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1. INTRODUCTION

If # is a complex Hilbert space and X : R — 5 is a mapping, then the curve
{X(t), t € R} is often called a second order (or Hilbertian) stochastic process, and
if R is replaced by R”, n > 2, it is called a (Hilbertian) random field. Following
Khintchine who developed the initial theory (1934), the process (or field) is called
weakly stationary if r : (s, t) o (X (s), X(t)), termed the covariance function of the

! Work supported in part under the ONR Contract No. N00014-79-C-0754
(Modification No. PO0001). The material is presented in two talks—at the annual So. Calif.
Pro&abllatg Clggtierence on December 22, 1980, and the SCFAS meeting at Northridge, CA
on May

6 1vzlxll\sfls (1979) subject classification: Primary—60G12, 60G35, 60G60; Secondary—
Key words and Phrases : Weakly and strongly harmonizable process, V-boundedness,
stationary dilations, DS- and MT-integrals, bimeasures, filtering, classes (KF) and (C),

multidimensional processes, p-absolutely summing operators, associated spectra of
processes.
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process, is continuous and depends only on s — t, where (-, -) is the inner product
in #. Thus r(s, t) = r(s—t). But thenr: R — Cis a continuous positive definite
function and by the classical Bochner theorem (1932), r is expressible as:

f0) = [e® Fd\), teR, (1)
R

for a unique positive bounded Borel measure F on R. This F is called the spectral
measure of the process. Because of the above connection with the Fourier
transform theory, important advances have been made on the structural analysis
of such stationary processes. For instance, according to a celebrated theorem of
Crameér and Kolmogorov, each such stationary process admits an integral
representation :

X(@t) = [e*Z@r), teR, (2)

R

where Z is an #-valued “orthogonally scattered” measure on the Borel sets of R
(i.e., Z is o-additive and (Z(A), Z(B)) = F(AnB)), and the vector integral in (2) is
suitably defined. Stationary processes find important applications in such areas
as meteorology, communication and electrical engineering among others. The
well developed theory and applications are now included in many monographs
(cf. e.g. Doob [6, Ch. X-XII], Yaglom [44]), and especially for applications one
may refer to Wiener’s pioneering work [43].

While stationary processes (the qualification “weakly” will be dropped)
admit a deep and beautiful mathematical theory, there are many problems for
which stationarity is an unacceptable restriction. For instance, in econometrics
and in the signal detection problems related to the navy, among others, it is quite
desirable that the covariance function r be not so restricted as to be a function of
asingle variable. This necessitates a relaxation of stationarity and then (1) cannot
obtain. To accommodate such problems while still retaining the methods of
harmonic analysis, Loéve has introduced in the middle 1940’s the first weakening
called “harmonizability”. Thus a process { X(¢), t € R} = # is Loéve (to be called
strongly hereafter) harmonizable if its covariance is expressible as (cf. [23], p. 474)

s, t) = [ [ 2™ Fd\, d)), s teR, (3)
RR

for a unique positive definite F: R x R —» C of bounded variation (in the
classical Vitali sense) in the plane. If F of (3) concentrates on the diagonal of
R x R, (3) reduces to (1). Loéve also gave a representation of X(t) analogous
to (2), but now Z(-) will only satisfy (Z(4), Z(B)) = F(A, B). Even though r(-, -)
of (3) is bounded and uniformly continuous, one does not have an
elegant characterization of a harmonizable covariance analogous to (1). In fact
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Loéve raised this problem ([23], p. 477). A solution of it was presented in ([34],
Thm. 5), but it is not effective in the sense that the conditions are not easily
verifiable, although the characterization reduces to Bochner’s theorem in the
stationary case.

Other extensions of stationarity, of interest in applications, soon appeared.
In 1947, Karhunen introduced a class of processes whose covariance r can be
expressed as:

s, t) = f g(s, M)g(t, M)F(dA) , s,teR, 4)

where {g(t, "), t € R} is a family of Borel functions in I*(R, F(d})), with F as a
bounded (or o-finite) Borel measure on R. If g(t, A) = €™, then for bounded F (4)
reduces to (1). In 1951, Cramér has introduced in [3] a further generalization, to
be called class (C) here, which contains both (3) and (4), by requiring only that r
be representable as:

(s, 1) = [ [ gls, Mgit, \)F(d\, dV), s, teR, (5)

for a family {g(t, -), t € R} of Borel functions and a positive definite F of finite
local (i.e., on each relatlvely compact rectangle) Vitali variation in R?, such that
(5) holds. The corresponding stochastic integral representation of X(t),
generalizing (2), was also given. Both (4) and (5) have only a superficial contact
with the methods of Fourier analysis. However, a very general concept which
fully utilizes the advantages of Fourier analysis and which contains the Loéve
harmonizability was introduced by Bochner in 1953 under the name V-
boundedness [2]. It turns out that (cf. Thm. 4.2 below) a second order process is
V-bounded iff (= if and only if) it is the Fourier transform of a general vector
measure on R into a Banach space Z. Independently of the work of [2], Rozanov
[40], in 1959, considered a generalized concept again under the name
“harmonizable”, but which is different from Loéve’s definition. It will be called
weakly harmonizable here. It turns out that, in this case, the covariance function r
of the process is formally expressible in the form (3) relative to a positive definite
F which 1s merely of Fréchet variation finite. The integral in (3) then cannot be
defined in the Lebesgue sense, and a weaker Morse-Transue integral [26]
appears in this work.

Even though each of these generalizations is inspired by the stationarity
notion of Khintchine, each is different from one another, and their interrelations
have not been fully established before. One of the main purposes of this paper is
to present a detailed and unified structural analysis of these processes and
obtain their characterization. This exposition utilizes some elementary aspects of
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vector measure theory which obviates a separate definition of the “stochastic
integral” for each representation of the process under consideration in the form
(2). From this analysis one finds that Loeve’s definition is more restrictive than
Rozanov’s and that Bochner’s concept is mathematically the most elegant and
general. Further in the Hilbert space context, it is shown that Bochner’s and
Rozanov’s concepts coincide. It was already noted in [2] that Loéve’s definition
1s subsumed by V-boundedness. An interesting geometrical feature is that the
Bochner class of second order processes is always a projection of a stationary
family in a Hilbert space. Bochner’s concept, as indicated above, is based on
Fourier vector integration, and this abstract point of view yields different
characterizations, one of which extends a scalar result of Helson [12] on
characterizing Fourier transforms of signed measures, to separable reflexive
Banach spaces. A further relation is that a process of the Bochner-Rozanov class
in Hilbert space is a strong limit of a sequence of Loeve harmonizable processes,
uniformly on compact subsets of the line R.

A first comparative study of the Bochner and Loeve classes in Hilbert space
was given by Niemi in his thesis [29]. Then in [30] and [31] he essentially
established that the V-boundedness in Hilbert space is the projection of a
stationary family, extending a special case by Abreu [1]. The latter point was
clarified and the same result was reestablished by a slightly different method in
[25]. A further extension of the last work was announced in [39]. A key
domination inequality, on which the projection results depend, is based on some
work of Grothendieck. In particular, the methods of [25], [30] and [31] rest on
Pietsch’s form of this Grothendieck inequality. The work of the present paper
utilizes some properties of the p-summing operators of [22]. I believe that the
latter point of view yields a better-understanding of the structure of the problem,
with a more general solution and additional insight, not afforded by the earlier
work. Thus the present paper is aimed at a comprehensive, unified and extended
treatment of the structure of the Bochner-Rozanov class. It may be remarked
that an essentially equivalent characterization of Bochner’s Hilbert space
version can be obtained using the results from an early paper due to Phillips
[33], which seems to have been overlooked by almost all vector measure
theorists and stochastic analysts. It is, in a sense, subsumed under a relatively
recent paper by Kluvanek [21]. But most of all, Bochner’s paper [2] has not been
accorded the central place it deserves in probabilistic treatments on the subject.
I hope that the present work will bring some of the many fundamental ideas
of [2] to the forefront.

Finally, the concept of the spectral measure F of (1), so appropriate and
natural in the stationary case (since it is positive and bounded) does not appear in

7
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a similar form for the harmonizable (or other nonstationary) processes, since F'is
usually complex valued as in (3) or (5). To overcome this problem, in the late
1950’s, Kampé de Fériet and Frenkiel ([15], [16]) and independently Parzen
[32] and Rozanov [40] have defined an “associated spectrum” for a class of
second order processes X : R — L3(P). These are processes for which

= |h|
lim lj’. (X(s), X(s+|hl))ds = Ah), heR, (6)

T— o

exists. Since A') is clearly positive definite, one can apply the Bochner
representation theorem as in (1), in many cases. The resulting positive bounded
measure F for this 7is called the associated spectrum of the process X. This class,
to be termed class (KF), contains not only stationary processes but, among
others, many almost periodic ones [35]. With the present methods it is shown in
Section 8 that every weakly harmonizable process has an associated spectrum
from which in fact several other properties can be obtained. A distinguishing
feature of the weakly harmonizable case from the stationary, Cramér, Karhunen,
or Loéve definitions is that the theory of bimeasures and the consequent
(nonabsolute) integration of Morse and Transue ([26], [27], [42], [45], [46])
play a vital role in their analyses. This difference has not been fully appreciated in
the literature. (The most comprehensive characterizations of the harmonizable
class are summarized in Theorems 7.3 and 7.4.) For vector valued processes, in
both the weak and strong cases, some new technical problems have to be
resolved. The same is true of random fields. All these aspects have important
applications and some indications are given in Sections § and 9. A summary of
some of these results is included in [37]. For greater accessibility and
convenience, the next three sections are devoted to harmonizable processes and
most of the remaining five consider the more general random fields with a
natural transition. However, an essentially self-contained exposition (modulo
some standard measure theory) is presented here.

Notation: The following notation is used: R for reals, C for complex
numbers, Z for integers, R” for the n-dimensional number space, and LCA for
locally compact abelian. A step function is a mapping taking finitely many values
on disjoint measurable sets, and a simple function on a measure space is a step

function vanishing outside of a set of finite measure. Overbar denotes complex
conjugation.
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2. HARMONIZABILITY

For the work of this paper it is convenient to take the Hilbert space J# as the
standard function space. Namely, let (QQ, Z, P) be a probability space and

IX(P) (= IQ, =, P))

be the space of (equivalence classes of) scalar square integrable functions (= ran-
dom variables) on Q, and set

H = LYP) = {f e L¥(P): [ fdP = 0} .

Q

This choice does not really restrict the generality since any abstract Hilbert space
is known to be realizable isometrically as a subspace of L*(P) on some
probability space (cf. e.g., [36], p. 414). From this point of view, a process
{X(t), t e R} = L3(P) is stationary if its covariance r satisfies r(s, t) = r(s—t),
where

s, 1) = E(X()X() = [ X(5)X(©)dP = (X(s), X()), s teR,

and E is also called the “expectation” (= integral). Since r(*) is of positive type
(= positive [semi-] definite), assuming it to be jointly measurable (this is implied
by the measurability of the random function {X(t), t € R}), it follows that r
admits the representation

Ht) = [ F(d), aalt) (Leb). (1)

It may be remarked that in the original (1932) version, Bochner assumed that ()
is actually continuous, but soon afterward in (1933) F. Riesz showed that
measurability itself yields this (slightly weaker) form (1'). This was also used in
[33]. :
For a stationary process {X(t), t € R}, one easily verifies that it is mean
continuous (ie., E(X(s) — X(t)]*) » 0 as s — 1) iff the covariance r(, ") is
continuous on the diagonal of R x R. Thus the measurability of r and the
validity of (1') everywhere implies already the mean continuity of the stationary
process! So for certain applications of the type noted earlier, it is desirable to
weaken the hypothesis of stationarity retaining some representative features.
This was done by Loéve, and it is restated in the following form:

Definition 2.1. A process X : R — L}(P) is strongly harmonizable if its
covariance r is the Fourier transform of some covariance function p of bounded
variation, so that one has
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r(s, 1) = | | et i o(dh, dN) s,teR. (3)
RR
It was noted in the Introduction that there is no efficient characterization of r
given by (3'). There is however a more visible drawback of this concept. Since
strong harmonizability is derived from stationarity, so that the latter class is
included, consider a “truncated series” {X(n), ne Z} of a stationary series
{X(n), n € Z} defined as: X(n) = X(n) for finitely many n, and X(n) = 0 for all
other n € Z. Then {X(n), n € Z} is easily seen to be strongly harmonizable. But if
X(n) = X(n), for infinitely many n, and = 0 for all other n, then {)Z (n),neZ}
need not be strongly harmonizable, as the following example illustrates.
Let (Q, X, P) be separable and {f,neZ} < L§P) be a complete
orthonormal set. Then r(m, n) = 3,_, = r(m—n). So the sequence is stationary
and (1") becomes

14

. di
rim—n) = J‘e’(’"‘")x—é—, mnel.
n

Now consider the truncated series, f, = f,,n > 0, and = 0 for n < 0. Then

Am, n) = E( fmz,) = 1ifm = n > 0, = 0 otherwise. But 7 does not admit the
representation (3'). For, otherwise, Am, n) will be the Fourier coefficient of the
representing p (of bounded variation) which is only nonvanishing on the ray
(m = n>0)in Z*.Itis a consequence of an important two dimensional extension
by Bochner of the classical F. and M. Riesz theorem that p must then be
absolutely continuous relative to the planar Lebesgue measure with density p'.
But this implies Am,n) - 0 as |m| + |n| - oo by the Riemann-Lebesgue
lemma, and contradicts the fact that Am, n) = 1, for all positive m = n and n
— o0. Hence 7 cannot admit the representation (3') so that {f,, ne Z} is not
strongly harmonizable. This example is a slight modification of one due to
Helson and Lowdenslager ([13], p. 183) who considered it for a similar purpose,
and also appears in [1] for a related elucidation.

The above example and discussion lead us to look for a weakening of the
conditions on the covariance function, since it is reasonable to expect each
truncation of a stationary series to be included in a generalization, retaining the
other properties as far as possible. Such an extension was successfully obtained in
two different forms in the works of Bochner [2] and Rozanov [40]. The precise
concept can be stated and its significance appreciated only after some
preliminary considerations.

The measure function p of (3') has the following properties:

(1) p is positive definite, i.e.
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n n

p(S> t) = p(ta S)7 z Z aia; p(sia Sj) 2 0 > a; e C »

i=1 j=1

(i) p is of bounded variation, i.e.

sup{i i [ | Ip(ds,dt)y|:A4,Bje%,

i=1j=1 A4 B
iJ

disjoint} < o0,
where # 1s the Borel c-algebra of R. If F: # x # — C is defined by F(4, B)
= |4 (5 p(ds, dt), it follows from (i) and (ii) that there exists a complex Radon
measure p on R? such that F(4, B) = w(A x B),where A x Be # ® #,and pis
positive definite. On the other hand, the defining equation of F implies that F is
positive definite (so (i) holds with p(s;, s;) replaced by F(4,, 4;)) and (ii) becomes

V(F) = sup{i i lF(Ai_,Bj)I:Ai,B,-e,%,

i=1j=1
disjoint} < oo .
But (3') is meaningful, if p is replaced by F under the following weaker conditions.
Let F: 4 x % — C be positive definite and be o-additive in each variable
separately. Equivalently, if #(R, %) is the vector space of complex measures on
B, let V(A) = F(A,"), Aec # so that v:# — M (R, &) is a vector measure. By
symmetry, V: B — F(,, B) is also a vector measure on 4 — #(R, #). But
MR, B) = % is a Banach space under the total variation norm, and hence v (as
well as V) has finite semivariation by a classical result (cf. [8],1V.10.4). This means,

1V ®) = sup (I 3 av(4) I.: 1] < 1, 4, € %, disjoint} < oo.

1

Transferred to F, this translates to:

| F)(RxR) =sup {Y ¥ aa; F(A, A): A; € %, disjoint,

i=1 j=1
la;| <1} < 0. (7)

When (7) holds, F: %4 x # — C will be called a C-bimeasure of finite
semivariation. [It should be noted that the o-additivity of F(;, ‘) in each of its
components can be replaced by finite additivity and continuity of F from above
at @ in that | F(A4,, A,)| - 0 as 4, | ©.] The desired genes‘zilization follows

from (7) if it is written in the following form. Let ¢ = ) a;x,, and
i=1
\1’ - 2 ij'Bj’ Aieg, BJE.@
j=1

and each collection is disjoint. Set




HARMONIZABLE PROCESSES: STRUCTURE THEORY 303

n n

Io, V) = Y ), aib;F(A, B)). (8)
i=1j=1
Clearly I is well-defined, does not depend on the representation of @ or {, and
I(®, ®) = 0. So (o, V) = I(e, ¥) is a semi-inner product on the space of #-step
functions. Hence by the generalized Schwarz’s inequality one has:

| I, ) |? < I(@, @) IV, V) - 9)

Taking suprema on all such step functions ¢, s such that

loll, <LVl <1

(Il - II, is the uniform norm), one deduces from (9) and (7) that

| F || (RxR) < sup {I Z Z aib—jF(AiaBj)lzlail <1,

i=1j=1
|b;| < 1, A, B;e 8, disjoint} < || F | (RxR), (<V(F)). (10)

Thus || F || (R x R) can be defined either by the middle term (as in [40]) or by (7).
For a bimeasure, || F || (R xR) is also called Fréchet variation of F (cf. [26],
p. 292) and V(F) the Vitali variation, (cf. [26], p. 298).

It should be emphasized that a set function F which is only a bimeasure (even
positive definite), need not define a (complex) Radon measure on R?. In fact such
bimeasures do not necessarily admit the Jordan decomposition, as counter
examples show. Thus integrals relative to F (even if || F || (R xR) < o0) cannot
generally be of Lebesgue-Stieltjes type. Treating v: A+ F(A,'), A€, as a
vector measure into (R, %), one can employ the Dunford-Schwartz (or D-S)
integral (cf. [8], IV.10), or alternately one can use the theory of bimeasures as
developed in ([26], [27]) and [42]. This is the price paid to get the desired
weakened concept, but it will be seen that a satisfactory solution of our problem
1s then obtained, and both these integrations will play key roles.

Let us therefore recall an appropriate integration concept to be used in the
following. In ([40], p. 276) Rozanov has indicated a modification without
detailing the consequences. (This resulted in a conjecture [40, p. 283] which will
be resolved in Section 8 below.) Instead, a different route will be followed : namely
the integration theory of Morse and Transue will be used from [27] together with
a related result of Thomas ([42], p. 146). However, the Bourbaki set up of these
papers is inconvenient here, and they will be converted to the set theoretical (or
ensemble) versions and employed.

Let F: % x # — Cbeabimeasure, i.e. F(,, B), F(A, ‘) are complex measures
on %. Hence one can define as usual ([8], I11.6),
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I(f, 4) = [a f(t) Fdt, 4). (11)

for bounded Borel functions f : R — C. Then I(f, ) is a complex measure. In
fact I, : 8 — (B(R, 4B, C))*, the B(R, %, C) being the Banach space of bounded
complex Borel functions under the uniform norm, is a vector measure. So one
can use the D-S integral (recalled at the beginning of the next section), defining

Ii(f,9) = (I gold)(f)eC,  fgeBR,%,C). (12)

Similarly starting with F(A, -) one can define I,(f, g). In general
I,(f,9) # 1,(1, 9). (13)

In fact the Fubini theorem does not hold in this context. For a counterexample,
see ([27], §8). If there is equality in (13), then the pair (f, g) is said to be integrable
relative to the bimeasure F, and the common value is denoted I(f, g) and
symbolically written as (f, g need not be bounded):

1f.0) = {1 1(5)OFds, do. | (14)

This is a Morse-Transue (or MT-) integral. While a characterization of MT-

integrable functions is not easy, a good sufficient condition for this can be given

as follows, (cf. [27], Thm. 7.1; [42], Théoréme in §5.17). If f; g are step functions,

so that f = ) a4, 9 = ), bjxs, then clearly I(f, g) always exists and
i=1 j=1 ’

n

= J,

i=1j

!IM:

F(4, B) (15)

Next define for any ¢ > 0, ¥ > 0, Borel functions,
fo, ) =sup {{ 1) 111 fI<olgl <V fig

Borel step functions}
and if u, v are any positive functions,

I*(u, v) = inf {I{@, ¥): @ = u, ¥ > v, @, I are Borel} . (16)

Now the desired result from the above papers is this: If (£, g) is a pair of complex
Borel functions such that I,(f, g) and I,(f, g) exist in the sense of (12) and (13),
and I*(|f] ,lg]) < oo, then (f, g) is MT-integrable for the C-bimeasure F. In the
case that the bimeasure F is also positive definite and has finite semivariation,
then each pair (f,g) of bounded complex Borel functions is MT-integrable
relative to F. Moreover, using the notations of (7), one has

ISP I<TFEL- 1Sl g, (17)

Yoo . S5
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where | F || = || F || (R x R). It should be noted, however, that the integrability
of (f, g) generally need not imply that of (| f], |g]), and the MT-integral is not an
absolutely continuous functional in contrast to the Lebesgue-Stieltjes theory, as
already shown by counterexamples in [26] and [27]. Fortunately a certain
dominated convergence theorem ([27], Thm. 3.3) is valid and this implies some
density properties which can and will be utilized in our treatment below. Also f
is termed F-integrable if (f, f) is MT-integrable. Our definition above i1s
somewhat more restrictive than that of [27], but it suffices for this work. For the
theory of [27], the space B(R, 4, C) in (12) and (13) is replaced by C,,(R), its
subset of continuous functions with compact supports, with the locally convex
(inductive limit) topology. Note that, thus far, no special properties of R were
used in the definition of the MT- integral, and the definition and properties are
validif R isreplaced by an arbitrary locally compact space ( group in the present
context ). This remark will be utilized later on.
With this necessary detour, the second concept can be given as follows:

Definition 2.2. A process X : R — LP), with r(, ‘) as its covariance
function, is called weakly harmonizable if

(s, 1) = I(€"0, e") = [ [ &~ F(d), d)), s, t € R, (18)
RR

relative to some positive definite bimeasure F of finite semivariation where the
right side is the MT-integral.

In particular r is bounded and continuous (by (17) and Thm. 3.2 below).
Moreover, if F is of bounded variation, then the MT-integral reduces to the
Lebesgue-Stieltjes integral and (18) goes over to (3). The following work shows
that the process of the counterexample following Definition 2.1 is weakly
harmonizable. The same counterexample also shows that harmonizable
processes generally do not admit shift operators on them, in that there need not
be a continuous linear operator

T, X(t) > X(t+s)e L3(P), teR

on L3(P). This is in distinction to certain other nonstationary processes of
Karhunen type (cf. [9]).

3. INTEGRAL REPRESENTATION
OF A CLASS OF SECOND ORDER PROCESSES

In order to introduce and utilize the “V-boundedness” concept of Bochner’s,
it will be useful to have an integral representation of weakly harmonizable
processes. This is done by presenting a comprehensive result for a more general
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class including the (weakly) harmonizable ones. It is based on a method of
Cramér’s [3], and the resulting representation yields by specializations both the
harmonizable, stationary, Cramér class of [3], as well as the Karhunen class
(restated below). This is detailed as follows.

Recall that if (Q,, .«7) is a measurable space (i.e., o7 is a c-algebra of sets of Q)
and Z a Banach space, then a mapping Z : o/ — % is called a vector measure if Z
1s o-additive, or

o 0] Q0

Z(UAL): ZZ(AI)’ AlEJj,
i=1 i=1

disjoint, the series converging unconditionally in the norm of Z. If = L(P)

where (), £, P)is a probability space, then a vector measure is sometimes termed

a stochastic measure. The integration of scalar functions relative to a vector

measure Z is needed, and it will be in the sense of Dunford-Schwartz ([ 8], IV.10).

This may be briefly outlined here. If . f=> ax 4p A; € o, disjoint, define as

i=1
usual

n

(4 f(5)Z(ds) = Y aZ(AnA)eZX, Aed. (19)

i=1

Now if g : Q, — C is .&/-measurable, and g, are .«/-step functions such that g,
— g pointwise, one says that g is D-S integrable whenever for each 4 € ./,

{Jagu9)Zds),n > 1} =« &

is a Cauchy sequence. Then the limit, denoted g 4, of this sequehce is called the
integral of g on A, and is dénoted as

ga = [49(5)Z(ds) = lim [, g,(s)Z(ds), Aes. (20)
Itis a standard (but non-obvious) matter to show that the integral is well-defined,
independent of the sequence used, and the mapping A — [, g(s)Z(ds) is o©-
additive on 7, and g — [, g(s)Z(ds) is linear. Also

1 fa9)Z@s) | < gl 1Z1(4), geBE& «,C), (21)

where || Z || () is the semivariation of Z (cf. (7)) which is always finite on the o-
algebra 7. [If o/ is only a &-ring and Q, ¢ &/, then Z need not have finite
semivariation on «¢.] The dominated convergence theorem is true for the D-S
integral. (See [8], IV.10, for proofs and related results. The latter exposition is
very readable and nice.)
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The general class noted above is the following:

Definition 3.1. A process X : R — L(P), with covariance r(;, °), is said to be
weakly of class (C) (C for Cramér) if (i) there exists a covariance bimeasure F on
R x R of locally bounded semivariation in the sense that

F(A, B) = F(B, A), Z Z a;d; F(A, Ay) =2 0, a; e C.
i=1j=1
Here A, € 8,1 < i < n, bounded, and for each bounded Borel 4 = R, if Z(A)
= {A n B: Be %}, then

| F(AxA) =sup {|} » ab;F(4;B)|:la;| <1,]b;l <1,

i=1j=1

A;, Bj € B(A), disjoint} < o0 ;

(ii) there exists an MT-integrable (for F) family g, : R — C of Borel functions,
t € R, such that I(|gy, |g) < oo, s € R, where I denotes the MT-integral relative
to F, in terms of which one has (g,(\) is also written as g(t, 1)):

r(s, 1) = I(gs, g) = i i g(Mg{A)F(dr, dx),  s,teR. (22)

Remark. Note that in this definition F can be given by a covariance
function p asin (3') since, for 4 = [a, b)and B = [c, d) one defines (A*F) (4, B)
as the increment p(b, d) — p(a, d) — p(b, ¢) + p(a, c) and extend it to # x A.
Alsoin (22)itis possible that | F || (R x R) = oo. If F has finite variation on each
compact rectangle of R?, then F determines a locally bounded complex Radon
measure, and the above class reduces to the family defined by Cramér in [3], and
called class (C) and analyzed in [35]. If | F || (R xR) < oo, then one can take
g(A) = g(t,\) = €™ so that the weakly harmonizable class is included. Again it
may be noted that R can be replaced by a locally compact space or an abelian
group in (22) so that R” or the n-torus T" is included.

To present the general representation, it is necessary also to note the validity
of the D-S integration embodied in (20), (21) when the set functions are defined
on arbitrary o-rings instead of c-algebras, assumed in [8]. Further our measure
Z : B — X has the property that it is Baire regular in the sense that for each
- Ae ? and € > 0, there exist a compact C € &, open U € # such that C = A
c U and | Z(D) || < & for each De %, D =« U — C, where % is the Baire
(= Borel here) o-ring of R. Even if R is replaced by a general locally compact
space S, with # as its Baire o-ring and Z : Z — & o-additive, one has Z to be
Baire regular having a unique regular extension to the Borel o-ring & of S.

L’Enseignement mathém., t. XXVIII, fasc. 3-4. 21
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Actually Z concentrates on a o-compact Baire set S, = S. Moreover if Z is
weakly regular in that x* o Z is a scalar regular signed measure, x* € Z*, then Z
s itself regular. (See [21], pp. 262-263 for proofs with only simple modifications
of the arguments given in [8], IV.10.) In each case the measure Z has finite
semivariation on bounded sets in % (cf. (7) where 4 is replaced by the ring
generated by all bounded Baire sets for S). If #, < 4 is the class of all bounded
sets (a set is bounded if it is contained in a compact set), then it is a 6-ring, and the
D-S integration of a scalar function relative to Z : 4, — % holds as noted above.
With this understanding the following is the desired general result.

THEOREM 3.2. Let X :R — L3(P) be a process which is weakly of class
(C) in the sense of Definition 3.1, relative to a positive definite bimeasure F of
locally finite semivariation, and a family {g,, s € R} of Borel functions such that
each |g,| is MT-integrable for F. Then there exists a stochastic measure
Z: B, > LYP) where B, is the d-ring of bounded Borel sets of R, and
€, £, P) is an enlargement of (Q, X, P) so L%P) > L(P), such that

(i) E(Z(A)- Z(B)) = (Z(A), Z(B)) = F(4, B), A, Be &,
(i) X(¢) = [ g(t, VZ(dN), teR, (23)

where the integral is in the D-S sense for the 6-ring %,.

Conversely, if {X(t),teR} is a process defined by (23) relative to a
stochastic measure Z:%B, — LYP) and a Borel family {g,teR}, D-S
integrablefor Z and A, thenitisweakly of class (C) relativeto F defined

by
F(4, B) = E(Z(A)- Z(B)), A, Be®%,,

and each |g,|,t€R, is MT-integrable for F. Moreover, if

H#y = sp{X(t),teR)}
and
Hy = spiZ(A), A B,)

in L%P), then #y = #, when and only when the {g,teR} has the
property that

[ | fVg\)F@, d\) = 0, all teR,
R R

implies fj fA)FMYF(dX, dN) = O both being MT-integrals.
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Proof: The basic layout is that of [3]. The integrals used there will have to
be replaced by the D-S and MT-integrals appropriately. Since the changes are
not immediately obvious, the essential details are spelled out so that in
subsequent discussions, such arguments can be compressed.

For the direct part, let the process be weakly of class (C). Then its covariance r
admits a representation (with the MT-integration) as:

(s, 1) = E(X(9)X(1) = i i[ g(MgA)F(dA, dN') . (24)

Since F is a positive definite bimeasure, if

LE = {f: i i S)FYF@N, dN) = (f, f)F < o, fis MT-integrable for F},

and since I(f, f) = (f, f)r = 0, the earlier discussion implies {LZ, (, )¢} is a
semi-inner product space, and g, € L, t e R. Let T: L2 — 3, be defined by
T g,+— X(s), extending it linearly. Then (24) implies

(Tgsa Tgt))fx = (gs9 gt)Fa S, te R. (25)

Thus T is an isometric mapping of A7 = sp{g,,t e R} = L2 onto #, where #y
is the space given in the statement of the theorem.

Suppose first that A¢is dense in LZ. By ([27], Thm. 11.1) every Borel function
with I*(| f1, | fI) < oo isin L, so that, in particular x , € L for each A € %, since
F is locally of finite semivariation. By the density of A2 in L2 and the isometry,
there is a Z, € # 'y such that Ty, = Z,. If A, Be A, then

E(ZA ) Z_B) = (TXAa TXB)XX = (XAa XB)F = F(Aa B) ’
and if A n B = @ also holds, then

E(|ZAuB_ZA—ZB|2) = (XAUB—XA_XBv XAUB_XA_XB)F =0
since F is additive in both Vcomponents. Thus Z.,: By —» #y = LP) is

additive. If {4,}? = By, A = U A, e B,, then

n=1

E(Z,— _i ZW)=BIZ . +Z =Y 7]
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asn — oo, since F is continuous at () from above (cf. discussion after (7)). This Z
1s c-additive on %4, and hence is a stochastic measure of finite semivariation on
each compact set there. Clearly #, = #y. Since {g,, t € R} is dense in L3,
x4 € Lz, and each g, is assumed MT-integrable for F, there is a sequence g,

= Y a;g,, = %4 in L3 so that (§,— % g.—x)r — 0. Hence by the isometry

E(Y aX(t)—Z4*) — 0,as n — oo. It now follows easily that {Z ,, A € B,} is
i=1

dense in J# . Thus #, = # ,, and each element in 5, corresponds uniquely
to an element of L}, the completion of L} and where elements h e L3 with
(h, W) = 0 and O are identified. Let Y(t) be defined as:

Y(t) = [ gMZ@dr) eH, = Hx. (26)

Here the right side is the D-S integral on the d-ring 4, which can be defined by a
slight modification of the work of ([8], IV.10), as noted in [21]. Thus,

(Y(s), Y (I g Z(dM), j g{\)Z(d)))

= | {9d1) gt(k’)F(dk, d\)
RR

which holds if g, is a #,-measurable step function and then the general case
follows by ([27], Thm. 3.3 or [46], p. 126), since | g, | is MT-integrable in our
sense. Now by definition (I-i-m denoting L*(P)-mean):

Z(A) = T(x,) = T(limg,), where g, >y, in Lf

= I'i'm T(§) = Ii'm Y, 4, T(q,)

i=1

=1im )Y X)) =1imX, (say)

i=1

The L2(P)-limits imply

E(X(5)Z(4)) = lim E(X(s)X,)

n

= lim i a; E(X(s))?(ti)) = lim Zn: a; r(s, t;)

n i=1

n

m Y a [ [ 009, (MF(dh, i)

i=1

= [ [ g\ )F (@A, d)) .
RR

R T T L e BRTINAT T e




HARMONIZABLE PROCESSES: STRUCTURE THEORY 311

By isometry,if, = Y. b, Z(A,), one gets fi, <> T, where h, = ) b; x4, € L,

j=1 j=1

X(s)Z,) = iigs (MG ()F (N, dV) .

So again by the MT-integrability of gy(‘), the preceding result yields
E(X(s)Y(®) = | | gMgN)F(dAr, d)\) .
R R
It follows from this that

E(X(s) — Y(s)?) = E(1X(s)2) + E(Y(s)?) — E(X(9)Y(s)) — E(Y(s)X(s)) = 0.

Hence X(s) = Y(s) a.e., s € R. So (26) implies (23) in the event that A7 is dense in
L:.

For the general case, where A2 = L2 © AZis nontrivial and where the “bar”
again denotes completion, let {h, t € R} be a basis of A% If R=R+Risa
disjoint sum to give a new index set, let §, = g, for s € R, and = h,for s € R, then
(g, s€ I%} is dense in L2. So by the preceding case, on extending T to t from L}
— L(P), where (Q, £, P) is possibly an enlargement of (Q, £, P) by adjunction
(cf, e.g., [36], p. 82), with 1y, = Z, € L4P), one has

Y(s) = i gMZ@dr) e Li(P). (27)

Observe that all g, are Borel and MT-integrable in this procedure. Hence, as
before, ¥(s) = X(s) for s € R, and (23) holds again. In this case #, > #, and
the inclusion is proper.

Conversely, let {X(t),t € R} be a process defined by (23). Let F(4, B)

n

= (Z(A), Z(B))and g, = Y. a4, As» A, Bin B,. Then for the D-S integral (23)

i=1

one has

n n

I F (A, A) = sup {Z Z a,a; F(A;, A)) - A; € B(A), | a;] < 1}

i=1j=1
= sup {I Y, @ Z(A) 1311 < 1, 4, < B(4)
< Z|*A) < 0,AeB, .
Thus if X, = [g g,(M)Z(d)\), one has with h, another such step function,
E(X,;X5) = & [ gMhV)F(dh, L) . (28)

Now given g, € L; which is MT-integrable in our (restricted) sense (this is
analogous to a definition of [46]) and for which (23) holds, the gs can be




312 M. M. RAO

approximated by suitable Borel step functions {g,}7 < L# such that g, — g,
pointwise | g, | < | g, | and similarly with g, — g, such that

1(g Gn) = 1(gs> 90, 1194, lg4l) < o .
Applying this to (28), one obtains

& fr 9 MGN)F(d), dN) = Tim [g fx (MG (MF(d, dV)
= Iim(X, , X;)
= lim(fg g(MZ(dM), [x Gu(X)Z(dN)

= (Jr 9(MZ(dL), [& 9M)Z(dN)),

since for the D-S integral the dominated convergence holds,
= (X(s), X(®)) = (s, ) - (29)

This shows {X(t), t € R} is of weakly class (C).

Regarding the last assertion, it is evident that{g,, s € R} is a basis in L iff
I(f,g,) = 0,t e Rimplies I(f, f) = 0. This s clearly necessary and sufficient for
H , = Ay since otherwise, (with possibly an enlargement of the underlying
probability space) #, o # y and #, = # 'y in the notation of (27). Thus the
proof is complete. 7

Remarks. 1. If F is of locally finite variation, then it defines a locally finite
(i.e., finite on compact sets) complex Borel (= Radon) measure in the plane R?,
and then the MT-integrals for F reduce to the Lebesgue-Stieltjes integrals. Thus
I(g,, g,) < ooisequivalent to the classical theory, and the above result specializes
to Cramér’s theorem of [ 3]. However, for the general case of bimeasures (as here),

the MT-theory (or a form of it) appears essential.

2. The above theorem is true if R is replaced by a locally compact space, since
no special property of R is used. Only the concept of boundedness is needed.

When || F |[(RxR) < oo, so that F is of finite semivariation on R?, then by
([27], Thm. 11.1) each bounded Borel function g is MT-integrable for F. Taking
g,(\) = €™ in the above theorem, one deduces from this result the important
representation given by Rozanov ([40], p. 279). The last statement is not too
hard to establish. [A separate proof of it is also found in ([29], p. 36).]

THEOREM 3.3. Let X :R — L}(P) beaprocesssuchthat || X(t) |, < M
< oo, t € R, and be weakly continuous. Then the process is weakly harmonizable
relative to some covariance bimeasure F of finite semivariation (cf. Definition
2.2) iff there is a stochastic measure Z :J%B — LE(P) such that for each A, B in

B, F(A, B) = (Z(A), Z(B)) and
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X(t) = [g €™ Z(d\), teR, (30)

the right side symbol being the D-S integral and | Z |(R) < co. Moreover, X
is strongly harmonizable iff the covariance bimeasure F of Z in (30)is of
bounded variation in R2 (cf. Definition 2.1). In either case the harmonizable
process X is uniformly continuous, and is represented as in (30).

Suppose that in the representation (23) the Z-process is orthogonally
scattered implying (Z(A), Z(B)) = 0 whenever A n B = (. Then

F(A, B) = (Z(A), Z(B)) = F(AnB),

where F is the covariance bimeasure and F is a positive locally finite measure on
% so that it is o-finite there. Then

s, ) = EX.X) = [x gMGME@) | )

A process whose covariance function R satisfies this condition is termed a
Karhunen process. Moreover, if F is a finite measure and g4A) = €**, the
resulting one is the classical (Khintchine) stationary process. In both these cases
there are no weak type extensions.

Let us introduce a further generalization of the (weak) Cramér class to
illuminate the above Definition 3.1, and for a future analysis. Let (, Z, p) be a
measure space and M(p) be the space of scalar p-measurable functions on . Let
N():M(u) - R™ be a function norm in that for f f, in M(u), (i) N(f)
= N(f) =2 0,)0 < £, 1= N(/f) 1, (1) N(af) = | a| N(f),a e Cand (iv) N(f
+g) < N(f) + N(g). The functional N has the weak Fatou property if

0< f,7 f,lim N(f) < 0o = N(f) < w0,

and has the Fatou property if instead N(f,) T N(f) (< o0). The associate norm N’
of N is defined by:

N'(f) = sup {| [o(f9) (@)(dw) | : N(g) < 1}. (32)
One sees that N’ is a function norm with the Fatou property. If

NO)=|"ll,1<p< o0,
then

NO=1llpgp ' +qg'=1.

The general concept alluded to above is as follows:

Definition 3.4. (a) Ifr: R x R — Cisacovariance function, it is said to be
of classy (C) relative to a function norm N, if there is a covariance bimeasure
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F:R x R = Coflocally finite N-variation (let N’ be the associate norm of N),
and there exists a family {g,, t € R} of Borel functions which are MT-integrable
relative to F, such that

(s, 1) = fu [x gMGH)F(@N, dV), s, 1€ R, 3y
and where locally finite N-variation is meant the following:
0 > || FlMAxA)=sup {|I(fg|:N(f) < LN@<1}. (39

Here f, g are Borel step functions, with supp(f) = A4, supp(g) = A4, A € A,,, the
o-ring of bounded Borel sets of R.

(b) A process X : R — L&(P) is of classy(C) if its covariance function r is of
classy (C) so that it is representable as (33).

Itisclearthatif N() = || - ||, sothat N'() = | - ||, the N-variation is simply
the 1-semivariation of Definition 3.1 and that

HE Ny = [ Flly(=[1FI).

Remark. Without further restrictions, classy (C) need not contain the weak
or strong harmonizable processes. However if N is restricted so that, letting

INP) = {f € M(P): N(f) < o0}, I(P) = L(P) = L)(P),

where p = P is a probability, then every class, (C) will contain both the weak
and strong harmonizable families, as an easy computation shows. If N()

= | - ||;, then class; (C) is the class which corresponds to the covariance
bimeasure of finite semivariation. This includes the classical Loéve and Rozanov
definitions. Again this definition holds, with only a notational change, if R is
replaced by a locally compact group G. A brief discussion on some analysis of
these classes which extend the present work is included at the end of the paper.

4. V-BOUNDEDNESS, WEAK AND STRONG HARMONIZABILITY

The definition of weak harmonizability is of interest only when an effective
characterization of it is found and when its relations with strong harmonizability
are made concrete. These points will be clarified and answered here. Now
Theorem 3.3 shows that a weakly harmonizable process is the Fourier transform
of a stochastic measure and this leads to a fundamental concept called V-
boundedness (‘V’ for “variation”), introduced much earlier by Bochner [2],
which is valid in a more general context. This notion plays a central role in the
theory and applications of weakly harmonizable processes (and fields) which are
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shown to be V-bounded in the context of L3(P). Further this characterization
facilitates a use of the powerful tools of Fourier analysis of vector measures. The
desired concept is as follows (cf. [2], and also [33]):

Definition 4.1. A process X : R — %, a Banach space, is V-bounded if X(R)
liesin a ball of &, X as an Z'-valued function is strongly measurable (i.e., range of
X is separable and X ~}(B) € # for each Borel set B = %), and if the set C is
relatively weakly compact in &, where

C={a fOXWdt: [ fl.<1LfelR)}cZ, (35)

and where f(t) = [g f(Me™dM, [g f(1)X(t)dt being the Bochner integral. If 2 is
reflexive then the condltlon on C may be replaced by its boundedness. (Here if
the measurability of X is strengthened to weak continuity, then it actually
implies the strong [and even uniform] continuity.)

Let us establish the following basic fact when & = L3(P):

THEOREM 4.2. A process X :R — LP) isweakly harmonizableiff X is

V-bounded (ie., || X(t) |, < My < co,teR, and the set in (35) is bounded)
and weakly continuous.

Proof: For the direct part, let X be weakly continuous and V-bounded.
Then

| Je fOX®dt Il < cll f llw f € DR, (36)

by Definition 4.1. Let % = {f: f e [}(R)} = C,(R), the space of complex

continuous functions vanishing at “00”; the inclusion holds by the Riemann-

Lebesgue lemma. Moreover, % is uniformly dense in Co(R), since % is a real

algebrain Cy(R) and separates points of R so that the Stone-Weierstrass theorem

applies (cf. [24], §26.B). Let # : [ — j feN)dr, t e R, where e (L) = ™.
R

Then & : I['(R) - Co(R) is a one-to-one contractive operator. Consider the
mapping
T:% % = L§P), by T(f) = [z fOX(t)dt e ¥ .

This is well-defined, and the following diagram is commutative :

e

“

L(R)

Ti(f) = fr fOX()dt € Z . \/

By hypothesis T is bounded and by the density of % in Co(R), it has a norm
preserving extension T to Co(R). Now T will be given an integral representation
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using a classical theorem due to Dunford-Schwartz ([8], VL.7.3) since T is a
weakly compact operator because Z is reflexive. ‘

To invok¢ the above cited theorem, however, it should first be observed that
the result holds even if the space C(S) of continuous (scalar) functions on a
compact space S (for which it is proved) is replaced by Cy(¥) with a locally
compact space &. Here & = R. Indeed, let % be the one-point (at “c0”)
compactification of & and consider the space C(¥). Now C(¥) can be identified
with the subspace {f € C(#): f(w0) = 0}. Since T : Co(¥) — Z is continuous
and Cy(¥) is an “abstract M-space”, there is a continuous operator T : C(&)
— & such that T | Co(#) = T. This follows from the fact that for any Banach
space Z containing a subspace which is an abstract M-space, there is a projection
of norm one on & onto that subspace, by the well-known Kelley-Nachbin-
Goodner theorem (cf. e.g., [8], p. 398), and T = T o Q. Hence by the Dunford-
Schwartz theorem noted above, there is a vector measure Z on % into & such
that

T() = [, /020, € CF). (37

and | T | = || Z |(&), the-integral on the right being in the D-S sense. Define
Z: B(F) > X as Z(A) = Z(¥NA), A e B(&). Then Z is a vector measure and
| Z | < || Z|. Moreover, if f, = f |, then

T(f) = [y fo(Z(d) + [rey f(0)Z(dt), [ € C(F)

= T/, since  f(o0) = 0.
Hence T(f) = T(f), fe Co(#) with | T | < | T| = | T || < || T|, and
1) = |4 f(®)Z(d), f € Co(¥) - - (38)

Thus writing R for & from now on (the above general case is needed later), it
follows that

| Tl = sup {ll fa f(OZ(@d0) | : f € CoR), | [ Il < 1} = | Z [(R)
= | Z (R,

and T and Z correspond to each other uniquely. Since T | # = T, this implies

T (f) = fa f(O2Z(d) = [g f(OX(D)L, f € L(R), (39)

and | T || = | Z [(R).
Let [ € £*. Then (39) becomes (since a continuous operator commutes with
the D-S integral, cf. [8], p. 324 and p. 153, and Z'* is the adjoint space of %),

fof(0) loZ(dt) = [af(t) loX(t)dt . (40)
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In (40) now both are ordinary Lebesgue integrals, and hence using the Fubini
theorem (for signed measures) on the left one has:

[r f(0)dt [g eM)] o Z(dL) = (g f(t)] o X(t)dt
Subtracting and using the same theorem of ([8], p. 324),
[ fOU|g eMZ(d)) — X(t)dt = 0,1e Z*, f € L'(R). (41)

It follows that the coefficient of f vanishes a.e., (everywhere as it is continuous).
Since / € Z* is arbitrary it finally results that the quantity inside / is zero, for each
t € R. Thus

X(t) = [g e(MZ(@dN) = [g €™ Z(d\), teR. (42)

Hence X is weakly harmonizable by Theorem 3.3.

For the converse, let X : R — L}(P) be weakly harmonizable. Then X admits
a representation of (42) by Theorem 3.3. Since | Z | (R) < oo, (21) implies
| X() I, < My < oo for all teR, and as [ - X(*) is the Fourier transform of
loZ,1e Z*, X is weakly continuous. Consider the Bochner integral for (f X) ()
as '

(] fOX(@de) = [ fO1 - X(0dt = Jf0)- [ e0)@oZ)(@hyde 43)
since / » X is the Fourier transform of a signed measure
= i 1) Z(d)\)dt, by Fubsini’s theorem,
= i Z(d\)
= z(ljt Z(dM)), by ([81, p. 324) again. (44)

Since | € £* is arbitrary, (44) implies

i fOX(dt = [ fFW)Z@N) e X . (45)

R

Hence, using (21), ohe has

I If X@Odtl, < I S 1N ZIR) =cl [, feL'®), (46)

where ¢ = | Z || (R) < 0. It therefore follows that the set
{i fOX@dt: | [, <1, fe R} < LiP),

and is bounded. Since 4 is reflexive, X is V-bounded. This completes the proof.
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Remarks. 1. Since V-boundedness concept is defined for general Banach
spaces (for a treatment of this case, cf. [33]), and its Hilbert space version is
equivalent to weak harmonizability, by the above theorem, the latter term will be
used in the Hilbert space context. (Using the general definition of V-boundedness,
a characterization of a process X : R — %, a reflexive space, which is a Fourier
transform of a vector measure is given in Theorem 7.2 below. It extends a result of
[12])

2. The preceding proof is arranged so that if R is replaced by a locally
compact abelian (LCA) group G, the result and proof hold with essentially no
change. The functions {e,('), t € G} will then be group characters. Thus the result
takes care of G = R";so the (weakly) harmonizable random fields are included.
Precise statements and further results in the general case will be given later.

If % is the set of all weakly harmonizable processes on R — L3(P) = %, and
T € B(Z), the algebra of bounded linear operators on %, then Y(¢)
= TX(t), t € R defines a process which can be written as:

Y(t) = T(Jg €*Z(d)) = [g €NT<Z) (d}), (47)

by ([8], p. 324), and it can be seen that Z = T o Z: % — & is a stochastic
measure, | Z | (R) < | T ||| Z || (R) < oo. Hence Y € #". Thus one has:

COROLLARY 4.3. B(%)- W = W, orin words, the linear space of weakly
harmonizable processes is a module over the class of all bounded linear
transformations on X = L}(P).

Since each stationary process X is trivially strongly (hence weakly)
harmonizable, if P : & — & is any orthogonal projection, then Y = PX € #/,
i.e. weakly harmonizable by Corollary 4.3. In particularif {X,, ne Z} = Zisan

orthonormal sequence, £, = S_I;(X »Nn>0), let (%) = &, be the orthogonal
projection and Y, = QX, =X, if n>0,=0 if n<0. The process
{Y,,neZ} e, butitis not strongly harmonizable. Thus the class of weakly
harmonizable processes is strictly larger than the strongly harmonizable class.
(The latter is not a module over B(%).)

In spite of the above comment, each weakly harmonizable process can be
approximated “pointwise” by a sequence of strongly harmonizable ones. This
observation is essentially due to Niemi [29]. The precise result is as follows:

THEOREM 4.4. Let X :R — L3(P) be aweakly harmonizable process. Then
there exists a sequence of strongly harmonizable processes X, : R — L4(P) such
that X,(t) - X(t), as n— oo, in LYP) uniformly (in t) on compact
subsetsof R. If R isreplaced by an LCA group G the same result holds with
{X,,nel} beinganetofsuchprocess. (Theconvergenceisherein I*(P)-mean.)




HARMONIZABLE PROCESSES: STRUCTURE THEORY 319

Proof. By hypothesis, there is a stochastic measure Z : % —» Z = L3(P),
such that
X(0) = [ e(MZ(@h), teR.
R
Thus X : R —» % is a continuous mapping. If #'x = S—p;{X(t), te R} = Z, then
the continuity of X (and the separability of R) implies 5y is separable. Hence

there exists a sequence {@, n > 1} = &y which is a complete orthonormal
(CON) basis for Z'y, so that

- i ouX(0, 9), teR, (48)

the series converging in the (norm) topology of # yx for each t. Define

n

X, (1) = ) odX(®), 9) teR. (49)

Claim: {X,(t), t € R}, n > 1,is the desired sequence. [In the general LCA group
case {@,, n € I} is a net of CON elements of # 4, since G, hence 5y, need not be .
separable. Otherwise the same argument works with trivial modifications.]

To verify the claim, it is clear that X ,(t) » X(¢) in 4 for each t € R. To see
that X, is strongly harmonizable, let

L X — (X, @), XeHy.

Then I, e #°% for each k. Hence using the standard properties of the D-S integral,
one has

X(t) = k; ol X () = kzl ¢ LlJr €M Z(dN))
since X is weakly harmonizable,

Pifr &Ml o Z(d)) = [ e (MG (dM), | (50)

Il
.
TP

where () z @il © Z(). Let G,(4, B) = ((,(A), {(B)). Then G, is of finite

k=1
total variation. Indeed, if i, = [ o Z, which is a signed measure (hence has finite
variation) on R, let

N4, B) = (Quhti(4), 014(B)) = mu(A)n(B) .

So G,(A, B) Z t(A)p(B). Since

| i (A) | | m(B) | < (| Hy | (R))2
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for each k, it follows that each 1, and hence G, for each n has finite variation so
that each X, is strongly harmonizable.

It was already noted that X being weakly harmonizable, it is strongly
continuous. [This is true even if R is replaced by an LCA group G (cf. [21],
p. 270).] So if K = R is a compact set, then its image X(K) = #x < Li(P) is
also (norm) compact. But s, being a Hilbert space it has the (metric)
approximation property. [This means the identity on 4, can be uniformly
approximated by a sequence (net) of (contractive) degenerate, or finite rank,
operators on each compact subset of # ,.] Then X ,(t) - X(t)