % (cf. (7) where 4 is replaced by the ring
generated by all bounded Baire sets for S). If #, < 4 is the class of all bounded
sets (a set is bounded if it is contained in a compact set), then it is a 6-ring, and the
D-S integration of a scalar function relative to Z : 4, — % holds as noted above.
With this understanding the following is the desired general result.

THEOREM 3.2. Let X :R — L3(P) be a process which is weakly of class
(C) in the sense of Definition 3.1, relative to a positive definite bimeasure F of
locally finite semivariation, and a family {g,, s € R} of Borel functions such that
each |g,| is MT-integrable for F. Then there exists a stochastic measure
Z: B, > LYP) where B, is the d-ring of bounded Borel sets of R, and
€, £, P) is an enlargement of (Q, X, P) so L%P) > L(P), such that

(i) E(Z(A)- Z(B)) = (Z(A), Z(B)) = F(4, B), A, Be &,
(i) X(¢) = [ g(t, VZ(dN), teR, (23)

where the integral is in the D-S sense for the 6-ring %,.

Conversely, if {X(t),teR} is a process defined by (23) relative to a
stochastic measure Z:%B, — LYP) and a Borel family {g,teR}, D-S
integrablefor Z and A, thenitisweakly of class (C) relativeto F defined

by
F(4, B) = E(Z(A)- Z(B)), A, Be®%,,

and each |g,|,t€R, is MT-integrable for F. Moreover, if

H#y = sp{X(t),teR)}
and
Hy = spiZ(A), A B,)

in L%P), then #y = #, when and only when the {g,teR} has the
property that

[ | fVg\)F@, d\) = 0, all teR,
R R

implies fj fA)FMYF(dX, dN) = O both being MT-integrals.
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Proof: The basic layout is that of [3]. The integrals used there will have to
be replaced by the D-S and MT-integrals appropriately. Since the changes are
not immediately obvious, the essential details are spelled out so that in
subsequent discussions, such arguments can be compressed.

For the direct part, let the process be weakly of class (C). Then its covariance r
admits a representation (with the MT-integration) as:

(s, 1) = E(X(9)X(1) = i i[ g(MgA)F(dA, dN') . (24)

Since F is a positive definite bimeasure, if

LE = {f: i i S)FYF@N, dN) = (f, f)F < o, fis MT-integrable for F},

and since I(f, f) = (f, f)r = 0, the earlier discussion implies {LZ, (, )¢} is a
semi-inner product space, and g, € L, t e R. Let T: L2 — 3, be defined by
T g,+— X(s), extending it linearly. Then (24) implies

(Tgsa Tgt))fx = (gs9 gt)Fa S, te R. (25)

Thus T is an isometric mapping of A7 = sp{g,,t e R} = L2 onto #, where #y
is the space given in the statement of the theorem.

Suppose first that A¢is dense in LZ. By ([27], Thm. 11.1) every Borel function
with I*(| f1, | fI) < oo isin L, so that, in particular x , € L for each A € %, since
F is locally of finite semivariation. By the density of A2 in L2 and the isometry,
there is a Z, € # 'y such that Ty, = Z,. If A, Be A, then

E(ZA ) Z_B) = (TXAa TXB)XX = (XAa XB)F = F(Aa B) ’
and if A n B = @ also holds, then

E(|ZAuB_ZA—ZB|2) = (XAUB—XA_XBv XAUB_XA_XB)F =0
since F is additive in both Vcomponents. Thus Z.,: By —» #y = LP) is

additive. If {4,}? = By, A = U A, e B,, then

n=1

E(Z,— _i ZW)=BIZ . +Z =Y 7]
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asn — oo, since F is continuous at () from above (cf. discussion after (7)). This Z
1s c-additive on %4, and hence is a stochastic measure of finite semivariation on
each compact set there. Clearly #, = #y. Since {g,, t € R} is dense in L3,
x4 € Lz, and each g, is assumed MT-integrable for F, there is a sequence g,

= Y a;g,, = %4 in L3 so that (§,— % g.—x)r — 0. Hence by the isometry

E(Y aX(t)—Z4*) — 0,as n — oo. It now follows easily that {Z ,, A € B,} is
i=1

dense in J# . Thus #, = # ,, and each element in 5, corresponds uniquely
to an element of L}, the completion of L} and where elements h e L3 with
(h, W) = 0 and O are identified. Let Y(t) be defined as:

Y(t) = [ gMZ@dr) eH, = Hx. (26)

Here the right side is the D-S integral on the d-ring 4, which can be defined by a
slight modification of the work of ([8], IV.10), as noted in [21]. Thus,

(Y(s), Y (I g Z(dM), j g{\)Z(d)))

= | {9d1) gt(k’)F(dk, d\)
RR

which holds if g, is a #,-measurable step function and then the general case
follows by ([27], Thm. 3.3 or [46], p. 126), since | g, | is MT-integrable in our
sense. Now by definition (I-i-m denoting L*(P)-mean):

Z(A) = T(x,) = T(limg,), where g, >y, in Lf

= I'i'm T(§) = Ii'm Y, 4, T(q,)

i=1

=1im )Y X)) =1imX, (say)

i=1

The L2(P)-limits imply

E(X(5)Z(4)) = lim E(X(s)X,)

n

= lim i a; E(X(s))?(ti)) = lim Zn: a; r(s, t;)

n i=1

n

m Y a [ [ 009, (MF(dh, i)

i=1

= [ [ g\ )F (@A, d)) .
RR

R T T L e BRTINAT T e
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By isometry,if, = Y. b, Z(A,), one gets fi, <> T, where h, = ) b; x4, € L,

j=1 j=1

X(s)Z,) = iigs (MG ()F (N, dV) .

So again by the MT-integrability of gy(‘), the preceding result yields
E(X(s)Y(®) = | | gMgN)F(dAr, d)\) .
R R
It follows from this that

E(X(s) — Y(s)?) = E(1X(s)2) + E(Y(s)?) — E(X(9)Y(s)) — E(Y(s)X(s)) = 0.

Hence X(s) = Y(s) a.e., s € R. So (26) implies (23) in the event that A7 is dense in
L:.

For the general case, where A2 = L2 © AZis nontrivial and where the “bar”
again denotes completion, let {h, t € R} be a basis of A% If R=R+Risa
disjoint sum to give a new index set, let §, = g, for s € R, and = h,for s € R, then
(g, s€ I%} is dense in L2. So by the preceding case, on extending T to t from L}
— L(P), where (Q, £, P) is possibly an enlargement of (Q, £, P) by adjunction
(cf, e.g., [36], p. 82), with 1y, = Z, € L4P), one has

Y(s) = i gMZ@dr) e Li(P). (27)

Observe that all g, are Borel and MT-integrable in this procedure. Hence, as
before, ¥(s) = X(s) for s € R, and (23) holds again. In this case #, > #, and
the inclusion is proper.

Conversely, let {X(t),t € R} be a process defined by (23). Let F(4, B)

n

= (Z(A), Z(B))and g, = Y. a4, As» A, Bin B,. Then for the D-S integral (23)

i=1

one has

n n

I F (A, A) = sup {Z Z a,a; F(A;, A)) - A; € B(A), | a;] < 1}

i=1j=1
= sup {I Y, @ Z(A) 1311 < 1, 4, < B(4)
< Z|*A) < 0,AeB, .
Thus if X, = [g g,(M)Z(d)\), one has with h, another such step function,
E(X,;X5) = & [ gMhV)F(dh, L) . (28)

Now given g, € L; which is MT-integrable in our (restricted) sense (this is
analogous to a definition of [46]) and for which (23) holds, the gs can be
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approximated by suitable Borel step functions {g,}7 < L# such that g, — g,
pointwise | g, | < | g, | and similarly with g, — g, such that

1(g Gn) = 1(gs> 90, 1194, lg4l) < o .
Applying this to (28), one obtains

& fr 9 MGN)F(d), dN) = Tim [g fx (MG (MF(d, dV)
= Iim(X, , X;)
= lim(fg g(MZ(dM), [x Gu(X)Z(dN)

= (Jr 9(MZ(dL), [& 9M)Z(dN)),

since for the D-S integral the dominated convergence holds,
= (X(s), X(®)) = (s, ) - (29)

This shows {X(t), t € R} is of weakly class (C).

Regarding the last assertion, it is evident that{g,, s € R} is a basis in L iff
I(f,g,) = 0,t e Rimplies I(f, f) = 0. This s clearly necessary and sufficient for
H , = Ay since otherwise, (with possibly an enlargement of the underlying
probability space) #, o # y and #, = # 'y in the notation of (27). Thus the
proof is complete. 7

Remarks. 1. If F is of locally finite variation, then it defines a locally finite
(i.e., finite on compact sets) complex Borel (= Radon) measure in the plane R?,
and then the MT-integrals for F reduce to the Lebesgue-Stieltjes integrals. Thus
I(g,, g,) < ooisequivalent to the classical theory, and the above result specializes
to Cramér’s theorem of [ 3]. However, for the general case of bimeasures (as here),

the MT-theory (or a form of it) appears essential.

2. The above theorem is true if R is replaced by a locally compact space, since
no special property of R is used. Only the concept of boundedness is needed.

When || F |[(RxR) < oo, so that F is of finite semivariation on R?, then by
([27], Thm. 11.1) each bounded Borel function g is MT-integrable for F. Taking
g,(\) = €™ in the above theorem, one deduces from this result the important
representation given by Rozanov ([40], p. 279). The last statement is not too
hard to establish. [A separate proof of it is also found in ([29], p. 36).]

THEOREM 3.3. Let X :R — L}(P) beaprocesssuchthat || X(t) |, < M
< oo, t € R, and be weakly continuous. Then the process is weakly harmonizable
relative to some covariance bimeasure F of finite semivariation (cf. Definition
2.2) iff there is a stochastic measure Z :J%B — LE(P) such that for each A, B in

B, F(A, B) = (Z(A), Z(B)) and
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X(t) = [g €™ Z(d\), teR, (30)

the right side symbol being the D-S integral and | Z |(R) < co. Moreover, X
is strongly harmonizable iff the covariance bimeasure F of Z in (30)is of
bounded variation in R2 (cf. Definition 2.1). In either case the harmonizable
process X is uniformly continuous, and is represented as in (30).

Suppose that in the representation (23) the Z-process is orthogonally
scattered implying (Z(A), Z(B)) = 0 whenever A n B = (. Then

F(A, B) = (Z(A), Z(B)) = F(AnB),

where F is the covariance bimeasure and F is a positive locally finite measure on
% so that it is o-finite there. Then

s, ) = EX.X) = [x gMGME@) | )

A process whose covariance function R satisfies this condition is termed a
Karhunen process. Moreover, if F is a finite measure and g4A) = €**, the
resulting one is the classical (Khintchine) stationary process. In both these cases
there are no weak type extensions.

Let us introduce a further generalization of the (weak) Cramér class to
illuminate the above Definition 3.1, and for a future analysis. Let (, Z, p) be a
measure space and M(p) be the space of scalar p-measurable functions on . Let
N():M(u) - R™ be a function norm in that for f f, in M(u), (i) N(f)
= N(f) =2 0,)0 < £, 1= N(/f) 1, (1) N(af) = | a| N(f),a e Cand (iv) N(f
+g) < N(f) + N(g). The functional N has the weak Fatou property if

0< f,7 f,lim N(f) < 0o = N(f) < w0,

and has the Fatou property if instead N(f,) T N(f) (< o0). The associate norm N’
of N is defined by:

N'(f) = sup {| [o(f9) (@)(dw) | : N(g) < 1}. (32)
One sees that N’ is a function norm with the Fatou property. If

NO)=|"ll,1<p< o0,
then

NO=1llpgp ' +qg'=1.

The general concept alluded to above is as follows:

Definition 3.4. (a) Ifr: R x R — Cisacovariance function, it is said to be
of classy (C) relative to a function norm N, if there is a covariance bimeasure
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F:R x R = Coflocally finite N-variation (let N’ be the associate norm of N),
and there exists a family {g,, t € R} of Borel functions which are MT-integrable
relative to F, such that

(s, 1) = fu [x gMGH)F(@N, dV), s, 1€ R, 3y
and where locally finite N-variation is meant the following:
0 > || FlMAxA)=sup {|I(fg|:N(f) < LN@<1}. (39

Here f, g are Borel step functions, with supp(f) = A4, supp(g) = A4, A € A,,, the
o-ring of bounded Borel sets of R.

(b) A process X : R — L&(P) is of classy(C) if its covariance function r is of
classy (C) so that it is representable as (33).

Itisclearthatif N() = || - ||, sothat N'() = | - ||, the N-variation is simply
the 1-semivariation of Definition 3.1 and that

HE Ny = [ Flly(=[1FI).

Remark. Without further restrictions, classy (C) need not contain the weak
or strong harmonizable processes. However if N is restricted so that, letting

INP) = {f € M(P): N(f) < o0}, I(P) = L(P) = L)(P),

where p = P is a probability, then every class, (C) will contain both the weak
and strong harmonizable families, as an easy computation shows. If N()

= | - ||;, then class; (C) is the class which corresponds to the covariance
bimeasure of finite semivariation. This includes the classical Loéve and Rozanov
definitions. Again this definition holds, with only a notational change, if R is
replaced by a locally compact group G. A brief discussion on some analysis of
these classes which extend the present work is included at the end of the paper.

4. V-BOUNDEDNESS, WEAK AND STRONG HARMONIZABILITY

The definition of weak harmonizability is of interest only when an effective
characterization of it is found and when its relations with strong harmonizability
are made concrete. These points will be clarified and answered here. Now
Theorem 3.3 shows that a weakly harmonizable process is the Fourier transform
of a stochastic measure and this leads to a fundamental concept called V-
boundedness (‘V’ for “variation”), introduced much earlier by Bochner [2],
which is valid in a more general context. This notion plays a central role in the
theory and applications of weakly harmonizable processes (and fields) which are
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shown to be V-bounded in the context of L3(P). Further this characterization
facilitates a use of the powerful tools of Fourier analysis of vector measures. The
desired concept is as follows (cf. [2], and also [33]):

Definition 4.1. A process X : R — %, a Banach space, is V-bounded if X(R)
liesin a ball of &, X as an Z'-valued function is strongly measurable (i.e., range of
X is separable and X ~}(B) € # for each Borel set B = %), and if the set C is
relatively weakly compact in &, where

C={a fOXWdt: [ fl.<1LfelR)}cZ, (35)

and where f(t) = [g f(Me™dM, [g f(1)X(t)dt being the Bochner integral. If 2 is
reflexive then the condltlon on C may be replaced by its boundedness. (Here if
the measurability of X is strengthened to weak continuity, then it actually
implies the strong [and even uniform] continuity.)

Let us establish the following basic fact when & = L3(P):

THEOREM 4.2. A process X :R — LP) isweakly harmonizableiff X is

V-bounded (ie., || X(t) |, < My < co,teR, and the set in (35) is bounded)
and weakly continuous.

Proof: For the direct part, let X be weakly continuous and V-bounded.
Then

| Je fOX®dt Il < cll f llw f € DR, (36)

by Definition 4.1. Let % = {f: f e [}(R)} = C,(R), the space of complex

continuous functions vanishing at “00”; the inclusion holds by the Riemann-

Lebesgue lemma. Moreover, % is uniformly dense in Co(R), since % is a real

algebrain Cy(R) and separates points of R so that the Stone-Weierstrass theorem

applies (cf. [24], §26.B). Let # : [ — j feN)dr, t e R, where e (L) = ™.
R

Then & : I['(R) - Co(R) is a one-to-one contractive operator. Consider the
mapping
T:% % = L§P), by T(f) = [z fOX(t)dt e ¥ .

This is well-defined, and the following diagram is commutative :

e

“

L(R)

Ti(f) = fr fOX()dt € Z . \/

By hypothesis T is bounded and by the density of % in Co(R), it has a norm
preserving extension T to Co(R). Now T will be given an integral representation
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using a classical theorem due to Dunford-Schwartz ([8], VL.7.3) since T is a
weakly compact operator because Z is reflexive. ‘

To invok¢ the above cited theorem, however, it should first be observed that
the result holds even if the space C(S) of continuous (scalar) functions on a
compact space S (for which it is proved) is replaced by Cy(¥) with a locally
compact space &. Here & = R. Indeed, let % be the one-point (at “c0”)
compactification of & and consider the space C(¥). Now C(¥) can be identified
with the subspace {f € C(#): f(w0) = 0}. Since T : Co(¥) — Z is continuous
and Cy(¥) is an “abstract M-space”, there is a continuous operator T : C(&)
— & such that T | Co(#) = T. This follows from the fact that for any Banach
space Z containing a subspace which is an abstract M-space, there is a projection
of norm one on & onto that subspace, by the well-known Kelley-Nachbin-
Goodner theorem (cf. e.g., [8], p. 398), and T = T o Q. Hence by the Dunford-
Schwartz theorem noted above, there is a vector measure Z on % into & such
that

T() = [, /020, € CF). (37

and | T | = || Z |(&), the-integral on the right being in the D-S sense. Define
Z: B(F) > X as Z(A) = Z(¥NA), A e B(&). Then Z is a vector measure and
| Z | < || Z|. Moreover, if f, = f |, then

T(f) = [y fo(Z(d) + [rey f(0)Z(dt), [ € C(F)

= T/, since  f(o0) = 0.
Hence T(f) = T(f), fe Co(#) with | T | < | T| = | T || < || T|, and
1) = |4 f(®)Z(d), f € Co(¥) - - (38)

Thus writing R for & from now on (the above general case is needed later), it
follows that

| Tl = sup {ll fa f(OZ(@d0) | : f € CoR), | [ Il < 1} = | Z [(R)
= | Z (R,

and T and Z correspond to each other uniquely. Since T | # = T, this implies

T (f) = fa f(O2Z(d) = [g f(OX(D)L, f € L(R), (39)

and | T || = | Z [(R).
Let [ € £*. Then (39) becomes (since a continuous operator commutes with
the D-S integral, cf. [8], p. 324 and p. 153, and Z'* is the adjoint space of %),

fof(0) loZ(dt) = [af(t) loX(t)dt . (40)
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In (40) now both are ordinary Lebesgue integrals, and hence using the Fubini
theorem (for signed measures) on the left one has:

[r f(0)dt [g eM)] o Z(dL) = (g f(t)] o X(t)dt
Subtracting and using the same theorem of ([8], p. 324),
[ fOU|g eMZ(d)) — X(t)dt = 0,1e Z*, f € L'(R). (41)

It follows that the coefficient of f vanishes a.e., (everywhere as it is continuous).
Since / € Z* is arbitrary it finally results that the quantity inside / is zero, for each
t € R. Thus

X(t) = [g e(MZ(@dN) = [g €™ Z(d\), teR. (42)

Hence X is weakly harmonizable by Theorem 3.3.

For the converse, let X : R — L}(P) be weakly harmonizable. Then X admits
a representation of (42) by Theorem 3.3. Since | Z | (R) < oo, (21) implies
| X() I, < My < oo for all teR, and as [ - X(*) is the Fourier transform of
loZ,1e Z*, X is weakly continuous. Consider the Bochner integral for (f X) ()
as '

(] fOX(@de) = [ fO1 - X(0dt = Jf0)- [ e0)@oZ)(@hyde 43)
since / » X is the Fourier transform of a signed measure
= i 1) Z(d)\)dt, by Fubsini’s theorem,
= i Z(d\)
= z(ljt Z(dM)), by ([81, p. 324) again. (44)

Since | € £* is arbitrary, (44) implies

i fOX(dt = [ fFW)Z@N) e X . (45)

R

Hence, using (21), ohe has

I If X@Odtl, < I S 1N ZIR) =cl [, feL'®), (46)

where ¢ = | Z || (R) < 0. It therefore follows that the set
{i fOX@dt: | [, <1, fe R} < LiP),

and is bounded. Since 4 is reflexive, X is V-bounded. This completes the proof.
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Remarks. 1. Since V-boundedness concept is defined for general Banach
spaces (for a treatment of this case, cf. [33]), and its Hilbert space version is
equivalent to weak harmonizability, by the above theorem, the latter term will be
used in the Hilbert space context. (Using the general definition of V-boundedness,
a characterization of a process X : R — %, a reflexive space, which is a Fourier
transform of a vector measure is given in Theorem 7.2 below. It extends a result of
[12])

2. The preceding proof is arranged so that if R is replaced by a locally
compact abelian (LCA) group G, the result and proof hold with essentially no
change. The functions {e,('), t € G} will then be group characters. Thus the result
takes care of G = R";so the (weakly) harmonizable random fields are included.
Precise statements and further results in the general case will be given later.

If % is the set of all weakly harmonizable processes on R — L3(P) = %, and
T € B(Z), the algebra of bounded linear operators on %, then Y(¢)
= TX(t), t € R defines a process which can be written as:

Y(t) = T(Jg €*Z(d)) = [g €NT<Z) (d}), (47)

by ([8], p. 324), and it can be seen that Z = T o Z: % — & is a stochastic
measure, | Z | (R) < | T ||| Z || (R) < oo. Hence Y € #". Thus one has:

COROLLARY 4.3. B(%)- W = W, orin words, the linear space of weakly
harmonizable processes is a module over the class of all bounded linear
transformations on X = L}(P).

Since each stationary process X is trivially strongly (hence weakly)
harmonizable, if P : & — & is any orthogonal projection, then Y = PX € #/,
i.e. weakly harmonizable by Corollary 4.3. In particularif {X,, ne Z} = Zisan

orthonormal sequence, £, = S_I;(X »Nn>0), let (%) = &, be the orthogonal
projection and Y, = QX, =X, if n>0,=0 if n<0. The process
{Y,,neZ} e, butitis not strongly harmonizable. Thus the class of weakly
harmonizable processes is strictly larger than the strongly harmonizable class.
(The latter is not a module over B(%).)

In spite of the above comment, each weakly harmonizable process can be
approximated “pointwise” by a sequence of strongly harmonizable ones. This
observation is essentially due to Niemi [29]. The precise result is as follows:

THEOREM 4.4. Let X :R — L3(P) be aweakly harmonizable process. Then
there exists a sequence of strongly harmonizable processes X, : R — L4(P) such
that X,(t) - X(t), as n— oo, in LYP) uniformly (in t) on compact
subsetsof R. If R isreplaced by an LCA group G the same result holds with
{X,,nel} beinganetofsuchprocess. (Theconvergenceisherein I*(P)-mean.)
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Proof. By hypothesis, there is a stochastic measure Z : % —» Z = L3(P),
such that
X(0) = [ e(MZ(@h), teR.
R
Thus X : R —» % is a continuous mapping. If #'x = S—p;{X(t), te R} = Z, then
the continuity of X (and the separability of R) implies 5y is separable. Hence

there exists a sequence {@, n > 1} = &y which is a complete orthonormal
(CON) basis for Z'y, so that

- i ouX(0, 9), teR, (48)

the series converging in the (norm) topology of # yx for each t. Define

n

X, (1) = ) odX(®), 9) teR. (49)

Claim: {X,(t), t € R}, n > 1,is the desired sequence. [In the general LCA group
case {@,, n € I} is a net of CON elements of # 4, since G, hence 5y, need not be .
separable. Otherwise the same argument works with trivial modifications.]

To verify the claim, it is clear that X ,(t) » X(¢) in 4 for each t € R. To see
that X, is strongly harmonizable, let

L X — (X, @), XeHy.

Then I, e #°% for each k. Hence using the standard properties of the D-S integral,
one has

X(t) = k; ol X () = kzl ¢ LlJr €M Z(dN))
since X is weakly harmonizable,

Pifr &Ml o Z(d)) = [ e (MG (dM), | (50)

Il
.
TP

where () z @il © Z(). Let G,(4, B) = ((,(A), {(B)). Then G, is of finite

k=1
total variation. Indeed, if i, = [ o Z, which is a signed measure (hence has finite
variation) on R, let

N4, B) = (Quhti(4), 014(B)) = mu(A)n(B) .

So G,(A, B) Z t(A)p(B). Since

| i (A) | | m(B) | < (| Hy | (R))2
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for each k, it follows that each 1, and hence G, for each n has finite variation so
that each X, is strongly harmonizable.

It was already noted that X being weakly harmonizable, it is strongly
continuous. [This is true even if R is replaced by an LCA group G (cf. [21],
p. 270).] So if K = R is a compact set, then its image X(K) = #x < Li(P) is
also (norm) compact. But s, being a Hilbert space it has the (metric)
approximation property. [This means the identity on 4, can be uniformly
approximated by a sequence (net) of (contractive) degenerate, or finite rank,
operators on each compact subset of # ,.] Then X ,(t) - X(t)in & foreachte R
implies, by a result in Abstract Analysis in the presence of the approximation
property, that the convergence holds in Z uniformly on compact subsets of Z.
This and the fact that X(K) is compact implies that X,(t) —» X(¢) in L3(P),
uniformly for t € K < R. In the general LCA case, the same holds with nets
replacing sequences. This completes the proof.

Remark. Even though the weakly harmonizable process is bounded and
weakly (hence strongly here) continuous with some nice closure properties
demonstrated above, it does not exhaust the class of all bounded continuous
processes in L3(P). This can be seen from Theorem 3.2 by a suitable choice of a
vector measure of finite local semivariation but which is not of finite
semivariation. The following example demonstrates this point. Let I}(R) be
identified with .#(R) of regular signed measures on R by the Radon-Nikodym
theorem (ie. f € [}R) < j(.) f(t)dt € #(R)). Now it is known that there are
nontrivial functionsin Co(R) — %, where %, = {{i: pe #(R)}. Let f € Co(R)
— %. For instance '

-1 | x|
f(x) = sgn(x) (loglx) ™" Hgxiz a1 + - fTixi<a)  X€ER,

is known to be such an f. Let @ € L3(P), | @ |, = 1. Let [ € (L(P))* such that
I(p) = 1. Consider the trivial process X, : t — f(t)p. Then X, : R — L§(P) is
bounded and continuous but not weakly harmonizable, since otherwise there
exists a stochastic measure Z such that (by Theorem 3.3)

Xo() = [ e(MZ(@), and

f() = (X)) = | &) (I°Z) (d}).

R

Since | o Z € #(R), this would contradict the choice of f.
Here is an interesting consequence of the preceding theorem.
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THEOREM 4.5. Let X :R — L3(P) be a weakly harmonizable process and
let Z:%B — L3P) be its representing measure by (30). Then there is
(nonuniquely) a fixed sequence of finite regular Borel measures B,: # — R™
such that for each f € Cy(R),

I lf‘ f®)Z(dy) ||, < lim inf || f {I5,,

n

(= lim inf []| f(2) |* B,d£)]"?) . (51)

Remark. Even though this result is deducible from the general Theorem 5.5
below, the present proof is elementary and has some interest and will be given
here. It leads to the general case.

Proof: By hypothesis, X(-) is represented by a stochastic measure Z (cf.
(30)), and by the preceding theorem there are strongly harmonizable X, —» X,
uniformly on compact subsets of R. Let {, be the representing measure of X, so
that {,, Z : # — L3(P), and

[ f)Z(d)) = lim | f(M)C(dN), (52)
R

n—o R

the limit existing in L(P) when f is a trigonometric polynomial. Since such
polynomials separate points of R and so are uniformly dense in Cy(R), and the
integrals in (52) define bounded operators from C,(R) into L3(P), it follows that
(52) holds for all f € Cy(R), by standard reasoning (cf. [8], I1.3.6). Hence

o = || fr SWZ(@N) |3 = lim || fg fFWCAN) 5, f € Co(R)

n— oo

= lim [g fg fV)S(\V)F(dA, dX), (53)

where F,(s, t) = ((,(— 0, s), {,(— o0, 1)) is a covariance function of bounded
variation for each n. Let | F,|(-,-) be the (Vitali) variation measure of the
bimeasure F,. Then the hermitian property of F, implies, in an obvious notation,
| F, | (A, B) = | F, | (B, A). Now define amapping B, : # — R* by the equation:
1
B(A) = | F,|(4,R) = E{IF,,I(A,R) +|F, (R, A}, Aea,

so that B, is a finite Borel measure, and

[“f(S) | F| (ds, dt) + Hf(t)anl(ds, dn]. (54)

B =

;ja JMB,(dN) =

Since F, is positive (semi-) definite,
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0 < o fr SO)fO)F (s, dt) < [& [& |f(6)f(0) || F, | (ds, dt)
1 .
< SUw [l S 1 F, | (ds,d) + [a Ju | S0 17 Fy | (ds, d0)]

since Iabl <(lal*> + 16172,
= Jx | f(9) 1> Bi(ds), by (54). (55)
This and (53) yield

of = | [ FVZ(@N) 3 = lim [g [g SO)SV)F(d, dV)

< liminf [ [ fM) ? B,(dN),  feCoR). (56)

This completes the proof.

Remark. For a deeper analysis of the structure of these processes, it is
desirable to replace the sequence {B,, n > 1} by a single Borel measure. This is
nontrivial. In the next section for a more general version, including
harmonizable fields, such a result will be obtained.

5. DOMINATION PROBLEM FOR HARMONIZABLE FIELDS

The work of the preceding section indicates that the weakly harmonizable
processes are included in the class of functions which are Fourier
transformations of vector measures into Banach spaces. A characterization of
such functions, based on the V-boundedness concept of [2], has been obtained
first in [33]. For probabilistic applications (e.g., filtering theory) the domination
problem, generalizing Theorem 4.5, should be solved. The following result
illuminates the nature of the general problem under consideration.

THEOREM 5.1. Let (Q, %) be a measurable space, Z a Banach space and
v:XZ > Z be a vector measure. Then there exists a (finite) measure | :Z

o(x)

— R*, a continuous convex function ¢ :R™ — R* suchthat —~ » o« as
X

x 2 00,00) = 0, and v has @-semivariation finite relativeto | inthe sense
that

Ivl,€) = sup ] (f)f(ﬂ))\'(dw) g 1 Sy <1} < 00, (57)

where || f |l,,, = inf {o0 > O:j\b(I—f—gﬂu) Wdo) < 1} < o0, and the
o
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integral relative to v in (57), is in the Dunford-Schwartz sense. Here \ : R*
— R™ is a convex function given by Y(x) = sup {| x|y — o(y):y = 0}.

The proof of this result depends on some results of ([8], IV.IO) and
elementary properties of Orlicz spaces (cf. [47], p. 173). It will be omitted here,
since the details are given in [38]. This is only motivational for what follows.

Note that (57)is a desired generalization of (51)if {B,, n > 1} is replaced by
and | - ||, is replaced by || - H . However ¢ may grow faster than a polynomial.
What is useful hereisa ¢ w1th o(x) = | x|, 1 < p < 2. Thiscan be proved for a
special class of spaces &, which is sufficient for our study of harmonizable fields.

It will be convenient to introduce a definition and to state a result (essentially)
of Grothendieck and Pietsch, for the work below.

Definition 5.2. Let %, % be a pair of Banach spaces and, as usual, B(%, %)
be the space of bounded linear operators on % into %#. If 1 < p < oo,
T e B(Z, %), then T is called p-absolutely summing if a,(T) < oo, where

n 1 n 1
o,(T) = inf {¢ > O: ['Zl | Tx; |P]r < ¢ ” iu”p< 1 (Zl | x*(x,) |P)e, x; € &,
l1<i<nnz=l}, (58)

with x* e Z'*, the adjoint space of .
The following result, which is alluded to above, with a short proof may be
found in [22] together with some extensions and applications.

ProPOSITION 5.3. Let T e B(Z,%) be p-absolutely summing, 1 < p
< 0. Let K* bethe weak-star closure of the set of extreme points of the unit
ball U* of Z*. Then thereis aregular Borel probability measure w on the
compact space K* such that

I Txlly < oap(T) [fxx | x*(x) [P wdx*)]'?,  xed. (59)

Conversely (and this is simple ), if T satisfies (59) for some p on K* witha
constant Yo, then T isp-absolutely summingand o (T) < y,. Further any p-
absolutely summing operator is weakly compact.

Let us specialize this result in the case that = C,(S)[C(S)], the space of real
[complex] continuous functions on a compact set S. Let K be the set of all
extreme points of the unit ball U* of (C(S))*and g : § — (C/(S))* be the mapping
defined by q(s) = I, with I(f) = f(s), f € C(S) so that I, is the evaluation
functional, | [ | = 1, and I € K, s € S. Some other known results needed from
Linear Analysis, in the form used here, are as follows. (For details, see [4],
Sec. V.3; [8], p. 441). In this case the spaces S and ¢(S) are homeomorphic and
q(S) is closed since S is compact. By Mil’man’s theorem U* is the weak-star

ol
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closed convex hull of g(S) U (—g(S)), and (by the compactness of S) the latter is
equal to the extreme point-set of U* and is closed. Further these are of the form
al, se S, and |a| = 1 (cf. [8], V.8.6). Consequently (59) becomes

I TAIP < (0(T))P - fasyo—asn | KON 1P ), f e CLS)
< A (TN fus | 1) 1P pidly)
= 2 (D 51 £(5) 1P wids) ,
if S and ¢(S) are (as they can be) identified.

For the complex case, C(S) = C,(S) + iC,(S), and so the same holds if the
constants are doubled. Thus

1
ITf 1 < Cp[js | ) 1P sl = Coll f il  fECS),  (60)
where CP = 4[o,(T)]*. This form of (59) will be utilized below.

Definition 5.4. Let & be a Banach space, ] < p< owand 1 < A < .
Then Z is called an %, ,-space if for each n-dimensional space E = Z,1 < n
< o0.thereis a finite dimensional F = &, E < F,such thatd(F, [5) < Awherel}
is the n-dimensional sequence space with p-th power norm and where

dEy, E;) = inf {| T | | T ||: T e B(E,, E,)}

for any pair of normed linear spaces E;, E,. A Banach space ¥ isan % ,-space if
it is an %, ;-space for some A > 1.

It is known (and easy to verify) that each L?(n), p > 1,1s an &£, ,-space for
every A > 1, and C(S) [indeed each abstract (M)-space] is an &, ,-space for
every A > 1. The class of .#,-spaces coincides with the class of Banach spaces
isomorphic to a Hilbert space. For proofs and more on these ideas the reader is
referred to the article of Lindenstrauss and Pelczynski [22].

With this set up the following general result can be established at this time on
the domination problem for vector measures.

THEOREM 5.5. Let S bealocally compact spaceand Cy(S) bethe Banach
space of continuous scalar functions on S vanishingat "co”. If ¥ isan £ ,-
space 1 < p <2, and T e B(Cy(S), %), then there exist a finite positive Borel
measure W on S, and a vector measure Z on S into %, such that

I s f(Z@s) lly = 1 Tf lly < I fl2w  feColS). (61)

Proof. Since & = C,(S)is an abstract (M)-space, it is an £ -space by the
preceding remarks. But % is an £ ,-space 1 < p < 2,and so T € B(Z, %) is 2-
absolutely summing by ([22], Thm. 4.3), and therefore (cf. Prop. 5.3 above) it is
also weakly compact. By the argument presented for (37), (38) above, one can use
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the theorem ([8], VI.7.3) even when S is locally compact (and noncompact) to
conclude that there is a vector measure Z on the Borel o-ring of S into % such
that

Tf = {5 f(9)Z(ds),  (D-S integral).

Using the argument of (37), if S is the one point compactification of S, and
T € B(C(S), #)is the norm preserving extension, then T is 2-absolutely summing
(since C(S) is an abstract (M)-space), and weakly compact. So by (60) there exists
a finite Borel measure {i on § such that

| Tf ly < ¢l f 2w fe C(S) .

Letting i = cZfi,onehas || Tf || < || £ 2. f € C(S). So (61) holds on §. Let
() = f(SN-) so that p is a finite Borel measure on S. If now one restricts to
Co(S) identified as a subset of C(S), so that T = T | Cy(S), it follows from the
preceding analysis that || Tf ||, < || f I|,,, for all /€ Cy(S). Since the integral
representation of T is evidently true, this establishes (61), and completes the
proof of the theorem.

If % is a Hilbert space, it is an #,-space so that the above theorem
considerably strengthens Theorem 4.5, since the sequence there is now
replaceable by a single measure.

The following statement is actually a consequence of the above result, and it
will be invoked in the last section.

PROPOSITION 5.6. Let (€2, X) be any measurable space,and ¥ = B(Q, X)
be the Banach space (under uniform norm) of scalar measurable functions. If %
is an & ,-space, 1 < p <2, asabove, T e B(¥,%) is such that for each
fneZ, f,—> f pointwise boundedly implies | Tf, | — | Tf|, then there
exist o-additive functions Z:X - %, n:X - R™, such that

||§f 2do) ly = 1 Tf llg < flaw, feZ. (62)

The proof uses the fact that B(Q, Z) is isometrically isomorphic to C(S), for a
compact (extremelly disconnected) Hausdorffspace (cf. [8],1V.6.18), and reduces
to the preceding result. The computations, using the standard Carathéodory
measure theory, will be omitted here. The details, however, may be found in [38].

Remark. The preceding results show that the domination problem for
vector measures in LP-spaces, 1 < p < 2, is solved and hence also for
harmonizable fields since only the % ,-type spaces are involved in the latter. But,
for p > 2, such a satisfactory solution of the problem is not available.




326 M. M. RAO

6. STATIONARY 'DILATIONS

The results of the last section play a key role in showing that each weakly
harmonizable random field has a stationary dilation. It is a consequence of the
preceding work that for any stationary field Y : G — L3(P) with G an LCA
group, and each orthogonal projection Q : L3(P) —» L3(P), the new random field
X(g) = QY(g9),ge G, giving X:G — LP), is shown to be weakly
harmonizable. The dilation result yields the reverse implication. A “concrete”
version of this is given by the following theorem and an operator version will be
obtained later from it.

THEOREM 6.1. Let G bean LCA group, X :G — LP) = # a weakly
harmonizable random field. Then there is a super ( or extension ) Hilbert space A

> #, a probability measure space (Q, £, P) with A = LiP), and a

stationary random field Y :G — LYP), such that X(g) = QY(g), g€ G,

where Q: LYP) —» L%(P) is the orthogonal projection with range L2(P). If

moreover, H = ;;{X(g), ge G}, then Y determines A in the sense that
¥ = :9;{ Y(9), g€ G}. [Thus A is the minimal super space for #.]

Proof. The “consequence” above is easily proved. In fact, if Y:G — L(P)is
stationary, then Theorem 3.3 implies

Y(g) = jG <ga S> Z(dS), g e G > (63)

for a vector measure Z on Ginto #~ = L2(P), with orthogonal increments (also
called orthogonally scattered) where G is the dual group of the LCA group G,
and (-, s> is a character of G. If Q : A& — X is any orthogonal projection, then
Z = Qo Z is a stochastic measure on G into . Indeed,

“ Z|1%G) = sup {|| ¥ aZ(A)}:1a;l <1, 4; = G disjoint Borel, n > 1}
i=1
= sup {1 Q Y aZ(4) |3:1a| < 1,4; < G, as above}
i=1
<QIPsup {| Y aZ(A)l%:1a;| <1, 4; = G, as before}
i=1

= || Q ||* sup {Zl 'Zl aa; F(4;nA): | a;| < 1,4; < G as before}
i=1j=

where F(4,nA4)) = (Z(A), Z(A)) ,
= | QI*I F|(G) < F(G) < w0, (64)
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since F is the spectral measure of Z and so is finite and Q is a contraction. Hence
7 has finite semivariation and is clearly c-additive, so that it is a stochastic
measure. By Theorem 3.3, X given by X(g9) = QY(9) = [z <9, &) Z(ds), g € G, is
weakly harmonizable. (Note that the same conclusion holds if Q is replaced by
any bounded linear operator on . If the range of the projection Q is not finite
dimensional, then X need not be strongly harmonizable!)

To go in the reverse direction, the (possibly) augmented space ¥ = J# hasto
be constructed. Consider X : G —» # = L}(P), the given weakly harmonizable
random field. In order to get simultaneously the additional structure demanded
in the last part, let J# = E;{X (9), g € G} also. Then, as before, there is a
stochastic measure on G into s such that

X(g) = [z <g, s) Z(ds) € #, geG. (65)

By Theorem 5.5, with % = J#, there exists a finite Radon (= regular Borel)
measure | on G such that

I fe f(OZ(d) |5 < | f(©) 1P wdD), [ e CyG). (66)
Now define a mapping v: (G x G) - R* by the equation |
v(4, B) = W(ANB), A, B e B(G), (67)

where %(G) is the Borel o-ring of G and similarly #(G x G). Then vis a bimeasure
of finite Vitali variation on 8(G) x %(G) and since this ring generates B(G x G),
v extends to a Radon measure on the latter o-ring. Morevoer, it is clear that v
concentrates on the diagonal of the product space G x G. If C,(G) denotes the
Banach space of bounded continuous scalar functions on G with uniform norm,
then

jG jG f(S, t)U(dS, dt) = jG f(S’ S)H(d5)> f € Cb(G X G) - (68)

Let F(A4, B) = (Z(A), Z(B)) so that F: B(G x G) - C is a bimeasure of finite
semivariation, from (65). Thus using the D-S and MT-integration techniques as
before,

0 <o f(5)2(ds) 13 = [&fo fOf(OFds,dr),  feCylG).  (69)

Letting f(s, t) = | f(s)- f(t) in (68), @ = v — F one has from (66)-(69),
0< fo! f(s)1? uds) — || [ f(s)Z(ds) |13

= ¢ [o F()S(0) [o(ds, dt) — F(ds, de)]
= [ fo f()fOlds, dr), [ eCy0). (70)
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So a is positive semi-definite and o« = 0 iff v = F, i.e., if F concentrates on the
diagonal. This corresponds to X being stationary itself. Excluding this trivial
case, o # 0, and (70) is strictly positive, if f = 1. It follows from (70) that
[, -] : CG) x C,G) — C defines a nontrivial semi-inner product, where

[f 91 = [a[a f(s)gt)ulds, dt),  f,g€ CyG). (71)

N ={f:[/if] =0, feCyB)},and #, = C,(G)/.AN,is the factor space,
let [,-]: 5, x #, — C be defined by

(/) (@) =[fgl, felf)eH,gelgeH,. (72)

Then [, -]is aninner product on #; and define J# , as its completionin [, -]. Let
Ty : Co(G) = H#, be the canonical projection. Thus #, is nontrivial and need
not be separable. Now let us replace #, by L3(P’) on a probability space
(', Z', P’). This can be done based on the Fubini-Jessen theorem where P’ can
even be taken to be a Gaussian measure (for the real 5, see [36], pp. 414-415).
The complex case is similar. A quick outlineis as follows: Let {h;, i € I} < #,be
a CON set. If (Q, X;, P;) 1s a probability space determined by a complex
Gaussian variable, so that one can take Q; = C, £, = Borel o-algebra of C, and
| t]?

P(4) = 2m)~! { exp <— T) dt,dt,, AeZ,(t =1t +/—1t,),
A

let (Q,%,P) = Q® (Q, Z, P, the product space given by the Fubini-Jessen
iel

theorem. If X (w) = w(i), ® € Q@ = C!, the coordinate function, then E(X,) = 0

and E(|X,?) = 1. Also {X, i€} forms a CON basis of & = sp{X,iel}

c L3(P). The correspondence .1:h; — X, extended linearly, sets up an

isomorphism of #, onto %, and

I w(h) I3 = E(X4?) = 1 = [h, h], iel.

Then by polarization one has [h;, h;] = E(r(h,.)r(—hj—)), so that 1 is an isometric
isomorphism of #, onto ¥ < I(P’), as desired.

If 1t = tomg: f - 1(ne(f)) € # = LYP), f e CyG), is the composite
(canonical) mapping, let X,(t) = (e - )) € # wheree,: s — (t, 5),is a character
of Gatt € G. Note thate, = 1¢ A", so ny(1)can be identified with the constant
1 € C,(G). Thus

X,(0) = (1), E(e()P) = 1.

Let #" = QB{X (), te G} = #'. Then there exists a probability space
(Q", =", P"), as above, such that #” < I?(P"). Finallyset #° = # & #”,in the
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direct sum of Hilbert spaces L3(P) and L§P"). If @, £, 13~)
= (Q, %, P)® (Q", X', P") then one can identify, in a natural way, A~ < L3(P).
Define Y(t) = X(t) + X,(), t € G, so that (X(1), X,(t)) = 0 since #" L A" in
A Then {Y(1),te G} ¢ A < LiP),andif Q: A4 > H# = (A# @ {0}} is the
orthogonal projection, one has X(t) = QY(), te G. It remains to show that
Y : G —» L3(P) is stationary. By construction Y(0) = X(0) + X ,(0) and this is
X(0) only when X,(0) = 0 which can happen iff #" = {0}, i.e, when no
enlargement is needed.
To verify stationarity, consider

Hs, 1) = (Y(s), Y(8) = (X(s), X)) + (X1(s), X1(t)) since X L X,

= o fo (s ) (& M)F(@L, dV) + [5 fo (5, ) (1, M)aldh, dN),
by (69) and (72) and these are MT-integrals,

= &[5 (s, ) (&, M)o(dh, dX), since o = v — F

= {5 (5, M) (&, Mu(d]), by (68),
= jG (s—t, Mu(dr), by the composition of characters. (73)

Since p is a finite positive measure, (73) implies
rs+h t+h) = r(s, 1) = fls—1),

and so the Y :G — L2(P) is stationary. The construction also implies that
—sg{ Y(t), t € G} = A in the case that # = Q{X (t), t € G}. This completes the
proof.

The following is a useful deduction:

COROLLARY 6.2. Every vector measure v :2%B(G) — # where G is an
LCA group, %(G) being its Borel algebra, and 3 is a Hilbert space, has an
orthogonally scattered dilation.

Proof. Since G = G consider the mapping X : G — # defined as the D-S
integral X(g) = [ <g, L) v(dA). Then X is V-bounded; so it is weakly
harmonizable. By the above theorem there are an extension Hilbert space 4
> A, an orthogonal projection Q : A — X', with range /#, and a stationary
field Y: G —» 2 such that X(§) = QY(g). Let Z be the stochastic measure
representing Y, (cf. Theorem 3.3). Hence for each h € # one has (Z : B(G) » %)

fo @ M) (vdL), h) = (X(@), h) = (QY(@), h) = [ (@ M) (Q > Z(d), h).

These are now scalar (Lebesgue-Stieltjes) integrals. By the classical uniqueness
theorem of Fourier analysis for such integrals, one has
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(V(4) — Q o Z(A), h) = o,Ae@(G),heyf.

Hencev = Q o Z. Since Z is orthogonally scattered by virtue of the fact that Y is
. stationary, the result follows.

With the last theorem, a more perspicuous version of the dilation problem for

a weakly harmonizable random field can be given. This, however, depends also "

on an interesting theorem of Sz.-Nagy [41] and will be presented. Recall from the
classical theory of stationary processes ([6], p. 512 and p. 638) every such process
{Y, te R} < L3(P),can be expressed as Y, = U,Y,, where {U,, t € R} is a group
of unitary operators acting on L3(P) (first on EE{ Y,, t € R} and then, for instance,
define each U, as an identity on the orthogonal complement of this subspace).
The spectral theory of U, then yields immediately the corresponding integral
representation of Y;’s. The same result holds if R is replaced by an LCA group G.
The corresponding operator representation for harmonizable processes (or
fields) is not so simple. Its solution will be presented in the following theorem.
Recall thatafamily T : G — B(¥), 4 a Hilbert space, is of positive type if T(—g)
= T(g)* (adjoint operator) and for each finite set {x, , ..., x, } of Z indexed by J
= {8y, S, -, Sy} = G, one has

i i (T(s; *s)xs X,) = 0. (74)
i=1 j=1
THEOREM 6.3. Let G be an ICA group and X :G — L3P) = %, a
Hilbert space, be weakly harmonizable. Then there exists a super Hilbert space
A = L¥P) > & on an enlarged probability space (&, £, P), a random
variable Y, e A a weakly continuous family {T(g), g € G} of contractive
linear operators from A~ to & with T(0) astheidentityon & (0 being the
neutral element of G ), such that, when its domain is restricted to %, it is of
positive type, in terms of which X(g) = T(g9)Y,, g € G. Conversely every weakly
continuous contractive family {T(g), g € G} of the above type from any super
Hilbert space A" 2 & into & which, whenrestrictedto Z is of positive type,
defines a weakly harmonizable process X :G — %, by the equation X(g)
= T(@)Y, forany Y,eXZ, T(0) being identity on Z.
| Proof. The direct part is an operator-theoretic reformulation of Theorem
6.1. Briefly, let X : G — L3(P) = % be weakly harmonizable. Then there exist a
A = LYP) o & and a stationary Y: G — X such that X(g) = QY(g9),g € G,
by Theorem 6.1 with Q as the orthogonal projection on %4 and range Z. But
" Y(g) = U(g)Y(0) where {U(g),g e G} is a (strongly) continuous group of
unitary operators on J . Let T(g) = QU(g),ge G. It is asserted that
{T(g), g € G} is the desired family.
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Indeed, T(0) = Q (= identity on %), and || T(g) | < I @ I I Ulg) | <
The continuity of U(g) on G clearly implies the weak continuity of T(g)’s.
verify the positive definiteness on &, let h,, ..., b, be a finite setin 2. Then lettmg
T(g) = T(g) |, one has T(—g) = (T(g))* since
(T(—g)hs,, h,) = (QU(—g)hy,, hs) = (UX(g)hs,, Qhs,)
= (h,, U(g)hs,), since Qh,, = hy, and U**(g) = U(g),
(QhS1’ U ) = (hsp QU(g) Sz)
= (hs,, T(g)hs,) = (T(g)*hs,, h,), by, € X, 0 = 1,2. (75)

Similarly,

 (QU(=s)Ulshs, )

I
e
IM:

z Z (T(sjflsi)hsp th) -
i=1j=1

- z i( (5)*Us)h, h)
= Y, Ulsdhy, > > 0. (76

The converse depends explicitly on an important theorem of Sz.-Nagy ([41],
Thm. II1; this is an extension of a classical result of Naimark). According to this
resultif T(+) = T(+) |-» then there is a super Hilbert space 4", > 2 (o4, may be
quite different from ) and a weakly (hence strongly) continuous group
{V(g), g € G} of unitary operators on ¢, such that T(g) = Q,V(g) |, Q; being
the orthogonal projection of 2", onto Z. Here 2", can be chosen as X%,

= 55{ V@)%, g e G}. If x, € Z is arbitrary, then xo € #°; n X', and
T(g)xo = T(@xo = Q:1V(g)xo = X(9),  (say), geG.

But {Y(g9) = V(g)xs g € G} = A, is a stationary process so that by the first
paragraph of the proof of Theorem 6.1, {X(g), g€ G} =« ¥ is weakly

harmonizable. Thus for each x, € &, {T(g)xo, g € G} is weakly harmonizable,
and this completes the proof.

Remark. In the converse direction one can take ¥ = & However in the
forward direction, it is not always possible to take Y, in Z, so that X(0) = Y,, as
the example following Definition 2.1 shows. Thus there is an inherent asymmetry
in the statement of this theorem, and the mention of the super Hilbert space 4" in
the enunciation cannot be avoided. It should also be noted that the above quoted
theorem of Sz.-Nagy [41] can be deduced also from Naimark’s theorem and
Theorem 6.1. See [38] for a further discussion on this point.
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7. (CHARACTERIZATIONS OF WEAK HARMONIZABILITY

In this section a different type of characterization, based on the V-
boundedness concept crucially, of weak harmonizability as well as a
comprehensive statement embodying all the other equivalences of this concept
are given. The comparison will illuminate the structure of this general class of
processes. However, it is interesting and useful to obtain a characterization of V-
boundedness for a general Banach space, and then specialize the result for the
harmonizable case.

In this context let us say that X : G — %, a Banach space, is a generalized (or
vector ) Fourier transform if G is an LCA group, and if there is a vector measure
v:%B(G) » & such that X(g) = f& <g, s> v(ds), g € G. In [33], Phillips has
extended the fundamental scalar result of Bochner’s V-boundedness to certain
Banach spaces with G = R. Later but apparently independently, the LCA group
case was given by Kluvanek in ([21], p. 269). In the present terminology this can
be stated as follows:

ProposiTION 7.1. Let G bean LCAgroupand % a Banach space. Thena
mapping X : G —» & is a generalized Fourier transform of a regular vector
measure v:B(G) > X (ie., for givene >0 and E e B(G), there exist an
openset O andacompactset C with O > E > C suchthatforeach F < O
— C,Fe®B(G) one has | v(F)| <e¢) iff X is weakly continuous and V-
bounded (in the sense of Definition 4.1 ). ’

On the other hand, when & = C, a different kind of characterization was
given by Helson [12]. A vector extension of this is used for the weak
harmonizability problem, and will be presented here. Let I¥(G) be the Lebesgue
space, k > 1, on G relative to a Haar measure, denoted dg. Similarly I¥G) is
defined on the dual group G, and L%(G) for &-valued function space. Let

LVG) = {f: /() = [6 <t.s) f(s)ds, [ e LY G} = Co(G),

a similar definition for L}{G), the integrals in the latter being in the sense of
Bochner, and .Z, (G) (> L}G)), 4, (G) being the space of vector measures on G
into & with semivariation norm.

The following result contains the desired extension:

THEOREM 7.2. Let G bean LCA group, ¥ areflexive separable Banach
space,and X : G - X bebounded. Then X isa generalized Fourier transform
of a vector measure v on G into & iffforeach pe IXG) themapping Y,
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='(Xp):G > % isin My (G), ie,iff Y, isthe Fourier transform of a vector
measure on G into Z.

Proof. Suppose X is a generalized Fourier transform of v on G to Z, so that

X(g) = Je<g,s)vds), g€G. (77)

By hypothesis p € [1(G) so that p = f for a unique f € L!(G). Hence X(g)p(g) is
well defined, and if | € Z*, then by the scalar theory one has
(X(9) - plg) = P@IX(9) = [ <9 > f(s)ds [ {g, t> > v(dH)

= [g <g, ) (lovx f)ds, since (lovx f)" = (lov) - f the “s+” denoting
convolution,

= [ <9, ) ki(s)ds , (78)

where k;, = o v * f e I}(G) by the classical theory (cf. [24], p. 122 and p. 142).
Also ki (s): Z* — C is additive, and

L) e < TSIl v -0

as| — 0in Z*. Hence k(s) » Oasl — Ofora- a- (s), so that k(s) = k(s) () for a
k(s) e Z** = & by reflexivity, and for a - a - (s). Thus k() is Pettis integrable on
G, and the mapping Z,(‘): A |, k(s)ds, defines a o-additive bounded set
function into %, a vector measure, by known results in Abstract Analysis.
Consequently,

(X(9)) - p(g) = [5<g, s> 1> Z,ds)

= l([& <9, s Z(ds)), le *. (79)
Since Z, 1s a vector measure, | Z, || (G) < o, and | € &* is arbitrary, one has
Y(9) = X-p)©@) = [6<9,5> Zds)e%, geG, (80)

to be well-defined. Also

1Y@, = 1p@ 1 X@) |, <1 f1:1X@)1,

sothat|| Y, |, < || f I, | X ||, < coand by (80) Y, is the Fourier transform of
the vector measure Z, on G into Z. Hence Y, € .# ,(G). This proves the direct
part. The converse implication is more involved. '

Thus, for the converse, let Xp = Y, € M r (G) for each p € I}(G). Since & is
reflexive, by Proposition 7.1, it is enough to establish that the (weakly

continuous) X is V-bounded (cf. Definition 4.1). This is accomplished in two
stages.
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Let us first define an operator t: I}(G) —» LYG) by the equation

f)) =pX=Y, p=7f, felXG). (81)

Then (tf) e .4y (G) by hypothesis for each f e IXG). Clearly t is linear. It is also
bounded. To see this, let us show that it is closed so that the desired assertion
follows by the closed graph theorem. So let f,, f € I}(G), f, —» f innorm, and A,
= 1f, - hin Jy(G). Then (cf. [21], p. 268)

W o= T <l fi=fli—>0and [[h, —h|,<|h,—h]| -0,
as n — oo. But then
hn = (tf) =X -f,-» hand f, > f uniformly.
| XF =R IS < I XH=D G+ 1| X = hlls)
SNXO I fo—=F16) + Ihy— Rl () >0, as n> 0,5€6.
Hence Xf = h = (1f)", and ©f = h (by uniqueness). So 7 is closed.
Next let us verify the key property of V-boundedness for X. Since Y, is

continuous for each p e [X(G), it follows that X is weakly continuous. Let
h € I}(G). Consider the operator T : ING) —» Z defined by

T = T(h) = [ X(g)h(g)dg, | A, < 1. (82)

Since the correspondence h «» A is 1 — 1, T is well defined on [}(G), and it is to be
shown that T : [}(G) —» & is bounded when the former is endowed with the
uniform norm. [Note: h below is different from h above!]

Let h € I}(G) be arbitrarily fixed and {e,, o € I} = I}(G) be an approximate
unit (cf. [24], p. 124) so that | e, ||, = 1, ¢, > 0 and || (e,—eg) * A ||; —» O as
o B ~ “0”. Now (te,) = X-é, (= X,, say). The hypothesis implies
X, € -/Z@(G), ael, and

| (Xo—Xph [ (8) = | e,—ep) Il () < | (e,—ep) * ) I,
<t (ea—ep) ¥h ], = 0,  teG, (83)

since T was shown to be bounded. Thus X, — X uniformly. Since % € [X(G)
= Co(G) and is uniformly dense in the latter, it follows that | X, ||, < C < oo,
and the operator T, defined below is bounded uniformly in «:

T(h) = [ X0h(dd:, heIXG). (84)
G

 But X is the uniform limit of X S so it is also bounded, and hence T of (82) is
. bounded. Moreover, for f € Cyo(G) (= Cy(G)) of compact supports,
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| T(hf) — T I, = | (5}<X—Xa) (Oh()f (t)dt ||,
< (X=X)f - {1 HO 1 dt =0,

by (83), as o .~ “00”. Hence || T(hf) |l 7= | T(hf) | ;. and
Thf) = hm f X (Oh(t) f(t)dt (= !;X(t)h(t)f(t)dt). (85)

If | € 2%, (85) implies, with h & IX(G) A Coo(G) = Coo(G),
(IT) (h) = hmf (X hwdt (= hm(l° 2 (h).
On the other hand,
= [ (X))t = [ (I((te,) )h) (t)dt
= [ h(t) - [Jo <g, t) (ve,) (9)dg)dt
= [& [ h(t) <g, t) l(te,) (g)dtdg, by Fubini’s theorem,

— [5 l(te,) (9)h(g)dg, by Fubini again.

Thus for all h e Cy(g) = L}G),

[ECT)M < I hlulllve) e < TR - TEHTTH-ealy- (86)
Taking suprema on || [ || < 1, and noting that | e, |; = 1, (86) implies
Tl <Thllth. (87)

Thus (85) and (87) yield that | T(h) | < ¢ ||k |, with ¢ = || T || < oo. Since
Coo(G)is dense in I}(G), the same holds for all h € I}(G). So X is V-bounded. Since
Z 1is reflexive, Proposition 7.1 now applies and yields (77) for a unique vector
measure v on G into Z. This completes the proof.

Remark. The necessity proof also holds (and thus the theorem) if [}(G) is
replaced by

M(G) = {f:{i(t) = [5<g, t> Wdg), pe #(G), t e G},

where #(G) is the space of regular signed Borel measures on G. In fact let
Y, = [iX, where p = [1 (is a function), so that for [ € Z*,

(Y1) = [ <9, t) ndg) - [5 <s, £y 10 Z(ds) = (I-2) (1
= (o2)” () = [ <g £> (1*Z) (dg)),
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using the convolution products appropriately (cf., e.g. [21]). Hence uxZ is a
vector measure on G and

[ wZ | (G < RIGZ1(6) < .

Thus Y, is a Fourier transform of pxZ. Identifying ING) o M(G) as
fi: A |, f(0)de, the sufficiency proof of theorem and the above lines show that
I}(G) can be replaced by.Z (G) every where in that result. .

Taking 2 = LiP) so that V-boundedness is the same as weak
harmonizability, the above theorem together with Theorems 3.3, 6.3, yield the
following two summary statements on characterizations of weakly
harmonizable random fields.

THEOREM 7.3. Let G be an LCA group, X = Li(P) be separable and
X :G - & be aweakly continuous mapping. Then the following statements are
equivalent :

(1) X is weakly harmonizable.
(1) X is V-bounded.
(iii) X is the Fourier transform of a regular vector measure on G into %.

(iv) for each pe ING), the process Y, = Xp:G — L§P) is weakly
harmonizable and bounded.

Furthermore, the following implies (1)-(1v):

(v) if # = E{X(g),ge G} = %, then there exists a weakly continuous
contractive positive type family of operators {T(g),g € G} = B(s#) such
that T(0) = identity, and X(g) = T(g9)X(0), g € G.

In order to present a similar description of the dilation results, these
individual statements should be couched in terms of classes. Let us therefore
define various classes with = L3(P), separable.

v = the set of weakly continuous V-bounded random fields on G.

# = the set of weakly harmonizable random fields on G.

F = the class of all random fields which are Fourier transforms of regular
vector measures on G — 4.

M = themodule over [}(G) of all functions on G — & which belong to ./, (G),

ie, M = {X:G - X|X ING) < My (G)).

# = the class of all random fields on G — % which are projections of
stationary fields on G — £, where 4" o % is some extension (or super)
Hilbert space of .
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Then the following result obtains:

THEOREM 7.4. With the above notation, one has ¥ = M = P =V
=W

These two theorems embody essentially all the known as well as new results
on the structure of weakly harmonizable processes or fields. Some applications
and extensions will be indicated in the rest of the paper.

8. ASSOCIATED SPECTRA AND CONSEQUENCES

For a large class of nonstationary processes, including the (strongly)
harmonizable ones, it is possible to associate a (nonnegative) spectral measure
and study some of the key properties of the process through it. One such
reasonably large class, isolated by Kampé de Fériet and Frankiel ([15]-[17]),
called class (KF)in [35], is the desired family. This was also considered under the
name “asymptotic stationarity” by E. Parzen [32] (cf. also [14] with the same
name for a subclass), and by Rozanov ([40], p. 283) without a name. All these
authors, motivated by applications, arrived at the concept independently. But it
is Kampé de Fériet and Frankiel who emphasized the importance of this class
and made a deep study. This was further analyzed in [35].

If X : R — L}(P)is a process with covariance k(s, t) = E(X (s)f(t)), then it is
said to be of class (KF), after its authors [15]-[17], provided the following limit
exists for all he R:

1 T—Inl .

r(h) = lim — | k(s, s+|hl)ds = lim ry(h). (88)
T—-w 0 T—- o
It is easy to see that (- ), hence r(-), is a positive definite function when X(-)is a
measurable process. If X(-) is continuous in mean square, the latter is implied. It
is clear that stationary processes are in class (KF). By the classical theorem of
Bochner (or its modified form by F. Riesz) there is a unique bounded increasing
function F: R — R™ such that

rh) = [ge™ Fdt), a-a-(h)-(Leb). (89)

This F is termed the associated spectral function of the process X. Every strongly
harmonizable process is of class (KF). This is not obvious, but was shown in
([40], p. 283), and in [35] as a consequence of the membership of a more general
class called almost (strongly) harmonizable. The latter is not necessarily V-
bounded and so the weakly harmonizable class is not included. (Almost
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harmonizable need not imply weakly harmonizable.) Since the bimeasure of (30)
is not necessarily of bounded variation, the elementary proof of [40] given for the
strongly harmonizable process does not extend. Perhaps for this reason,
Rozanov (cf. [40], footnote on p.283) felt that the weakly harmonizable
processes may not be in class (KF). However, a positive solution can be obtained
as follows: |

THEOREM 8.1. Let X :R — L}P) be weakly harmonizable. Then
X eclass (KF), so that it has a well defined associated spectral function.

Proof: Since X is weakly harmonizable,

X(t) = [€%Z(dr), teR,

for a stochastic measure Z on R into L(P), and if

then F: # x # — C is a bounded bimeasure. Considering (88) for h > 0 (the
case h < 0 being similar), one has with k(s, 1) = E(X(s)X(t))

T—h 1
rolh) = — -T_hj k(s, s+ h)ds .

0]

To show that lim rr(h) exists it suffices to consider

T— o

F T
1J\ks s+h)ds = %jE(X(s)-X(s%—h))ds
0 0
_ E(lT J ds Jeis* Z(d)) f g~ s+ Z(dl’)) (90)
0 R R

and show that the right side hasalimitas T — o0.Let % = % = L3(P),and &
= I}P). Since Z: B - X, Z = Z: % — % are stochastic measures, one can ‘
define a product measure on R x R into &, using the bilinear mapping (x, y)
— xy, of & x ¥ — %, as the pointwise product which is continuous in their |
respective norm topologies. Under these conditions and identifications, the |
product measure Z ® Z : B x B — % is defined and satisfies (D-S integrals):
[ f(s,0) (ZQZ) (s, dt) = lle(ds) lj; f(s, )Z(dt)

RxR

— £ Z(dt) .j‘ f(s, H)Z(ds) , 91)
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for all f e C,(R xR), by ([5], p. 388). In most of the work on product vector
measures, Dinculeanu assumes that they are “dominated”. However, as shown in
a separate Remark (cf. [5], p. 388; cf. also [ 7], Cor. 3), such a product measure as
in (91) is well defined even though it need not be “dominated”. It has finite
semivariation: indeed,

1 Z®Z|RXxR) < | ZII®R)|ZIIR) = (I Z]|®R) < o,
so that Z @ Z is again a stochastic measure. Letting
folA X)) = et g7 isHmA
so fs. n € Cy(RxR), (91) becomes:
i et Z(d)) ljt e THSTIM Z(d\)

= [ OV Z @ Z(d), d)), (92)

RXxR

the right side being an element of I}(P). Applying the same calculation to the
measures Z @ Z: AR xR) - Z and p:%([0, T]) > R* (u is Lebesgue
measure), with (x, a) - ax being the mapping of & x R — %, one can define

HQ(ZQR2Z2): B0, T) x BARxR) » &
and, with A for the pair (A, 1),

O ey

W) [ f6))Z @ Z(h) = | Z® Z(d))

R xR RxR

Oty

it 2 )udo) . (93)

Writing p(dt) as dt, (90)-(93) yield:

T
1 : N
E(}J'ds J‘ els(k—k)—lhk A ® Z(d)\, d?\‘/)>
. .

R xR

T
.
- E( e” M Z @ Z(d), d\) lT f eist-=) ds>
R;R 0
_g | pmim [ €0 — 1x + 8 | Z ® Z(d, dV
] iT(—N) #1] xx'} ] )) (94)

RxR
But the quantity inside the expectation symbol E is bounded for all 1, and since

the dominated convergence is valid for the D-S integral ([8],1V.10.10), constants

being Z ® Z-integrable, one can pass the limit as T — oo under the expectation
as well as the D-S integral in (94). Hence

L’Enseignement mathém., t. XXVIII, fasc. 3-4. bk!
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1 .
lim — J-’ k(s, s+ h)ds = E<J e ™ 8. Z & Z(d\, d?»'))
0 RxR

T—wo
r
= e—ihl’ 8}')" E(Z ® Z(d?\-, d}\‘,))
JRXR

f‘ .
- e~ F(d), dV),

JI=2]

where F is the bimeasure of Z. Hence lim rp(h) = r(h) exists and r(h)

T

= [ge ™ G(d)), where G: A+— [ 8,,, F(d\, d\), A € 4, is a positive finite
n” 1(4)

measure which therefore is the associated spectral measure of X e class (KF).
(Here n : R? — R is the coordinate projection.) This completes the proof.

The above result implies that several other considerations of [40] hold for
weakly harmonizable processes. ‘

As another application of the present work, especially as a consequence of
Theorem 6.1, the following precise version of a result stated in ([40], Thm. 3.2)

will be deduced from the corresponding classical stationary case.

THEOREM 8.2. Let X :R — L3(P) be a weakly harmonizable process with
Z: B — LiP) asitsrepresenting stochastic measure. Then for any —oo < A,
< A, < o0, writing Z(\) for Z((—oo,))), one has

T
—ith2 __ itk
l'i*m Je _e X(t)dt
T— o —1u
-T .
_ Z0a+) + Z05-)  Z0a+) + Z04) .
2 2

where 1-i-m is the I*(P)-limit. Further the covariance bimeasure F of Z
can be obtained for intervals A = (A, Ay), B = (A}, A;) as:

T T,

e—ilzs _ e—ills
Iim -
0<T;, T2~ @ —1s
—T1 —T>
eix'zt _ e—ix'lt
: r(s, t)ydsdt = F(A, B), (96)

it
provided A, B are continuity intervals of F in the sense that

F((— o0, A; %), (— 0, Nj£)) = F((—o0, X)), (—0, X)), j = 1,2,

A
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and where r(-,") is the covariance function of the X-process. In particular, if the
T

1 ;
mapping S:R — C s continuous, ?J‘ S(t)dt — ao existsas T — oo, and
0
lim #(s,t) = O, thenfor the observed process Y(t) = S(t) + X(t), so that

Is| +]t] >0
S(+) isthenonstochastic “signal” and X(') isthe weakly harmonizable “noise”,

the estimator
T
i 1 [ ~
Sy = = Y(t)dt - a,
0

in LYP) (ie, E(Sy—ay’)—0) as T —oo. Thus S; is a consistent
estimator of a,, and in other terms, both X - and Y-processes obey the law of large
numbers.

Proof: The key idea of the proof is to reduce the result to the classical
stationary case through an application of the dilation theorem. Thus by
Theorem 6.1, there exists a probability space (&, £, P), with L3(P) > L(P),and a
stationary process Y : R — L2(P) such that X(t) = QY(t), t € R where Q is the
orthogonal projection on L3(P) with range L3(P). There is an orthogonally
scattered stochastic measure Z : # — L3(P) such that

Y(t) = [ge™ Z(d)), teR, (97)

and Z(A) = QZ(A), A B, with Z:HB — L3(P) representing the given X-
process. Since Q is bounded, as is well-known, it commutes with the integral as
well as the 1-1-m. Thus (95) is true for the Y-process with Z in place of Z there (cf.,
e.g2., [6], p. 527). Then the result follows on applying Q to both sides and
interchanging thel-1-m as well as the integral with Q, which is legitimate. Hence
(95) 1s true as stated. |

Next consider the left hand side (LHS) of (96). With (95) it can be expressed
as:

. 1 2 [prisha _ p=ish e—m’z _,e—m; -
LHS = 1lm E J7 r [ : X(s)]- [ , X(t) | dsdt
Ty, T2— o -T1 J -T2 —1S —1
™ L ,—isha _ ,—ishy Ty ,—ith, _ ,—ith] -
— lim E <JT ¢ € X(s)ds) ( f ¢ ¢ X(t)) dt]
Ty, T2 | - T, —18 -T, — 1t
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. 2
.(Z(Xfr) + Z0,—)  Z0a+) + z(xl_)>—]
2 2

— F(A4, B),

by the continuity hypothesis on F, after expanding and taking expectations. This
proves (96).
Finally, if Y(1) = St) + X(¢), t e R, let

ar = ESp) = lT f S(t)dt .

Noting that Y eclass (KF) since X does (cf. Thm. 8.1), and a; — a,, by
hypothesis, as T — o, |

. 2 '
E(IST_aOI2) = }—2—’ JT f r(S, t)det + 2 | dr — dg |2
0JO
1

=57 | rrdh+ 2] ar = ol 98)
where, as usual, r4(-) is given by (88). Since rp(h) — r(h) due to the fact that
f’. € class (KF), and since r(s, s+ h) — Oas| s| = oo by hypothesis together with
the fact that

| r(s, t] < (r(s, s)r(t, 0))? < M? < o

where | X(t) | < M < oo (X being V-bounded), one can invoke a classical result
on Cesaro summability (cf., [8], IV.13.83(a)). By this result r(h) = 0 for each
h € R. Actually r(h) — r(h) (=0), uniformly in h on compact sets of R. It follows
that E(|S;—aol|*) — 0, and this completes the proof of the theorem.

Remark. The key reduction for (95), which is used in (96), is possible in the
above proof since the linear operation of Q on the process mattered. However,
for Theorem 8.1, the dilation result itself is not immediately applicable since the
problem there is nonlinear, and one had to use alternate arguments as was done
there. Also since Fubini’s theorem is not available for the M T-integral (cf. [27],
§8), a special computation has to be used for this special case. Thus the point of
the general theory here is to clarify the structure of these processes, and a
reduction to the stationary case is not always possible.
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9. MULTIVARIATE EXTENSION AND RELATED PROBLEMS

Here a multidimensional extension of weakly harmonizable processes and
the filtering problem on them will be briefly discussed. Even though some results
have direct k-dimensional analogs (k>2), there are some new and non-trivial
problems in this case for a successful application of the theory. The infinite
dimensional case will not be considered here since the key finite dimensional
problems are not well-understood and resolved.

Let L§(P, CH (= L, =, P; C*) be the space of equivalence classes of
measurable functions f:Q — C¥ the complex k-space, such that (i) | f |?

k
= > | fi|?is P-integrable, and (i) E(f) = (o f(0)P(d®) = 0, or equivalently,
i=1

— jg ®)P(dw) = 0, i=1,..,k,

where f = (f}, .., fo), | f ] is the Euclidean norm of f in C* and (, X, P) is a
probability space. If f,ge LP, C*), define | f |2 = (f, f) where the inner
product is given by

(f,9) = o (f(®), g(@)P(do) = :/:1 Ja fl®)g(@)P(dw).

Then & = L{(P, C*) becomes a Hilbert space of k-vectors with zero means. If k
= 1, one has the space considered in the preceding sections (# = L3(P, C)).

Definition 9.1. Let G be an LCA group. Then a mapping X : G — & is a
weakly or strongly harmonizable vector (or k-dimensional) random field (or
process) if for each a = (ay, ..., ;) € C¥, the mapping

k
Y, = ( ; G - K

is a (scalar) weakly or strongly harmonizable random field (or process).
Similarly a vector stationary, Karhunen, or class (C), processes are defined by
reducing to the scalar cases.
It is immediate from this definition that the component processes are also
harmonizably or stationarily etc. correlated according to the class they belong.
Thus if r, is the covariance function of the Y,-process and R is the covariance

matrix of the X-process, so that ryg, h) = E(Y, (g)?(h)) and R(g, h)
= E(X'(9)X X(h)) where X(g) is a k-th order (row) vector and “t” denotes the
usual transpose of a vector or matrix, then rJdg. h) = aR(g, h)a’. With this
notation, the integral representations of multivariate weakly and strongly




344 M. M. RAO

harmonizable random fields can be obtained, using Theorem 3.3, in a
straightforward manner.

THEOREM 9.2. Let G bean ICAgroupand X :G —» X = LYP,CY, a
weakly continuous bounded mapping. Then X is weakly harmonizable iff there is
a stochasticmeasure Z onG —» & (orif Z(A) = (Z(A), ... Z(A)), A < G is
a Borel set, then each Z; is a stochastic measure on G - Jf,j = 1, .., k), such
that

X(g) = [a<9,5> Zds), ge€G, (99)
where G is the dual group of G. The mapping X is strongly harmonizable if
further the matrix F = (F;,j,1=1,..,k) with

F(A’ B) = ((ZJ(A)a ZI(B))’ j’ I = 1’ 3 k)

is of bounded variationon G, orequivalently each F; isofbounded variationon
G. The covariance matrix R is representable as:

R(g, h) = (¢ 5 <g,s) <h,t) Fds,dt), g, heG, (100)

where the right side is the M T-integral, or the Lebesgue-Stieltjes integral, defined

componentwise, accordingly as X is weakly or strongly harmonizable, and where

F is a positive definite matrix of bounded bimeasures or of Lebesgue-Stieltjes

measures. Conversely, if R(-, ‘) 1is a positive definite matrix representable as

(100), then it is the covariance matrix of a multivariate harmonizable random field.
Sketch of proof : Let a € C* be arbitrarily fixed and consider

Y, = a- X(= aX").

If X is weakly harmonizable, so that Y, is also, then by Theorem 3.3 (trivially
extended when R is replaced by G), there is a stochastic measure Z, on G — #
such that

Y;z(g) = _[G <g> S> Za(ds)7 ge G.

From this and the definition of Y,, it follows that Z ,(4) : C* — # is linear and
continuous. Hence thereisa Zon G — Z** (= Z, by reflexivity) such that Z (A)
= a- Z(A), and it is evident that Z is c-additive on #(G) » & so that it is a
stochastic measure. It follows from the properties of the D-S integral that:

Y(9) = a- X(9) = [a<g, s> a-Z(ds) = a- [z <g,s> Z(ds),  (101)

(1344

where the last integral defines an element of . This implies (99) since “a” is
arbitrary and X(-) as well as the integral operator are continuous. The converse
is similarly deduced from the corresponding part of Theorem 3.3.
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If X is strongly harmonizable, then so is Y, and if F, is its covariance
bimeasure, then F, = aFa' where

F(A, B) = ((Z{A), Z(B)),j» | = 1,2,.., k).

Now taking special values for a in C¥ it follows immediately that each
component F; of F is of bounded variation. Interpreting (100) componentwise,
the result follows from the scalar case. The same representation holds with the
MT-integration for the weakly harmonizable case. All other statements,
including the converses, are similarly deduced. This terminates the sketch.

By an analogous reasoning, it is evidently possible to assert that there is a 2-
majorant of Z, and the X-process has a (vector) stationary dilation. These results
are of real interest in the context of the important filtering problem which can be
abstractly stated following Bochner [2].

If X : G - % is a random field, a (not necessarily bounded) linear operator
A:Z — Ziscalled a filter of X, if A commutes with the translation operator on
X, 1e, if (t,X) (g9) = X(hg), then 1,(AX) = A(1,X), where the domain

dom (A) o {1,X(9),9€ G, he G}.
The problem is to find solutions X of the equation:
AX = Y(e%Z), (102)

such thatif Y is a given weakly or strongly harmonizable random field so must X
be.

For the stationary case, a general concept of filter was discussed by Hannan
[11].Ifk = 1, A = ) aA, is a reverse shift operator with G = R (so A,X(t)
i=1

= X(¢t—1)) and Y is stationary, then this problem was completely solved by
Nagabhushanam [28], and by Kelsh [19] in the strongly harmonizable case. In
both these studies, the conditions are on the measure function F of (33). If k > 2,
under the usual assumptions on the random fields, the following new questions
arise with (99) and (100). Frequently employed general forms of A include the
constant coefficient difference, differential, or integral operators, or a mixture of

m

these. For instance, if A = Z A J-Dj, where the A; are k-by-k constant matrices,
j

and D/ = ¥k (G = R)then(102) takes the following form in order that it admit

a (weakly) harmonizable solution for a harmonizable Y where X9 denotes the
mean-square j-th derivative (assumed to exist):
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fre™ Z @d\) = Y(1) = (AX) (1) Z A; X (k—j)
= 3 A, [g €AY Z,(dD)
j=0
= jR T(\) - €™ Z (d)), (103)

where T(A) = Z A; e”YMiLy, called the generator of A in [2], and Z,, Z, are

j=0
the representing stochastic measures of X - and Y-processes. Clearly the existence
of solutions of (102) depends on the coefficients A4;’s determining the analytical
properties of the generator T(-). If the process is strongly harmonizable then
(103) implies (*-denoting conjugate transpose)

Rs, 1) = [g [g € F (dh, dV)
= [g [r € T(WF (dh, dX) (T(V)e™)*, (104)

where F, and F, are the k-by-k matrix covariance bimeasures of X- and Y-
processes. For a special class of strongly harmonizable k-vector processes,
recently Kelsh [19] found sufficient conditions on the generator T(-) for a
solution of (102) when differential operators are replaced by difference operators
so that {A : T(X) = 0} is finite. The solution here hinges on the properties of the
structure of the space:

LZ(FX) = {T:R - B(CY, || [g [ TO)F(d), dX)T*(X) | < o0} . (105)

Since the integral in (105) defines a positive (semi-) definite matrix, its trace gives
a semi-norm. The measure function F being a matrix bimeasure, several new
problems arise for an analysis of the I*(F,)-space. For the weakly harmonizable
case, an extension of the MT-integration, to include such integrals, should be
established. The resulting theory can then be utilized for the multivariate
filtering study. Even if k = 2, the problem is non-trivial, involving the rank
questions of F,. Application of the dilation results to the filtering problem has
some novel features, but it does not materially simplify the problem.

Another interesting point is to seek “weak solutions” of the filtering equation
(102) in the sense of distribution theory. This idea is introduced in [2]. f % is a
class of functions on R (e.g. the Schwartz space Cg,(R)) with a locally convex
topology, then one says that (102) has a (weak) solution iff for each f € ¥

fr fOY(0)dt = [p fOAX@W)dt = [xAS) X (D)t , (106)
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where A : 9 — ¥ is an operator, associated with A, defined by the last two
integrals above. It is an “adjoint” to A. For instance, if A is a differential operator
with T(-) as its generator, if k = 1 and X, Y are stationary, then A is given by

AN O = g Te=MNfMFdL), fe¥ (107)

where F . is the spectral measure function of the X-process. Clearly many other
possibilities are available. Thus there are a number of directions to pursue the
research on these problems, and the paper [2] has a wealth of ideas of great
interest here.

This essentially includes what is known about weakly harmonizable random
fields and processes, as far as their structure is concerned. Since the class (C) of
Cramér and its weak counterpart (cf. Definition 3.1) and the Karhunen class of
processes, defined by (31), are natural generalizations of harmonizable and
stationary classes, it is reasonable to ask whether the latter is a dilation of the
former, i.e.,, is the analog of Theorem 6.1 true for weakly class (C)? A restricted
version can be establshed by the same methods, but the parallel generalization
does not hold. (See [38] on this point.) This question will be briefly discussed
here in order to include it in the set of problems raised by the present study.

Recall that a mapping X : R — L(P) is a Karhunen process if its covariance
function r(-, -) admits a representation

(s, 1) = [ g(MgMF@)), s teR,
R

relative to a family {g(-), s € R} of measurable functions and F which defines a
locally finite positive regular (or-Radon) measure on R and g, € I?(F) (cf. also
[10], p. 241). As an immediate consequence of Theorem 3.2 (cf. Remark 2

following its proof), an integral representation for Karhunen processes can be
given.

PropoSITION 9.3. Let S be a locally compact space and X : S — L3(P)
be a process of Karhunen class relative to a locally finite positive regular (or
Radon) measure F on S and a family {g,te S} = I*(F), the space of all
scalar square integrable functions on (S, %, F). Then there is a locally bounded
regular (or Radon ) stochastic measure Z : B, — L¥P) where B, = & isthe
0-ring of bounded sets, such that (i)

E(Z(A) - Z(B)) = F(ANB), A,Be %,,
i.e.,, Z is orthogonally scattered, and (ii) one has

X(t) = [s9MNZ@dr), tes, (108)
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where the right side symbol is a D-S integral (bf. also [42], §1 ). Conversely, if
X : S > L3(P) isaprocess defined by (108) relative to an orthogonally scattered

measure Z on S and {g,teS} satisfies the above conditions, then it is a

Karhunen process with respect to the family {g,te S} and F defined by
F(AnB) = (Z(A), Z(B)).. Moreover

Hy = sp{X(0),teS} = #, = sp{Z(A), A By} = LP)

and Hy = #, iff {g.teS} isdensein IXF).

A proof of this result is essentially given in ([10], p.242) and is a
simplification of that of Theorem 3.2. Even a multidimensional version is not
difficult, which in fact is analogous to that of Theorem 9.2 above. Actually, the
version in [10] is sketched for the k-dimensional case.

It follows from the arguments of the D-S theory of integration that a bounded
linear operator T and the vector integral such as that of (108) commute even if Z
1s of locally finite semivariation on the locally compact space S. This extension of
([8], IV.10) was proved in ([42], p. 79), and shown to be easy. Thus if X : §
— L3(P) is a Karhunen process, so that it is representable as in (108) and if
T € B(L§(P)), then it follows that

TX(t) = [s g(MT  Z(d}), (109)

and it is simple to see that Z = T o Z is a stochastic measure of locally finite
semivariation, but not necessarily orthogonally scattered. Hence by Theorem
3.2, TX is weakly of class (C).

In the opposite direction, for a process {X(s), s € S} € weakly class (C), one
cannot apply the theory of Section 5 above if only {g,, t € S} = I*(F,), and no
further restrictions are imposed, where I*(F,) is the space of functions g such that
| g | is MT-integrable relative to the covariance bimeasure F, representing X (cf.
(105), with k = 1). Suppose now that F, is such that if each g, is a bounded Borel
function and M(S) is the uniformly closed algebra generated by {g,, t € S} then
M(S) = IZ(F,). Let

Ty, = X(t) = g gdMZ(dM)
and extend T linearly to M(S). Then T € B(M(S), #) when ./(S) is given the
uniform norm. This forces F, to be of finite semivariation if at least one g, has

noncompact support. Under this assumption T is a 2-absolutely summing, and
Proposition 5.6 is applicable. Hence

T < flsw  feMES) (110)
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for a finite measure p on S. (A similar result seems possible if Z is restricted so
that T € B(IX(F,), #), defined above is Hilbert-Schmidt by [22], p. 302. But it is
not a good assumption here.) Thus one can repeat the proof of Theorem 6.1
essentially verbatim and establish a dilation result. Omitting the details of this
computation one obtains the following result. (For related remarks, details and
other results, see [38].)

THEOREM 9.4. Iet S be a locally compact space and
X:S - LyP) = H
be a Karhunen process relative to a Radon measure F and a family
{g,t€S} = IXF).

If Q:# — A is any (bounded) projection, then X(t) = 0X(t),teS, isa

process in weakly class (C). On the other hand if {X(t),t€ S} is an element of

weakly class (C), and so is representable in the form (108) for some family
{91 €S} = IZ(F,) where F, is a bounded covariance bimeasure of the

process (IX(F.) is defined above), and if each g, is also bounded, then there

exists an extension Hilbert space A~ > A, a probability space (Q, Z, P) with
A = LYP), and a Karhunen process Y :S — A such that

X(t) = QY(t), tes,

where Q is the orthogonal projection on A~ with range .

This result points out clearly the need to consider the domination problem
for other Banach spaces than those covered by the results of Section 5. Indeed the
associated abstract problem of classifying Banach spaces admitting a positive p-
majorizable measure for each vector measure from a probability space into that
space is essentially open. Also the preceding theorem and related analysis
presumably extend to classy (C)-processes of Definition 3.4. This will be of
independent interest in addition to its use in a treatment of the general filtering
theory on these processes. Other problems noted in the main text of the paper are
of both methodological and applicational importance for a future study.
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