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1. Introduction

If J-f is a complex Hilbert space and X : R - Xf is a mapping, then the curve

{X(t\ t e R} is often called a second order (or Hilbertian) stochastic process, and

if R is replaced by R", n ^ 2, it is called a (Hilbertian) random field. Following
Khintchine who developed the initial theory (1934), the process (or field) is called

weakly stationary if r : (s, t) i-> (X(s), X(t)), termed the covariance function of the

1 Work supported in part under the ONR Contract No. N00014-79-C-0754
(Modification No. P00001). The material is presented in two talks—at the annual So. Calif.
Probability Conference on December 22,1980, and the SCFAS meeting at Northridge, CA
on May 16, 1981.

AMS (1979) subject classification: Primary—60G12, 60G35, 60G60; Secondary—
62M15.

Key words and Phrases : Weakly and strongly harmonizable process, F-boundedness,
stationary dilations, DS- and MT-integrals, bimeasures, filtering, classes (KF) and (C),
multidimensional processes, p-absolutely summing operators, associated spectra of
processes.
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process, is continuous and depends only on s — t, where (•, •) is the inner product
in XF. Thus r(s, t) r(s — t). But then r : R - C is a continuous positive definite
function and by the classical Bochner theorem (1932), r is expressible as:

r(t) J eia F(dX) t e R, (1)
R

for a unique positive bounded Borel measure F on R. This F is called the spectral
measure of the process. Because of the above connection with the Fourier
transform theory, important advances have been made on the structural analysis
of such stationary processes. For instance, according to a celebrated theorem of
Cramér and Kolmogorov, each such stationary process admits an integral
representation :

X(t) J Z(dX) t e R (2)
R

where Z is an Jf-valued "orthogonally scattered" measure on the Borel sets of R

(i.e., Z is a-additive and (Z(A), Z(B)) F(AnB)), and the vector integral in (2) is

suitably defined. Stationary processes find important applications in such areas

as meteorology, communication and electrical engineering among others. The
well developed theory and applications are now included in many monographs
(cf. e.g. Doob [6, Ch. X-XII], Yaglom [44]), and especially for applications one

may refer to Wiener's pioneering work [43].
While stationary processes (the qualification "weakly" will be dropped)

admit a deep and beautiful mathematical theory, there are many problems for
which stationarity is an unacceptable restriction. For instance, in econometrics
and in the signal detection problems related to the navy, among others, it is quite
desirable that the covariance function r be not so restricted as to be a function of
a single variable. This necessitates a relaxation of stationarity and then (1) cannot
obtain. To accommodate such problems while still retaining the methods of
harmonic analysis, Loève has introduced in the middle 1940's the first weakening
called "harmonizability". Thus a process {X(t\ t e R) c j-f is Loève (to be called

strongly hereafter) harmonizable if its covariance is expressible as (cf. [23], p. 474)

r(s, t) J j eisX~itX' F(dX, dX), s, te R (3)
R R

for a unique positive definite F : R x R - C of bounded variation (in the

classical Vitali sense) in the plane. If F of (3) concentrates on the diagonal of
R x R, (3) reduces to (1). Loève also gave a representation of X(t) analogous

to (2), but now Z(-) will only satisfy (Z(A), Z{B)) F(A, B). Even though r{ -, •

of (3) is bounded and uniformly continuous, one does not have an

elegant characterization of a harmonizable covariance analogous to (1). In fact
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Loève raised this problem ([23], p. 477). A solution of it was presented in ([34],

Thm. 5), but it is not effective in the sense that the conditions are not easily

verifiable, although the characterization reduces to Bochner's theorem in the

stationary case.

Other extensions of stationarity, of interest in applications, soon appeared.

In 1947, Karhunen introduced a class of processes whose covariance r can be

expressed as :

r(s,t)J g(s, X)g{t, X),s, R (4)
R

where {g(t9 •), te R} is a family of Borel functions in L2(R, F(dX)), with F as a

bounded (or a-finite) Borel measure on R. If g(t, X) eltX, then for bounded F (4)

reduces to (1). In 1951, Cramér has introduced in [3] a further generalization, to

be called class (C) here, which contains both (3) and (4), by requiring only that r
be representable as :

r(s, t) » J f g(s, X)g~(t, X')F(dX, dX'), s, t e R (5)
R R

for a family {g{t, •), te R} of Borel functions and a positive definite F of finite
local (i.e., on each relatively compact rectangle) Vitali variation in R2, such that
(5) holds. The corresponding stochastic integral representation of X(t),
generalizing (2), was also given. Both (4) and (5) have only a superficial contact
with the methods of Fourier analysis. However, a very general concept which

fully utilizes the advantages of Fourier analysis and which contains the Loève

harmonizability was introduced by Bochner in 1953 under the name V-

boundedness [2]. It turns out that (cf. Thm. 4.2 below) a second order process is

F-bounded iff if and only if) it is the Fourier transform of a general vector
measure on R into a Banach space 9£. Independently of the work of [2], Rozanov
[40], in 1959, considered a generalized concept again under the name
"harmonizable", but which is different from Loève's definition. It will be called
weakly harmonizable here. It turns out that, in this case, the covariance function r
of the process is formally expressible in the form (3) relative to a positive definite
F which is merely of Fréchet variation finite. The integral in (3) then cannot be
defined in the Lebesgue sense, and a weaker Morse-Transue integral [26]
appears in this work.

Even though each of these generalizations is inspired by the stationarity
notion of Khintchine, each is different from one another, and their interrelations
have not been fully established before. One of the main purposes of this paper is
to present a detailed and unified structural analysis of these processes and
obtain their characterization. This exposition utilizes some elementary aspects of
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vector measure theory which obviates a separate definition of the "stochastic

integral" for each representation of the process under consideration in the form
(2). From this analysis one finds that Loève's definition is more restrictive than
Rozanov's and that Bochner's concept is mathematically the most elegant and

general. Further in the Hilbert space context, it is shown that Bochner's and
Rozanov's concepts coincide. It was already noted in [2] that Loève's definition
is subsumed by F-boundedness. An interesting geometrical feature is that the

Bochner class of second order processes is always a projection of a stationary
family in a Hilbert space. Bochner's concept, as indicated above, is based on
Fourier vector integration, and this abstract point of view yields different

characterizations, one of which extends a scalar result of Helson [12] on

characterizing Fourier transforms of signed measures, to separable reflexive
Banach spaces. A further relation is that a process of the Bochner-Rozanov class

in Hilbert space is a strong limit of a sequence of Loève harmonizable processes,

uniformly on compact subsets of the line R.

A first comparative study of the Bochner and Loève classes in Hilbert space

was given by Niemi in his thesis [29]. Then in [30] and [31] he essentially
established that the F-boundedness in Hilbert space is the projection of a

stationary family, extending a special case by Abreu [1]. The latter point was

clarified and the same result was reestablished by a slightly different method in

[25]. A further extension of the last work was announced in [39]. A key
domination inequality, on which the projection results depend, is based on some

work of Grothendieck. In particular, the methods of [25], [30] and [31] rest on
Pietsch's form of this Grothendieck inequality. The work of the present paper
utilizes some properties of the p-summing operators of [22]. I believe that the

latter point of view yields a better understanding of the structure of the problem,
with a more general solution and additional insight, not afforded by the earlier

work. Thus the present paper is aimed at a comprehensive, unified and extended

treatment of the structure of the Bochner-Rozanov class. It may be remarked

that an essentially equivalent characterization of Bochner's Hilbert space

version can be obtained using the results from an early paper due to Phillips
[33], which seems to have been overlooked by almost all vector measure

theorists and stochastic analysts. It is, in a sense, subsumed under a relatively
recent paper by Kluvanek [21]. But most of all, Bochner's paper [2] has not been

accorded the central place it deserves in probabilistic treatments on the subject.

I hope that the present work will bring some of the many fundamental ideas

of [2] to the forefront.

Finally, the concept of the spectral measure F of (1), so appropriate and

natural in the stationary case (since it is positive and bounded) does not appear in
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a similar form for the harmonizable (or other nonstationary) processes, since F is

usually complex valued as in (3) or (5). To overcome this problem, in the late

1950's, Kampé de Fériet and Frenkiel ([15], [16]) and independently Parzen

[32] and Rozanov [40] have defined an "associated spectrum" for a class of

second order processes X : R — Lq(P). These are processes for which

lim —
T -* co T

(T-\h\
(X(s), X(s + \h\))ds r\h), he R (6)

o

exists. Since r[-) is clearly positive definite, one can apply the Bochner

representation theorem as in (1), in many cases. The resulting positive bounded

measure F for this r is called the associated spectrum of the process X. This class,

to be termed class (KF), contains not only stationary processes but, among
others, many almost periodic ones [35]. With the present methods it is shown in
Section 8 that every weakly harmonizable process has an associated spectrum
from which in fact several other properties can be obtained. A distinguishing
feature of the weakly harmonizable case from the stationary, Cramér, Karhunen,

or Loève definitions is that the theory of bimeasures and the consequent

(nonabsolute) integration of Morse and Transue ([26], [27], [42], [45], [46])
play a vital role in their analyses. This difference has not been fully appreciated in
the literature. (The most comprehensive characterizations of the harmonizable
class are summarized in Theorems 7.3 and 7.4.) For vector valued processes, in
both the weak and strong cases, some new technical problems have to be

resolved. The same is true of random fields. All these aspects have important
applications and some indications are given in Sections 8 and 9. A summary of
some of these results is included in [37]. For greater accessibility and
convenience, the next three sections are devoted to harmonizable processes and
most of the remaining five consider the more general random fields with a

natural transition. However, an essentially self-contained exposition (modulo
some standard measure theory) is presented here.

Notation: The following notation is used: R for reals, C for complex
numbers, Z for integers, Rn for the rc-dimensional number space, and LCA for
locally compact abelian. A step function is a mapping taking finitely many values
on disjoint measurable sets, and a simple function on a measure space is a step
function vanishing outside of a set of finite measure. Overbar denotes complex
conjugation.
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2. Harmonizability

For the work of this paper it is convenient to take the Hilbert space J-f as the
standard function space. Namely, let (Q, E, P) be a probability space and

L2(P)( L2(ft,E,P))

be the space of (equivalence classes of) scalar square integrable functions
random variables) on Q and set

X L20(P) {/ e L2(P) : J 0}
n

This choice does not really restrict the generality since any abstract Hilbert space
is known to be realizable isometrically as a subspace of L2(P) on some

probability space (cf. e.g., [36], p. 414). From this point of view, a process
{X(t), t 6 R} c= Lq(jP) is stationary if its covariance r satisfies r(s, t) r(s — t\
where

r(s, t) E(X(s)X(t)) J X(s)X(t)dP (X(s), X(t)), s,te R
n

and E is also called the "expectation" integral). Since r(-) is of positive type
positive [semi-] definite), assuming it to be jointly measurable (this is implied

by the measurability of the random function {X(t\ t e R}), it follows that r
admits the representation

r(t) J eia F(dX), a.a.(t) (Leb.). (1')
R

It may be remarked that in the original (1932) version, Bochner assumed that r(-)

is actually continuous, but soon afterward in (1933) F. Riesz showed that
measurability itself yields this (slightly weaker) form (F). This was also used in

[33].
For a stationary process {X(t\ t e R}, one easily verifies that it is mean

continuous (i.e., E(\X(s) — X(t)|2) 0 as s -* t) iff the covariance r(-, •) is

continuous on the diagonal of R x R. Thus the measurability of r and the

validity of (1;) everywhere implies already the mean continuity of the stationary
process! So for certain applications of the type noted earlier, it is desirable to
weaken the hypothesis of stationarity retaining some representative features.

This was done by Loève, and it is restated in the following form :

Definition 2.1. A process X : R - Ll(P) is strongly harmonizable if its
covariance r is the Fourier transform of some covariance function p of bounded

variation, so that one has
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r(s,t)»J J p (d,R. (3')
R R

It was noted in the Introduction that there is no efficient characterization of r

given by (3'). There is however a more visible drawback of this concept. Since

strong harmonizability is derived from stationarity, so that the latter class is

included, consider a "truncated series" {X(n\ n e Z} of a stationary series

{X(n), ne Z} defined as : X(n) X(n) for finitely many n, and X(n) 0 for all

other ne Z. Then {X(n), ne Z} is easily seen to be strongly harmonizable. But if
X(n) X(n), for infinitely many n, and 0 for all other n, then {X(n\ neZ}
need not be strongly harmonizable, as the following example illustrates.

Let (Q, £, P) be separable and {/„, n e Z} c L§(P) be a complete

orthonormal set. Then r(m, n) ôm_„ r(m — n). So the sequence is stationary

and (T) becomes
71

m,ne Zr(m — n)
2n

Now consider the truncated series, fn /„, n > 0, and 0 for n ^ 0. Then

r(m, n) 1 if m n > 0, 0 otherwise. But r does not admit the

representation (3'). For, otherwise, r(m, n) will be the Fourier coefficient of the

representing p (of bounded variation) which is only nonvanishing on the ray
(m n> 0) in Z2. It is a consequence of an important two dimensional extension

by Bochner of the classical F. and M. Riesz theorem that p must then be

absolutely continuous relative to the planar Lebesgue measure with density p'.

But this implies r(m, n) -> 0 as | m | + | n | -> oo by the Riemann-Lebesgue

lemma, and contradicts the fact that r(m, n) 1, for all positive m n and n

-> oo. Hence f cannot admit the representation (3') so that {fn, ne Z} is not

strongly harmonizable. This example is a slight modification of one due to
Helson and Lowdenslager ([13], p. 183) who considered it for a similar purpose,
and also appears in [1] for a related elucidation.

The above example and discussion lead us to look for a weakening of the
conditions on the covariance function, since it is reasonable to expect each

truncation of a stationary series to be included in a generalization, retaining the

other properties as far as possible. Such an extension was successfully obtained in
two different forms in the works of Bochner [2] and Rozanov [40]. The precise

concept can be stated and its significance appreciated only after some
preliminary considerations.

The measure function p of (3') has the following properties :

(i) p is positive definite, i.e.
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p(s, t) p(t, s), £ £ aflj p(s;, 0 a, e C
i=i j i

(ii) p is of bounded variation, i.e.

sup X È S SI p(ds> dt> I: A" bj e '
i=l j=l A B

1 i
disjoint} < oo

where ^ is the Borel a-algebra of R. If F : ^ x ^ C is defined by F{A, B)

jx jß P(ds, dt)> it follows from (i) and (ii) that there exists a complex Radon

measure \x on R2 such that F{A, B) p(,4 x B), where ^4 x B e ^ ® J, and p is

positive definite. On the other hand, the defining equation of F implies that F is

positive definite (so (i) holds with p(si5 Sj) replaced by F(Ah Aj)) and (ii) becomes

V(F) sup(X t \F(Ai9Bj)\:Ai9Bjea9
i=l7=1
disjoint} < oo

But (3') is meaningful, if p is replaced by F under the following weaker conditions.
Let F : x & -> C be positive definite and be a-additive in each variable

separately. Equivalently, if $}) is the vector space of complex measures on
let v(^) F(A, •), A e so that v : & Ji{R, £%) is a vector measure. By

symmetry, v : B -» F(\ B) is also a vector measure on & -> R, ^). But
R, — 9[ is a Banach space under the total variation norm, and hence v (as

well as v) has finite semivariation by a classical result (cf. [8], IV. 10.4). This means,

Il v II (R) sup {II £ a^iAi)IL: I ûj I < 1, e disjoint} < oo
i 1

Transferred to F, this translates to :

|| F||(R x R) sup { XXafij Aß: A, e disjoint,
i=i i=\

I a; I < 1} < co (7)

When (7) holds, F : x & -> C will be called a C-bimeasure of finite
semivariation. [It should be noted that the a-additivity of F(-, •) in each of its

components can be replaced by finite additivity and continuity of F from above

at 0 in that | F(An, An) | -> 0 as An[ 0.~\ The desired generalization follows
n

from (7) if it is written in the following form. Let (p £ a&A. and
i- 1

^ Z hflBp Ai e Bj g &
j= i

and each collection is disjoint. Set
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M Z Z a& F(Ä» bj) •

i=lj=l
Clearly I is well-defined, does not depend on the representation of cp or \|/, and

/(cp, cp) > 0. So (cp, \|/) /(cp, \|/) is a semi-inner product on the space of ^-step
functions. Hence by the generalized Schwarz's inequality one has :

I /(cp, \|/) I2 < /(cp, 9) • /(\|/, \|/). (9)

Taking suprema on all such step functions cp, \J/ such that

II cp L < 1, II ^ L < 1

(|| • Il
M

is the uniform norm), one deduces from (9) and (7) that

Il F II (RxR) ^ sup {I J Z afij F(Ab Bj) | : J a£ | «1,
i= 1 J=1

I bj I ^ 1, 4/, Bj e disjoint} ^ || F || (R x R), (< V(Fj). (10)

Thus II F II (R x R) can be defined either by the middle term (as in [40]) or by (7).

For a bimeasure, || F || (R x R) is also called Fréchet variation of F (cf. [26],

p. 292) and V(F) the Vitali variation, (cf. [26], p. 298).

It should be emphasized that a set function F which is only a bimeasure (even

positive definite), need not define a (complex) Radon measure on R2. In fact such

bimeasures do not necessarily admit the Jordan decomposition, as counter

examples show. Thus integrals relative to F (even if || F || (R x R) < 00) cannot

generally be of Lebesgue-Stieltjes type. Treating v: F(A, •), A e as a

vector measure into Ji(R, one can employ the Dunford-Schwartz (or D-S)
integral (cf. [8], IV. 10), or alternately one can use the theory of bimeasures as

developed in ([26], [27]) and [42]. This is the price paid to get the desired

weakened concept, but it will be seen that a satisfactory solution of our problem
is then obtained, and both these integrations will play key roles.

Let us therefore recall an appropriate integration concept to be used in the

following. In ([40], p. 276) Rozanov has indicated a modification without
detailing the consequences. (This resulted in a conjecture [40, p. 283] which will
be resolved in Section 8 below.) Instead, a different route will be followed : namely
the integration theory of Morse and Transue will be used from [27] together with
a related result of Thomas ([42], p. 146). However, the Bourbaki set up of these

papers is inconvenient here, and they will be converted to the set theoretical (or
ensemble) versions and employed.

Let F : & x & -+ C be a bimeasure, i.e. F(-, B), F(A, •) are complex measures
on Hence one can define as usual ([8], III.6),
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h(fA) |r f(f) F(dt, A). (11)

for bounded Borel functions / : R -* C. Then Tfif •) is a complex measure. In
fact I1 : & -> (B(R, Jf, C))*, the B(R, Jf, C) being the Banach space of bounded
complex Borel functions under the uniform norm, is a vector measure. So one
can use the D-S integral (recalled at the beginning of the next section), defining

9) (I mh (dt)) (f) eCfgeR, a,C). (12)
R

Similarly starting with F(A, •) one can define I2(f, g). In general

h(f,g) # i2(f,g). (13)

In fact the Fubini theorem does not hold in this context. For a counterexample,
see ([27], §8). If there is equality in (13), then the pair (/, g) is said to be integrable
relative to the bimeasure F, and the common value is denoted /(/, g) and

symbolically written as (/, g need not be bounded) :

Kf, 9)J I f(s)g(t)F{ds, dt). (14)
R R

This is a Morse-Transue (or MT-) integral. While a characterization of MT-
integrable functions is not easy, a good sufficient condition for this can be given
as follows, (cf. [27], Thm. 7.1 ; [42], Théorème in §5.17). Iff g are step functions,

n n

so that f Yj ailAt> d Y bjlßp then clearly I(f g) always exists and
i= 1 j=l

Kfg) Y Y afij F(Ai9 Bj). (15)
i=lj=l

Next define for any cp ^ 0, v|/ ^ 0, Borel functions,

7(cp, v|/) sup {I I(f g) I : | / | ^ <p, | g | ^ \|/, /, g

Borel step functions},
and if u, v are any positive functions,

I*(u, v) inf {/(cp, \J/) : cp ^ u, v|/ ^ v, cp, v)/ are Borel} (16)

Now the desired result from the above papers is this : If (/, g) is a pair of complex
Borel functions such that I^f g) and /2(/, g) exist in the sense of (12) and (13),

and /*(|/| ,\g\) < oo, then (/, g) is MT-integrable for the C-bimeasure F. In the

case that the bimeasure F is also positive definite and has finite semivariation,
then each pair (f g) of bounded complex Borel functions is MT-integrable
relative to F. Moreover, using the notations of (7), one has

\I(f,g)\< \\ F \\- \\ f IL - Il g IL, (17)
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where || F || || F || (R x R). It should be noted, however, that the integrability
of (/, g) generally need not imply that of (|/|, \g\)9 and the MT-integral is not an

absolutely continuous functional in contrast to the Lebesgue-Stieltjes theory, as

already shown by counterexamples in [26] and [27]. Fortunately a certain

dominated convergence theorem ([27], Thm. 3.3) is valid and this implies some

density properties which can and will be utilized in our treatment below. Also /
is termed F-integrable if (/, /) is MT-integrable. Our definition above is

somewhat more restrictive than that of [27], but it suffices for this work. For the

theory of [27], the space B(R, <%, C) in (12) and (13) is replaced by C00(R), its
subset of continuous functions with compact supports, with the locally convex
(inductive limit) topology. Note that, thus far, no special properties of R were
used in the definition of the MT- integral, and the definition and properties are
valid if R is replaced by an arbitrary locally compact space (group in the present
context). This remark will be utilized later on.

With this necessary detour, the second concept can be given as follows :

Definition 2.2. A process X : R Lq(P), with r(-, •) as its covariance
function, is called weakly harmonizable if

r(s, t) I(eis(\ eit(-]) J f eisX~itX' F{dX, dX), s,teR, (18)
R R

relative to some positive definite bimeasure F of finite semivariation where the
right side is the MT-integral.

In particular r is bounded and continuous (by (17) and Thm. 3.2 below).
Moreover, if F is of bounded variation, then the MT-integral reduces to the
Lebesgue-Stieltjes integral and (18) goes over to (3). The following work shows
that the process of the counterexample following Definition 2.1 is weakly
harmonizable. The same counterexample also shows that harmonizable
processes generally do not admit shift operators on them, in that there need not
be a continuous linear operator

xs : X(t) i-> X(t + s) g Lo(P), te R

on L20{P). This is in distinction to certain other nonstationary processes of
Karhunen type (cf. [9]).

3. Integral representation
OF A CLASS OF SECOND ORDER PROCESSES

In order to introduce and utilize the "F-boundedness" concept of Bochner's,
it will be useful to have an integral representation of weakly harmonizable
processes. This is done by presenting a comprehensive result for a more general
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class including the (weakly) harmonizable ones. It is based on a method of
Cramér's [3], and the resulting representation yields by specializations both the

harmonizable, stationary, Cramér class of [3], as well as the Karhunen class

(restated below). This is detailed as follows.
Recall that if (Q0, stf) is a measurable space (i.e., stf is a a-algebra of sets of Q0)

and 9C a Banach space, then a mapping Z : stf - ^ is called a vector measure ifZ
is a-additive, or

00 00

Z( u At) I Z(Ad
i 1 i 1

disjoint, the series converging unconditionally in the norm of 9C. If % Lq(P)
where (Q, X, P) is a probability space, then a vector measure is sometimes termed

a stochastic measure. The integration of scalar functions relative to a vector

measure Z is needed, and it will be in the sense of Dunford-Schwartz ([8], IV. 10).

n

This may be briefly outlined here. If / X ciüLa^ e stf, disjoint, define as
i 1

usual

\A f(s)Z(ds) X atZ(AnA^ e&, A e stf (19)
i 1

Now if 0 : Q0 - C is -measurable, and are j3/-step functions such that gn

-> g pointwise, one says that g is D-S integrable whenever for each A e sé,

Ha g„(s)Z(ds), > 1} c

is a Cauchy sequence. Then the limit, denoted gA, of this sequence is called the

integral of g on A, and is denoted as

Qa \ag(s)Z(ds)lim \A gn(s)Z(ds), A e s/J. (20)
n~+ ao

It is a standard (but non-obvious) matter to show that the integral is well-defined,

independent of the sequence used, and the mapping A^> \A g(s)Z(ds) is g-
additive on sé, and g i— \A g(s)Z(ds) is linear. Also

|| ^ g(s)Z(ds) I ^ || g L )| Z || (A), ge B(Q, C), (21)

where || Z || (•) is the semivariation of Z (cf. (7)) which is always finite on the a-
algebra stf. [If stf is only a ô-ring and £10 $ then Z need not have finite

semivariation on stf.] The dominated convergence theorem is true for the D-S

integral. (See [8], IV.10, for proofs and related results. The latter exposition is

very readable and nice.)



HARMONIZABLE PROCESSES! STRUCTURE THEORY 307

The general class noted above is the following :

Definition 3.1. A process X :R -+ Lg(P), with covariance' r(-, •), is said to be

weakly ofclass (C) (C for Cramér) if (i) there exists a covariance bimeasure F on

R x R of locally bounded semivariation in the sense that

F(A, B) F(B, A\ X t aidJ F(Ai> aieC'
i= 1 j= 1

Here At e 1 ^ i ^ n, bounded, and for each bounded Borel A a R, if &(A)

{A n B : B e &}, then

|| F || (A x A) sup { I X £ afij F(Ab Bj) I : I a« I < 1, I I < 1
»

i= l j= l
Ah Bj g @(A), disjoint} < oo ;

(ii) there exists an MT-integrable (for F) family gt : R - C of Borel functions,

t g R, such that I(\gs\, \gs\) < oo, s g R, where I denotes the MT-integral relative

to F, in terms of which one has (gt(k) is also written as g(t, X}) :

r(s, 0 I(gs, gt) f J gs(k)gt(k')F(dX, dX), s, t g R (22)
R R

Remark. Note that in this definition F can be given by a covariance

function p as in (3') since, for A [a, b) and B [c, d) one defines (A2F) (A, £)
as the increment p(b, d) — p(a, d) — p(b, c) + p(a, c) and extend it to ^ x
Also in (22) it is possible that || F | (R x R) oo. IfF has finite variation on each

compact rectangle of R2, then F determines a locally bounded complex Radon

measure, and the above class reduces to the family defined by Cramér in [3], and
called class (C) and analyzed in [35]. If || F || (R x R) < oo, then one can take
gt(X) g(t, X) eltX so that the weakly harmonizable class is included. Again it
may be noted that R can be replaced by a locally compact space or an abelian

group in (22) so that R" or the rc-torus Tn is included.

To present the general representation, it is necessary also to note the validity
of the D-S integration embodied in (20), (21) when the set functions are defined
on arbitrary 6-rings instead of a-algebras, assumed in [8]. Further our measure
Z : $ - & has the property that it is Baire regular in the sense that for each

/IgI and s > 0, there exist a compact CgI, open U e $ such that C c: A
C= U and II Z(D) || < e for each D e D a U - C, where J1 is the Baire

Borel here) a-ring of R. Even if R is replaced by a general locally compact
space S, with ^ as its Baire a-ring and Z\$ a-additive, one has Z to be
Baire regular having a unique regular extension to the Borel a-ring of S.

L'Enseignement mathém., t. XXVIII, fasc. 3-4. 21
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Actually Z concentrates on a a-compact Baire set S0 a S. Moreover if Z is

weakly regular in that x* ° Z is a scalar regular signed measure, x* e &*, then Z
is itself regular. (See [21], pp. 262-263 for proofs with only simple modifications
of the arguments given in [8], IV. 10.) In each case the measure Z has finite
semivariation on bounded sets in $ (cf. (7) where & is replaced by the ring
generated by all bounded Baire sets for S). If c= & is the class of all bounded
sets (a set is bounded if it is contained in a compact set), then it is a 5-ring, and the

D-S integration of a scalar function relative toZ: holds as noted above.

With this understanding the following is the desired general result.

Theorem 3.2. Let X : R - Ll(P) be a process which is weakly of class

(C) in the sense ofDefinition 3.1, relative to a positive definite bimeasure F of
locally finite semivariation, and a family {gs, seR} ofBorel functions such that
each I gs \ is MT-integrable for F. Then there exists a stochastic measure

Z : &o - Lo(P) where &0 is the h-ring of bounded Borel sets of R, and

(ß, £, P) is an enlargement of (Q, Z, P) so Ll(P) =3 Ll(P), such that

(i) E{Z(A) - Z(B)) (Z(A), Z(B)) F(A, B), A,Be@0,

(ii) X(t) j g(t, X)Z(dX), t eR (23)
R

where the integral is in the D-S sense for the ô-ring &0.

Conversely, if {X(t), t e R} is a process defined by (23) relative to a

stochastic measure Z : &0 - Ll(P) and a Borel family {gt, t e R}, D-S

integrablefor Z and 0&o, then it is weakly ofclass (C) relative to F defined

by

F(A, B) E(Z(A) - Z(B)), A,Be@0,

and each \ gt\,t e R, is MT-integrable for F. Moreover, if

J^x sp{X(t), t g R}
and

w{Z(A),AG@o)

in Ll(P), then x z when and only when the {gt, t g R} has the

property that

j J fßMK)F(dk dl!) 0, all t g R
R R

implies j J f(l)f(l')F(dl,dl') 0 both being MT-integrals.
R R



HARMONIZABLE PROCESSES! STRUCTURE THEORY 309

Proof : The basic layout is that of [3]. The integrals used there will have to
be replaced by the D-S and MT-integrals appropriately. Since the changes are

not immediately obvious, the essential details are spelled out so that in
subsequent discussions, such arguments can be compressed.

For the direct part, let the process be weakly ofclass (C). Then its covariance r
admits a representation (with the MT-integration) as:

r(s, t) E{Xis)X(t)) J I gfm^mdk dX'). (24)
R R

Since F is a positive definite bimeasure, if

lf {/' 11 f(X)f(X')F(dX,dX') (f,< co / is MT-integrable for F},
RR

and since IF(f, f) f f)F > 0, the earlier discussion implies {Lj, (•, -)F} is a
semi-inner product space, and g, e Lj,teR.Let T: Lj -> be defined by
T : gsi-> 2f(s), extending it linearly. Then (24) implies

(Tgs,Tg,)^(gs,g,)F,R.(25)
Thus T is an isometric mapping ofAj sp{g„ R} <= onto x where
is the space given in the statement of the theorem.

Suppose first that Ajis dense in Lj. By ([27], Thm. 11.1) every Borel function
with I*(\f\, l/l) < co is in Lj, so that, in particular xA e Lj for each since
F is locally of finite semivariation. By the density of Aj in Lj and the isometry,
there is a Z„ e XXxsuch that T%A ZA. If e <£0. then

LiZA ZB) (Txa, TXB).Wx A' XB)F L(A, B),

and if An B0 also holds, then

E(\ZA.b-ZA-ZB\>) (XAUB~XA~XB0

since F is additive in both components. Thus Z,., : @0 <= Lj(P) is
oo

additive. If {/!„}» c: @0, Au A„e@0,then
n 1

mA-î-ZJ)F(|Z „ +Z -tzAJ2)
i-l v Ai ^ A i j=1

i - 1 i> n

"£(|Z I2) F( u At,u/I) -» 0
u Ai i>n i > n

i > n
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as n -> oo, since F is continuous at 0 fropi above (cf. discussion after (7)). This Z
is a-add.itive on and hence is a stochastic measure of finite semivariation on
each compact set there. Clearly JYZ cz j^x. Since {gt, te R} is dense in Lj,
%A e Lj, and each gt is assumed MT-integrable for F, there is a sequence gn

n

Z aidu 1a in Ljsothat (g„-XA,(L~Xa)f -> 0. Hence by the isometry
i 1

n

E(I Y, aiX{ti) — ZA\2) -> 0, as rc -> oo. It now follows easily that {Z^, T g @0} is
i 1

dense in Thus x Jf7z, and each element in corresponds uniquely
to an element of Lj, the completion of Lj and where elements he Lj with
(h, h)F 0 and 0 are identified. Let Y(t) be defined as :

Y(t) J gmzm e^z #x. (26)
R

Here the right side is the D-S integral on the ô-ring J^0, which can be defined by a

slight modification of the work of ([8], IV. 10), as noted in [21]. Thus,

(Y(S), Y(t))(J gs(X)Z(dJ
R R

I j gs(X)g
R R

which holds if gs is a ^-measurable step function and then the general case

follows by ([27], Thm. 3.3 or [46], p. 126), since | gs | is MT-integrable in our
sense. Now by definition (1 • i • m denoting L2(P)-mean) :

Z(A) T(xa) T(lim g„),where g„ %a ln Li
n

l i m T(g„) l i m £ a, T(gu)
n n i 1

lim £ a, X(tJ 1-i'ml, (say).

ni - 1 n

The L2(F)-limits imply

E(X(s)Z(Aj) lim E(X(s)Jn)
n

lim £ a, E(X[s)X(ti))lim £ a,- r,)
n i 1 n i 1

lim £ aJ J gs(X)g'dV)
n i 1 RR

J J <&') •
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f ~ f \ 1 2

By isometry, if Y ' Z(Aj)> one §ets ^ where hn £ bj %Aj g Lf,
;=i j=1

£(*(s)L) 11 gs(X)UX')F(dX, <&').
R R

So again by the MT-integrability of gs(-), the preceding result yields

£(*(5)7(0) J J gs(X)gt(X')F(dX, dX').
R R

It follows from this that

£(|*(5) - Y(5)|2) » £(|*(5)|2) + £(|7(5)|2) - E(X(s)Y(s)) - E{Y(s)X(sj) 0.

Hence *(5) Y(s) a.e., 5 e R. So (26) implies (23) in the event that Aj is dense in

Li
For the general case, where Aj LjQ Aj is nontrivial and where the "bar"

again denotes completion, let {ht, t e R} be a basis of ÄJ. If R R 4- R is a

disjoint sum to give a new index set, let gs for s g R, and hs for s e R, then

{gs, s e R} is dense in Lf. So by the preceding case, on extending T to x from Lj
-> Lq(P), where (£1, 2, F) is possibly an enlargement of (Q, S, F) by adjunction
(cf., e.g., [36], p. 82), with x%A %a e Lq(P), one has

7(5) $gs(X)Z(dX) e Lq(P) (27)
R

Observe that all gs are Borel and MT-integrable in this procedure. Hence, as

before, 7(s) *(5) for 5 g R, and (23) holds again. In this case z 3 x, and
the inclusion is proper.

Conversely, let {X(t), te R} be a process defined by (23). Let F(A, B)

(Z(A), Z(B)) and gn Y ai%Ai9 Af A> B Then for the D-S integral (23)
i 1

one has

I! F ||(A, A) sup { f f a,-a-. F(T,, ,4,.) : T; e ^(A), | a, |< 1}
i=l j=l

sup {II £ a; zu,) Hi : I a, I s: 1, Ai e 3(A)}
i 1

«S || Z ||2(/1) < co, Ae@0.

Thus if X9nJR g„(X)Z(dX), one has with h„ another such step function,

E(XgXJJR JR gn(k)Kn(\')F(dK (28)

Now given gs e Lj which is MT-integrable in our (restricted) sense (this is

analogous to a definition of [46]) and for which (23) holds, the gs can be
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approximated by suitable Borel step functions {gn}f <= L\ such that gn -> gs

pointwise | gn | ^ | gs | and similarly with gn -> gt such that

1(9«, 9«) -> l(9s,9,),\9si) < 00 •

Applying this to (28), one obtains

f« f. gs(k)g-,W)F(dX,dX')lim JR jR
n

n

lim(jR gn(X)Z(dX), jR gn(X')Z(dX'j)
n

(JR

since for the D-S integral the dominated convergence holds,

(X(s), X(t)) r(s, t). (29)

This shows (2f(t), £ g R} is of weakly class (C).

Regarding the last assertion, it is evident that{gs, s g R} is a basis in Lj iff
/(/, gt) 0, t g R implies /(/, /) 0. This is clearly necessary and sufficient for

since otherwise, (with possibly an enlargement of the underlying
probability space) Jfz id x and p in the notation of (27). Thus the

proof is complete.
Remarks. 1. If F is of locally finite variation, then it defines a locally finite

(i.e., finite on compact sets) complex Borel Radon) measure in the plane R2,

and then the MT-integrals for F reduce to the Lebesgue-Stieltjes integrals. Thus
I(gs> gs) < oo is equivalent to the classical theory, and the above result specializes

to Cramér's theorem of [3]. However, for the general case ofbimeasures (as here),

the MT-theory (or a form of it) appears essential.

2. The above theorem is true if R is replaced by a locally compact space, since

no special property of R is used. Only the concept of boundedness is needed.

When || F ||(R x R) < oo, so that F is of finite semivariation on R2, then by

([27], Thm. 11.1) each bounded Borel function g is MT-integrable for F. Taking
gt(X) QitX in the above theorem, one deduces from this result the important
representation given by Rozanov ([40], p. 279). The last statement is not too
hard to establish. [A separate proof of it is also found in ([29], p. 36).]

Theorem 3.3. Let X : R Ll(P) be a process such that || X(t) ||2 < M
< oo, t g R, and be weakly continuous. Then the process is weakly harmonizable

relative to some covariance bimeasure F of finite semivariation (cf. Definition
2.2) iff there is a stochastic measure Z : -> Lq(F) such thatfor each A, B in

<%, F(A, B) (Z(A), Z(B)) and
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X(t) jR Z(dX), te R, (30)

the right side symbol being the D-S integral and || Z ||(R) < oo. Moreover, X
is strongly harmonizable iff the covariance bimeasure F of Z in (30) is of
bounded variation in R2 (cf. Definition 2.1). In either case the harmonizable

process X is uniformly continuous, and is represented as in (30).

Suppose that in the representation (23) the Z-process is orthogonally

scattered implying (Z(A), Z(B)) 0 whenever A n B 0. Then

F(A, B) (Z(A), Z(B)) F(AnB),

where F is the covariance bimeasure and F is a positive locally finite measure on
J1 so that it is cr-finite there. Then

r(s, t) E(XsXt) fR gs(X)g~t(X)F(dX). (31)

A process whose covariance function R satisfies this condition is termed a

Karhunen process. Moreover, if F is a finite measure and gs(X) elsX, the

resulting one is the classical (Khintchine) stationary process. In both these cases

there are no weak type extensions.

Let us introduce a further generalization of the (weak) Cramér class to
illuminate the above Definition 3.1, and for a future analysis. Let (Q, £, p) be a

measure space and M(p) be the space of scalar p-measurable functions on Q. Let
N(-) : M(p) -> R+ be a. function norm in that for ffn in M(p), (i) N(f)

N(\f\) ^ 0, (ii) 0 ^ fn î => N(fn) î, (iii) N(qf) \a\ N(f), a e C and (iv) N(f
+ g) ^ N{f) + N(g). The functional N has the weak Fatou property if

0 ^ î /, lim N( fn) < cx>=>N(/)< oo,
n

and has the Fatou property if instead N{fn) | N(f) ^ oo). The associate norm AT

of N is defined by :

N'(f)sup {I Jn(/g) (co)p(^co) I : Nig) < 1}. (32)

One sees that N' is a function norm with the Fatou property. If

N(-) || • ||p, 1 < ^ oo

then

N't)1* II,, P"1 =1.
The general concept alluded to above is as follows :

Definition 3.4. (a) Ifr : R x R-> C is a covariance function, it is said to be
of classN (C) relative to a function norm N, if there is a covariance bimeasure
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F : R x R - C of locally finite N-variation (let N' be the associate norm of N),
and there exists a family {gv te R} of Borel functions which are MT-integrable
relative to F, such that

Ks, f) j„ JR gs(X)g-t(X')F{dXR, (33)

and where locally finite A-variation is meant the following :

00 > Il F I\n(A x A) sup { I /(/, g) I : N'(f) ^ 1, N'(g) ^ 1} (34)

Here f g are Borel step functions, with supp(/) c= A, supp(g) a A, A e &0, the

ô-ring of bounded Borel sets of R.

(b) A process X : R -> Ll(P) is of classN(C) if its covariance function r is of
classN (C) so that it is representable as (33).

It is clear that if iV(-) || • || l so that N'{-) || • || the iV-variation is simply
the 1-semivariation of Definition 3.1 and that

\\F\\N Il F Ij («a || F II).

Remark. Without further restrictions, classN (C) need not contain the weak

or strong harmonizable processes. However if N is restricted so that, letting

LN(P) {/ g M(P) : N(f < oo}, L°°(JP) c lF(P) c L\P),

where p P is a probability, then every class^ (C) will contain both the weak
and strong harmonizable families, as an easy computation shows. If N(-)

|| • || l5 then class! (C) is the class which corresponds to the covariance
bimeasure offinite semivariation. This includes the classical Loève and Rozanov
definitions. Again this definition holds, with only a notational change, if R is

replaced by a locally compact group G. A brief discussion on some analysis of
these classes which extend the present work is included at the end of the paper.

4. T-boundedness, weak and strong harmonizability

The definition of weak harmonizability is of interest only when an effective

characterization of it is found and when its relations with strong harmonizability
are made concrete. These points will be clarified and answered here. Now
Theorem 3.3 shows that a weakly harmonizable process is the Fourier transform

of a stochastic measure and this leads to a fundamental concept called V-

boundedness (' F' for "variation"), introduced much earlier by Bochner [2],
which is valid in a more general context. This notion plays a central role in the

theory and applications of weakly harmonizable processes (and fields) which are
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shown to be F-bounded in the context of Ll(P). Further this characterization

facilitates a use of the powerful tools of Fourier analysis of vector measures. The

desired concept is as follows (cf. [2], and also [33]):

Definition 4.1. A process X : R -> SC, a Banach space, is V-bounded if Jf(R)
lies in a ball of SC, X as an ^-valued function is strongly measurable (i.e., range of
X is separable and X~1(B) e for each Borel set B a SC), and if the set C is

relatively weakly compact in SC, where

C {jR f(t)X(t)dt : 1 / ||u < 1, / g L^R)} c X (35)

and where f(t) jR f(X)eiadX, jR f(t)X(t)dt being the Bochner integral. If SC is

reflexive then the condition on C may be replaced by its boundedness. (Here if
the measurability of X is strengthened to weak continuity, then it actually
implies the strong [and even uniform] continuity.)

Let us establish the following basic fact when SC Lq(P) :

Theorem 4.2. A process X : R -* Ll(P) is weakly harmonizable iff X is

V-bounded (i.e., || X(t) ||2 ^ M0 < co,t e R, and the set in (35) is bounded)
and weakly continuous.

Proof : For the direct part, let X be weakly continuous and F-bounded.
Then

Il jR f(t)X(t)dt||2< c II / L / 6 R), (36)

by Definition 4.1. Let {f :feL'(R)} <= C0(R), the space of complex
continuous functions vanishing at "oo"; the inclusion holds by the Riemann-
Lebesgue lemma. Moreover, is uniformly dense in C0(R), since is a real
algebra in C0(R) and separates points of R so that the Stone-Weierstrass theorem
applies (cf. [24], §26.B). Let & : /1-> J f(k)ët(k)dX, t e R, where et(X) eia.

R

Then : l}(R) C0(R) is a one-to-one contractive operator. Consider the
mapping

T : -> X Lg(P), by T(f) JR f(t)X(t)dt e SC

This is well-defined, and the following diagram is commutative :

R) Z ^ 9
Ti(f) JR f(t)X(t)dt e %

9C

By hypothesis T is bounded and by the density of <W in C0(R), it has a norm
preserving extension T to C0(R). Now T will be given an integral representation
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using a classical theorem due to Dunford-Schwartz ([8], VI.7.3) since T is a

weakly compact operator because 9E is reflexive.

To invoke the above cited theorem, however, it should first be observed that
the result holds even if the space C(S) of continuous (scalar) functions on a

compact space S (for which it is proved) is replaced by C0(Sf) with a locally
compact space Sf. Here R. Indeed, let SP be the one-point (at "oo")
compactification of Pf and consider the space C(ßP\ Now C0(SP) can be identified
with the subspace {/ e C{SP) : /(oo) 0}. Since f : C0(PP) -> 9C is continuous
and C0(PP) is an "abstract M-space", there is a continuous operator T : C(SP)

- such that T | C0(PP) T. This follows from the fact that for any Banach

space ^containing a subspace which is an abstract M-space, there is a projection
of norm one on St onto that subspace, by the well-known Kelley-Nachbin-
Goodner theorem,(cf. e.g., [8], p. 398), and T T ° Q. Hence by the Dunford-
Schwartz theorem noted above, there is a vector measure Z on y into such

that

T(f) J- f(t)Z(dt\ f e C(&), (37)

and || f || || Z || (y7), the integral on the right being in the D-S sense. Define

Z : &(£?) as Z(A) Z(<9*nA), A e $(£Z). Then Z is a vector measure and
Il Z II < Il Z II. Moreover, if f0 -f\y,then

T(f fy fo(t)Z(dt) + f,{oor f e cm
T[f0), since /( co) 0

Hence T(f)f(/), / e C0(^) with || T||< 1 || || H 4 II ?||, and

tf) Syf(t)Z{dt),f6 C0m • (38)

Thus writing R for -V from now on (the above general case is needed later), it
follows that

H Tw sup {II Jr f(t)Z(dt) || : / e C0(R), II / L < 1} - fl z ||(R)

II 2 ll(K),

and T and Z correspond to each other uniquely. Since f | <3t => this implies

T (/) jR f(t)Z(dt) f(t)X(t)dt, f e R), (39)

and || T|| || Z H(R).

Let I e SC*. Then (39) becomes (since a continuous operator commutes with
the D-S integral, cf. [8], p. 324 and p. 153, and SC* is the adjoint space of,/').

y\t) bZ{dt)jR/(t) loX(t)dt. (40)
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In (40) now both are ordinary Lebesgue integrals, and hence using the Fubini
theorem (for signed measures) on the left one has :

fR fm fB e,(i)i o zm jE m ° xw.
Subtracting and using the same theorem of ([8], p. 324),

Jr /(0/(Jr et(X)Z(dX) - X(t))dt 0, l e 3C\ f e L/R). (41)

It follows that the coefficient of / vanishes a.e., (everywhere as it is continuous).
Since / g is arbitrary it finally results that the quantity inside / is zero, for each

t e R. Thus

m Jr et(X)Z(dX) fR eux Z{dX\ te R (42)

Hence X is weakly harmonizable by Theorem 3.3.

For the converse, let X : R -> Lq(P) be weakly harmonizable. Then X admits
a representation of (42) by Theorem 3.3. Since || Z || (R) < oo, (21) implies
|| X(t) || 2 ^ M0 < oo for all t e R, and as / ° X(-) is the Fourier transform of
I ° Z, I e &*, X is weakly continuous. Consider the Bochner integral for (/X) (•)

as

/(J f(t)X(t)dt) I /(f)/ o x(r)dt f /(f) • J (ZoZ) (<ft,)df, (43)
R R RR

since I ° X is the Fourier transform of a signed measure

J J f(t)et(X)l o Z{dX)dt, by Fubini's theorem,
R R

J /Ml o Z(<ft)
R

'(l.A'1'-)Z(^/-)), by ([8], p. 324) again. (44)
R

Since I e is arbitrary, (44) implies

J /(f)*(f)df I f(X)Z(dX) eX. (45)
R R

Hence, using (21), one has

|| I f(t)X(t)dtb< II / L II 2 ll(R) C II / L, / 6 LX(R), (46)

where c || Z || (R) < oo. It therefore follows that the set

{J f(t)X(t)dt:|| / L < 1, / e If(R)} «= L2o(P)
R

and is bounded. Since % is reflexive, X is F-bounded. This completes the proof.
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Remarks. 1. Since F-boundedness concept is defined for general Banach

spaces (for a treatment of this case, cf. [33]), and its Hilbert space version is

equivalent to weak harmonizability, by the above theorem, the latter term will be

used in the Hilbert space context. (Using the general definition of F-boundedness,
a characterization of a process X : R -> #*, a reflexive space, which is a Fourier
transform of a vector measure is given in Theorem 7.2 below. It extends a result of
[12].)

2. The preceding proof is arranged so that if R is replaced by a locally
compact abelian (LCA) group G, the result and proof hold with essentially no
change. The functions (ef(-), t e G} will then be group characters. Thus the result
takes care of G R" ; so the (weakly) harmonizable random fields are included.
Precise statements and further results in the general case will be given later.

If iC is the set of all weakly harmonizable processes on R - Lq(P) #f, and

T g B(#T), the algebra of bounded linear operators on $f, then Y(t)

TX(t), te R defines a process which can be written as :

Y(t) T(j„ eiaZ(dX)) JR (dX), (47)

by ([8], p. 324), and it can be seen that Z T ° Z : f f is a stochastic

measure, || Z || (R) ^ || T || || Z || (R) < oo. Hence Y e iV. Thus one has:

Corollary 4.3. B(3>) • HZ iC, or in words, the linear space of weakly
harmonizable processes is a module over the class of all bounded linear

transformations on 9C — Lq(P).
Since each stationary process X is trivially strongly (hence weakly)

harmonizable, if P : % -> $£ is any orthogonal projection, then Y PX e 7F,
i.e. weakly harmonizable by Corollary 4.3. In particular if {Xn, ne Z) a % is an

orthonormal sequence, &0 sp(Xn, n> 0), let QjfX) — be the orthogonal
projection and Yn QXn Xn if n > 0, 0 if n ^ 0. The process
{Yn, n e Z} g iT, but it is not strongly harmonizable. Thus the class of weakly
harmonizable processes is strictly larger than the strongly harmonizable class.

(The latter is not a module over B{3£))

In spite of the above comment, each weakly harmonizable process can be

approximated "pointwise" by a sequence of strongly harmonizable ones. This

observation is essentially due to Niemi [29]. The precise result is as follows :

Theorem 4.4. Let X : R -> Lq(P) be a weakly harmonizable process. Then

there exists a sequence ofstrongly harmonizable processes Xn
: R - Lq(P) such

that Xn(t) -+ X(t), as n - oo, in Lq(P) uniformly (in t) on compact
subsets of R. If R is replaced by an LCA group G the same result holds with

{Xn, ne 1} being a net ofsuch process. The convergence is here in l}{P)-mean.)
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Proof. By hypothesis, there is a stochastic measure Z : a X Lq(P),

such that

X(t) j et(k)Z(dX\ te R
R

Thus X : R -» % is a continuous mapping. If 34?x sp{X(t), te R} c: #*, then

the continuity of X (and the separability of R) implies 34?x is separable. Hence

there exists a sequence {cp„, n > 1} c= ^ which is a complete orthonormal

(CON) basis for &x, so that
oo

*(0 £ <P„(*(0> <Pn)> teR, (48)
n 1

the series converging in the (norm) topology of 34?x for each t. Define

X„(t) i teR. (49)
k= 1

Claim : {Xn(t)9 teR},« ^ 1, is the desired sequence. [In the general LCA group
case {cp„, ne 1} is a net of CON elements of 34?x, since G, hence 34?x, need not be

separable. Otherwise the same argument works with trivial modifications.]
To verify the claim, it is clear that Xn(t) -> X(t) in 34?x for each t e R. To see

that Xn is strongly harmonizable, let

lk : X h- (X, cp,), X e J?x.

Then lk e 34?% for each k. Hence using the standard properties of the D-S integral,
one has

Ut) £ <P Mm)Î et(X)Z(dX))
k=1 k= 1

since X is weakly harmonizable,

t <P*Jr e&)lk°Z(dk) JR e,(X)UdX), (50)
k 1

where Çn(-) £ Wkh ° z(')- Let Gn(A, B) — (Çn(Z), Çn(B)). Then G„ is of finite
k i

total variation. Indeed, if lk o Z, which is a signed measure (hence has finite
variation) on R, let

qfc(A, R) (cpfc^(^), cPkHk(B)) lik(A)Hk(B)

So G„(A, B) £ \ik{A)[ik(B). Since
* i

I H/U) I I Hk(ß) I «Ï (I Htl (R))2 < CO
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for each k, it follows that each r|fc and hence Gn for each n has finite variation so

that each Xn is strongly harmonizable.

It was already noted that X being weakly harmonizable, it is strongly
continuous. [This is true even if R is replaced by an LCA group G (cf. [21],
p. 270).] So if X c= R is a compact set, then its image X(K) c c Lq(P) is

also (norm) compact. But J^x being a Hilbert space it has the (metric)
approximation property. [This means the identity on Jfx can be uniformly
approximated by a sequence (net) of (contractive) degenerate, or finite rank,

operators on each compact subset of Then Xn(t) -> X(t) in for each t e R

implies, by a result in Abstract Analysis in the presence of the approximation
property, that the convergence holds in ÜT uniformly on compact subsets of 9C.

This and the fact that X(K) is compact implies that Xn(t) - X(t) in Ll(P\
uniformly for t e K c R. In the general LCA case, the same holds with nets

replacing sequences. This completes the proof.

Remark. Even though the weakly harmonizable process is bounded and

weakly (hence strongly here) continuous with some nice closure properties
demonstrated above, it does not exhaust the class of all bounded continuous

processes in Lq(P). This can be seen from Theorem 3.2 by a suitable choice of a

vector measure of finite local semivariation but which is not of finite
semivariation. The following example demonstrates this point. Let L*(R) be

identified with R) of regular signed measures on R by the Radon-Nikodym
theorem (i.e. / e I}(R) <-+ j(.} f(t)dt e J^(R)). Now it is known that there are

nontrivial functions in C0(R) — x where (W1 (p : p e Let / e C0(R)

— For instance

I x I

f{x) sgn(x) ((log|x|)+ — 'h\x\< e]), X e R

is known to be such an J Let cp e Lq(P), || cp ||2 1. Let I e (Lq(P))* such that
/(cp) 1. Consider the trivial process X0 : t Then X0 : R Ll{P) is

bounded and continuous but not weakly harmonizable, since otherwise there

exists a stochastic measure Z such that (by Theorem 3.3)

X0(t) j et(X)Z(dX), and
R

fit) l(X0(tj)j e,(X) (/oZ) (dX).
R

Since / ° Z e R), this would contradict the choice of f.
Here is an interesting consequence of the preceding theorem.



HARMONIZABLE PROCESSES: STRUCTURE THEORY 321

Theorem 4.5. Let X : R - Lq(P) be a weakly harmonizable process and

let Z : & -* Ll(P) be its representing measure by (30). Then there is

nonuniquely a fixed sequence of finite regular Borel measures ßn:^ - R +

such that for each f e C0(R),

Il S f(t)Z(dt) Il 2 <lim inf |/||2fPn
R n

lim inf [J I f(t) I2 ß„(^)]1/2). (51)
n R

Remark. Even though this result is deducible from the general Theorem 5.5

below, the present proof is elementary and has some interest and will be given
here. It leads to the general case.

Proof : By hypothesis, X() is represented by a stochastic measure Z (cf.

(30)), and by the preceding theorem there are strongly harmonizable Xn - X,
uniformly on compact subsets of R. Let be the representing measure of Xn, so
that Z : & -> Lq(P), and

I mzmlim J f(X)Udl), (52)
R n-+ oo R

the limit existing in Ll(P) when / is a trigonometric polynomial. Since such

polynomials separate points of R and so are uniformly dense in C0(R), and the
integrals in (52) define bounded operators from C0(R) into L^(P), it follows that
(52) holds for all / e C0(R), by standard reasoning (cf. [8], II.3.6). Hence

*1 II 1„ f(X)Z(dX) 111 lim II JR AWJLdX) 111, R)
oo

lim fR jR dV), (53)
n~* oo

where Fn{s,t) (Ç„(- co, s), Ç„(— co, r)) is a covariance function of bounded
variation for each n.Let| Fn\(•,•) be the (Vitali) variation measure of the
bimeasure Fn. Then the hermitian property of Fn implies, in an obvious notation,
I F„ I (A, B) I F„ I (B, A). Now define a mapping ß„ : -» R+ by the equation :

ß„(/l) I FnI(A,R)1
{I F„ I (X, R) + I FJ (R, 4)}, /(si,

so that ßn is a finite Borel measure, and

f f(X)ßJdX) 1 [j J /(s) I F„ I (ds, JJ /(t) I Fn I (ds, dt)] (54)
R Z R R R R

Since Fn is positive (semi-) definite,
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o < f, Ir f(s)f(t)Fn(ds,dt)^ jR |„ |/(s)/(0 II F„ I dt)

< 1 [|r J. I /(s) I2 I FnI(<fa, dt) + fR JR | /(t) |2 | I (ds, dt)]

since | ab | ^ (| a |2 + | b |2)/2

Jr I f(s) \2 ßn(^). by (54). (55)

This and (53) yield

ao II Ir mZ{dX)II2lim fR fR mJdk')n

< lim inf J I m I2 ß„(<&), / e C0(R). (56)
n R

This completes the proof.

Remark. For a deeper analysis of the structure of these processes, it is

desirable to replace the sequence (ß„, n ^ 1} by a single Borel measure. This is

nontrivial. In the next section for a more general version, including
harmonizable fields, such a result will be obtained.

5. Domination problem for harmonizable fields

The work of the preceding section indicates that the weakly harmonizable

processes are included in the class of functions which are Fourier
transformations of vector measures into Banach spaces. A characterization of
such functions, based on the F-boundedness concept of [2], has been obtained
first in [33]. For probabilistic applications (e.g., filtering theory) the domination
problem, generalizing Theorem 4.5, should be solved. The following result

illuminates the nature of the general problem under consideration.

Theorem 5.1. Let (D, E) be a measurable space, 9C a Banach space and

v : E - be a vector measure. Then there exists a (finite) measure p : E

R + a continuous convex function (p : R+ -» R+ suchthat s oo as
x

x s oo, cp(0) 0, and v has (p-semivariation finite relative to p in the sense

that
Il v II (Ci) sup (Il I f(a>)v(d(£>): || / ^ 1} < co, (57)

V n

where || / \\^tVL inf {a > 0 : j* v|/ r ^ ^

j p(dco) ^ 1} < oo, and the
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integral relative to v in (57), is in the Dunford-Schwartz sense. Here \j/ : R +

-> R+ is a convex function given by \|/(x) sup {\ x \ y — (p(y) : y ^ 0}.

The proof of this result depends on some results of ([8], IV. 10) and

elementary properties of Orlicz spaces (cf. [47], p. 173). It will be omitted here,

since the details are given in [38]. This is only motivational for what follows.

Note that (57) is a desired generalization of (51) if {ß„, n ^ 1} is replaced by p
and || • || 2 is replaced by || • || However cp may grow faster than a polynomial.
What is useful here is a cp with cp(x) | x \p, 1 ^ p < 2. This can be proved for a

special class of spaces SC, which is sufficient for our study of harmonizable fields.

It will be convenient to introduce a definition and to state a result (essentially)
of Grothendieck and Pietsch, for the work below.

Definition 5.2. Let SC, SJ be a pair of Banach spaces and, as usual, B{SC, <&)

be the space of bounded linear operators on SC into (W. If 1 ^ p ^ oo,

T e B(SC, SJ), then T is called p-absolutely summing if aP{T) < oo, where

a p(T) inf {c > 0 : [ J || Txt ||"]7 < c sup £ | x*(*i) |p)i, x, e 3C,
i — i || x * j| < i ; l

1 ^ i ^ n, n ^ 1} (58)

with x* e &*, the adjoint space of SC.

The following result, which is alluded to above, with a short proof may be
found in [22] together with some extensions and applications.

Proposition 5.3. Let T e B{ßC, S7) be p-absolutely summing, 1 ^ p
<oo. Let K* be the weak-star closure of the set of extreme points of the unit
ball U* of 2C*. Then there is a regular Borel probability measure p on the

compact space K* such that

II Tx ||^ ^ ap(T) [j^* I x*(x) \p p(dx*y]1/p, xef. (59)

Conversely (and this is simple), if T satisfies (59) for some p on K* with a
constant y0, then T is p-absolutely summing and ocp(T) ^ y0. Further any p-
absolutely summing operator is weakly compact.

Let us specialize this result in the case that SC Cr(S)[C(S)], the space of real
[complex] continuous functions on a compact set S. Let K be the set of all
extreme points of the unit ball U* of (Cr(S))* and q : S (Cr(5))* be the mapping
defined by g(s) ls with ls(f) f(s), f e Cr(S) so that ls is the evaluation
functional, || ls || 1, and ls e K, s e S. Some other known results needed from
Linear Analysis, in the form used here, are as follows. (For details, see [4],
Sec. V.3 ; [8], p. 441). In this case the spaces S and q(S) are homeomorphic and
q(S) is closed since S is compact. By Mil'man's theorem U* is the weak-star

L'Enseignement mathém., t. XXVIII, fasc. 3-4.
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closed convex hull of q(S) u — q(S)), and (by the compactness of S) the latter is

equal to the extreme point-set of U* and is closed. Further these are of the form
a/s, s e S, and | oc | 1 (cf. [8], V.8.6). Consequently (59) becomes

ii Tfr « K myW(-,<S)) I h(f)i"ms), f e qs)
< 2(ap(T))p • |9(S) I ls(f) \p \i{dls),

2(a JJ)Y•Js I /(s) I" vfds),

if 5 and q(S) are (as they can be) identified.
For the complex case, C(S) Cr(S) + iCr(S), and so the same holds if the

constants are doubled. Thus

II Tf II ^ Cp[fs I fis) I" P(ds)]^ Cp II / ||p, / e C(S), (60)

where Cp 4[ap(T)]p. This form of (59) will be utilized below.

Definition 5.4. Let 3E be a Banach space, 1 ^ p < oo and 1 ^ X < oo.

Then $£ is called an ifP) x-space if for each n-dimensional space £ c f, 1 ^ «

< oo. there is a finite dimensional F cz E c= F, such that d(F, lnp) ^ X where lnp

is the n-dimensional sequence space with p-th power norm and where

d(Ex, E2) inf {|| T || || T"1 || : T e B(El9 E2)}

for any pair of normed linear spaces Ex, E2. A Banach space is an ifp-space if
it is an ifp, rspace for some À, > 1.

It is known (and easy to verify) that each Lp(p), p ^ 1, is an S£p% ^-space for

every X > 1, and C(S) [indeed each abstract (M)-space] is an ifœ x-space for

every £ > 1. The class of if2-spaces coincides with the class of Banach spaces

isomorphic to a Hilbert space. For proofs and more on these ideas the reader is

referred to the article of Lindenstrauss and Pelczynski [22].
With this set up the following general result can be established at this time on

the domination problem for vector measures.

Theorem 5.5. Let S be a locally compact space and C0{S) be the Banach

space ofcontinuous scalarfunctions on S vanishing at "ce". If is an ifp-
space 1 ^ p ^ 2, and T e B(C0(S), ty), then there exist a finite positive Borel

measure p on S, and a vector measure Z on S into such that

|| Js f{s)Z{ds) ||^ « || Tf [|# < || / ||2, p / e C0(S). (61)

Proof. Since SC C0(S') is an abstract (M)-space, it is an if ^-space by the

preceding remarks. But is an ifp-space 1 ^ p ^ 2, and so Te B(&, <&) is 2-

absolutely summing by ([22], Thm. 4.3), and therefore (cf. Prop. 5.3 above) it is

also weakly compact. By the argument presented for (37), (38) above, one can use
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the theorem ([8], VI.7.3) even when S is locally compact (and noncompact) to

conclude that there is a vector measure Z on the Borel a-ring of S into such

that

Tf js f(s)Z(ds), (D-S integral).

Using the argument of (37), if S is the one point compactification of S, and

T g B(C(§), $) is the norm preserving extension, then T is 2-absolutely summing

(since C(S) is an abstract (M)-space), and weakly compact. So by (60) there exists

a finite Borel measure jl on S such that

Il T/cp II / II 2,p / e C(S).

Letting ji cpp\i, one has || Tf|| < II / II2, p> / 6 So (61) holds on S. Let

p(-) fl(Sn-) so that p is a finite Borel measure on S. If now one restricts to
C0(S) identified as a subset of C(<S), so that T T | C0(S), it follows from the

preceding analysis that || Tf \[& ^ || / ||2,
M

for all / e C0(S). Since the integral
representation of T is evidently true, this establishes (61), and completes the

proof of the theorem.

If ^ is a Hilbert space, it is an jZ2-sPace so that the above theorem

considerably strengthens Theorem 4.5, since the sequence there is now
replaceable by a single measure.

The following statement is actually a consequence of the above result, and it
will be invoked in the last section.

Proposition 5.6. Let (Q, X) be any measurable space, and SC B(Q, X)
be the Banach space (under uniform norm) of scalar measurable functions. If
is an SCp-space, 1 ^ p ^ 2, as above, T e B(SC, <&) is such that for each

fneSC, fn~* f pointwise boundedly implies || Tfn || - || Tf ||, then there
exist <j-additive functions Z:X->^, p:X-> R+, such that

|| I /(co)Z(dco) ||# II Tf 11^ < II / II
2> „, (62)

The proof uses the fact that B(Q., Z) is isometrically isomorphic to C(S), for a

compact (extremelly disconnected) Hausdorffspace (cf. [8], IV.6.18), and reduces
to the preceding result. The computations, using the standard Carathéodory
measure theory, will be omitted here. The details, however, may be found in [38],

Remark. The preceding results show that the domination problem for
vector measures in Lp-spaces, 1 < p^2, is solved and hence also for
harmonizable fields since only the if2-type spaces are involved in the latter. But,
for p>2,such a satisfactory solution of the problem is not available.
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6. Stationary dilations

The results of the last section play a key role in showing that each weakly
harmonizable random field has a stationary dilation. It is a consequence of the

preceding work that for any stationary field Y : G -> Ll(P) with G an LCA

group, and each orthogonal projection Q : Ll(P) -> L%(P), the new random field

X(d) QY(g),geG, giving X : G -> Ll(P), is shown to be weakly
harmonizable. The dilation result yields the reverse implication. A "concrete"
version of this is given by the following theorem and an operator version will be

obtained later from it.

Theorem 6.1. Let G be an LCA group, X : G — Lq(P) XY a weakly
harmonizable randomfield. Then there is a super or extension Hilbert space C/Y

=> XY, a probability measure space (ß, 2, P) with CYY Ll(P), and a

stationary random field Y : G -> LffPj, such that X(g) QY(g), g e G,

where Q : Lq(P) - Ll(P) is the orthogonal projection with range LffP). If
moreover, XY — sp{X(g), g e G}, then Y determines CYY in the sense that

X sp{Y(g), g e G}. [Thus Jf is the minimal super space for XYTj

Proof The "consequence" above is easily proved. In fact, if Y : G - Ll(P) is

stationary, then Theorem 3.3 implies

Y(g) jo <9, s) geG, (63)

for a vector measure Z on G into C/Y Ll(P), with orthogonal increments (also

called orthogonally scattered) where G is the dual group of the LCA group G,

and < -, s) is a character of G. If Q : C/Y - X is any orthogonal projection, then

Z Q o Z is a stochastic measure on G into C/Y. Indeed,

|| Z || 2(G) sup {II £ atZ(A^ || I : I at | ^ 1, At cz G disjoint Borel, n ^ 1}
i l

sup {Il Q Z aiAAi) \\l-\ai \ ^ l,Ai a G, as above}
i 1

^ II 6 II2 sup {II £ flfZ^i) Hi : I I < 1, Ai c= G, as before}
i — 1

Il ô II2 sup { L L aiaj : I I < *> c *5 as before}
i=U=l

where F^n/fj-) (Z(Xj, Z^))
Il Ô \\2\F\(Ô)< F(Ô)<oo, (64)
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since F is the spectral measure of Z and so is finite and Q is a contraction. Hence

Z has finite semivariation and is clearly a-additive, so that it is a stochastic

measure. By Theorem 3.3, X given by X(g) — QY(g) <#, 5) Z(ds), # e G, is

weakly harmonizable. (Note that the same conclusion holds if Q is replaced by

any bounded linear operator on X. If the range of the projection Q is not finite

dimensional, then X need not be strongly harmonizable!)
To go in the reverse direction, the (possibly) augmented space Jf => XF has to

be constructed. Consider X : G -> Jf Lq(P)9 the given weakly harmonizable
random field. In order to get simultaneously the additional structure demanded

in the last part, let JF sp{X(g\ g e G} also. Then, as before, there is a

stochastic measure on G into such that

X(g) Jg <9, s> Z(ds) e XF, g eG. (65)

By Theorem 5.5, with XF, there exists a finite Radon regular Borel)
measure p on G such that

S Ig f(t)Z(dt)Hi< k I /(£) I2 e C0(G). (66)

Now define a mapping y : ^(G x G) -> R+ by the equation

v(A, B) p{AnB), A, Be ®(G), (67)

where &(G) is the Borel a-ring of G and similarly ^(G x G). Then v is a bimeasure
of finite Vitali variation on ^(G) x @(G) and since this ring generates ^(G x G),
t; extends to a Radon measure on the latter a-ring. Morevoer, it is clear that v

concentrates on the diagonal of the product space G x G. If Cb(G) denotes the
Banach space of bounded continuous scalar functions on G with uniform norm,
then

Je Je fis,t)v(ds,dt)Jô f{s, s)q(ds), / e Cb(G x G). (68)

Let F(A, B)(Z(A), Z(B)) so that F : .#(G x -> C is a bimeasure of finite
semivariation, from (65). Thus using the D-S and MT-integration techniques as
before,

0 «S II f(s)Z(ds)111Jô jô f(dt),f e Cb(G). (69)

Letting /(s, t) /(s) f(t) in (68), a v -one has from (66)-(69),
0 Je I fis) I2 n(ds) - Il Je f(s)Z(ds) ||1

Je Je fis)ff) Mds, dt) - F(ds, dt)-]

Je Je f(s)f(t)a(ds, dt), f e Q(G). (70)
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So a is positive semi-definite and a 0 iff v P, i.e., if F concentrates on the

diagonal. This corresponds to X being stationary itself. Excluding this trivial
case, a =£ 0, and (70) is strictly positive, if / 1. It follows from (70) that
["> *]': C&(G) x Cb(G) - C defines a nontrivial semi-inner product, where

IfdJJe Jg f(s)g{t)a(ds,dt),f, g e Cb(G). (71)

If^o {/: [//]' 0,/ e Cb(ô)},andCb(ô)/A^0 is the factor space,
let [•, •] : XF Y x j C be defined by

[(/), (3)1 [/, <?]', / e (/) e g 6 to) 6 (72)

Then [•, •] is an inner product on x and define 0 as its completion in [•, •]. Let

7i0 : Cb(G) - Xf o be the canonical projection. Thus XF0 is nontrivial and need

not be separable. Now let us replace XF0 by Lq(P') on a probability space
(£T, Z', P'). This can be done based on the Fubini-Jessen theorem where F can

even be taken to be a Gaussian measure (for the real see [36], pp. 414-415).
The complex case is similar. A quick outline is as follows : Let {hb i g /} c 0 be

a CON set. If (Qf, Zf, Pf) is a probability space determined by a complex
Gaussian variable, so that one can take Qf C, Zf Borel a-algebra of C, and

Pi{A) (27r)~1 J exp A e E;, (£ £t + 7^7 £2),

let (£T, Z', P') 0 (Qf, Zf, Pt) the product space given by the Fubini-Jessen
iel

theorem. If Af(co) co(i), co e Q! CJ, the coordinate function, then £(2Q 0

and E(\Xi\2) 1. Also {Xh i g /} forms a CON basis of $£ sp{Xf, i g 1}

c= Lq(F). The correspondence x : ht -> extended linearly, sets up an

isomorphism of J#"0 ont° and

II x(hi) II2 - E(|X]2) 1 - îgJ.

Then by polarization one has [/ii5 hj] p(x(/ii)x(/zi)), so that x is an isometric

isomorphism of onto ^ ^o(-P')> as desired.

If 7t T ° 7T0 I fI T(7t0(/)) 6 ' C= L§(F), / £ C„(G), is the composite

(canonical) mapping, let X^t) n(et( • g Jf" where (t, 5), is a character

of G at t g G. Note that e0 1 £ c/F0, so tc0(1) can be identified with the constant
1 g Cb(G). Thus

X,(0) x(l), P(|x(l)|2) 1

Let sppf^t), t e G} <= Then there exists a probability space

(Q", Z", P"), as above, such that XF" c L2(P"). Finally set X? © in the
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direct sum of Hilbert spaces Lq(P) and Lq(P )• If (^> L P)

(D, E, P) <g> (Cl", E", P") then one can identify, in a natural way, Jf <= Lq(P).

Define 7(t) X(t) + X^t),teG, so that (X(f), X^t)) 0 since 1 Jf" in

jf. Then (7(t), teGjcXc L&P), and if ß : JT - Jf {Jf ® {0}} is the

orthogonal projection, one has X(t)QY(t), It remains to show that

Y: G -> Lq(P) is stationary. By construction 7(0) X(0) + X^O) and this is

X(0) only when Xt(Ö) 0 which can happen iff Jf" {0}, i.e., when no

enlargement is needed.

To verify stationarity, consider

r(s, t) 7 (s),7(f))(X(s), X(t)) + (X^s), X^t)) since III,
J« Je (s. X) (t/X)F(dX, dX')+ Je (s, X) (tjJ)cc(dX, dX'\

by (69) and (72) and these are MT-integrals,

|g f& (5> ft X')v(dX, dX'\ since a v — F

Je (s, X) (t, X)ii(dX), by (68),

jö (s —t, X)p(dÂ), by the composition of characters. (73)

Since p is a finite positive measure, (73) implies

r(s + /z, t + h) r(s,t) r(s — t),

and so the Y : G -» Lq(P) is stationary. The construction also implies that

sp{7(0, t e G} JT in the case that sp{X(t), t e G). This completes the

proof.
The following is a useful deduction :

Corollary 6.2. Every vector measure v : @(G) - where G is an

LCA group, ^(G) heim? Borel algebra, ami zs a Hilbert space, has an

orthogonally scattered dilation.

Proof. Since G G consider the mapping X : G 3#* defined as the D-S

integral X(g) jG (g, X) v(dX). Then X is K-bounded; so it is weakly
harmonizable. By the above theorem there are an extension Hilbert space JC

=> 34?, an orthogonal projection Q : JC -> JT, with range XY, and a stationary
field Y : G ^ 3f such that X(g) ßT(g). Let Z be the stochastic measure
representing Y, (cf. Theorem 3.3). Hence for each he 3^ one has (Z : J^(G) -> JC)

JG (g, X) (v(dX), h) (X(g), h) {QY(g\ h) Jô (g, X) (ß o Z(dX\ h).

These are now scalar (Lebesgue-Stieltjes) integrals. By the classical uniqueness
theorem of Fourier analysis for such integrals, one has
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(v(^) - Q o Z(A), h) 0, A e <%(G), h g

Hence v Q ° Z. Since Z is orthogonally scattered by virtue of the fact that Y is

stationary, the result follows.
With the last theorem, a more perspicuous version of the dilation problem for

a weakly harmonizable random field can be given. This, however, depends also

on an interesting theorem of Sz.-Nagy [41] and will be presented. Recall from the

classical theory of stationary processes ([6], p. 512 and p. 638) every such process
{Yt, t g R} c= Lq(P), can be expressed as Yt Ut Y0, where {Ut,t g R} is a group
of unitary operators acting on Ll(P) (first on sp{ Yt, t e R} and then, for instance,
define each Ut as an identity on the orthogonal complement of this subspace).

The spectral theory of Ut then yields immediately the corresponding integral
representation of Yt's. The same result holds if R is replaced by an LCA group G.

The corresponding operator representation for harmonizable processes (or
fields) is not so simple. Its solution will be presented in the following theorem.

Recall that a family T : G -> B(ST), SC a Hilbert space, is of positive type if T{ — g)

— T(g)* (adjoint operator) and for each finite set {xSl,..., xSn} of ST indexed by J
{s1? s2, -, s„} c G, one has

Z Z (T(si ls«)*5i> xsJ > o • (74)
i=i j=i

Theorem 6.3. Let G be an LCA group and X : G -> Ll(P) a

Hilbert space, be weakly harmonizable. Then there exists a super Hilbert space

Ll(P) ZD SC on an enlarged probability space (ß, 2, P), a random

variable Y0e JT a weakly continuous family {T(g), g e G] of contractive

linear operatorsfrom XY to 9C with T(0) as the identity on (^0 being the

neutral element of G), such that, when its domain is restricted to 9C, it is of
positive type, in terms ofwhich X(g) T(g)Y0, g g G. Conversely every weakly

continuous contractive family {T(g), g e G} of the above type from any super

Hilbert space Jf ^ *3C into SC which, when restricted to SC is ofpositive type,

defines a weakly harmonizable process X : G -» SC, by the equation X(g)
T(g)Y0 for any Y0 g SC, T(0) being identity on SC.

Proof. The direct part is an operator-theoretic reformulation of Theorem

6.1. Briefly, let X : G -+ Lq(P) SC be weakly harmonizable. Then there exist a

Lq(P) zd ST and a stationary Y: G - JT such that X(g) QY(g), g g G,

by Theorem 6.1 with Q as the orthogonal projection on X and range ST. But

Y(g) U(g)Y(0) where {U{g),geG} is a (strongly) continuous group of

unitary operators on CCY. Let T(g) QU(g), g g G. It is asserted that

{T(g), g g G} is the desired family.
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Indeed, T(0) Q identity on 9C\ and || T(g) || ^ Il Q II II U(g) || ^ 1.

The continuity of U(g)on G clearly implies the weak continuity of %)'s. To

verify the positive definiteness onlet hSl,hSn be a finite set in .'f. Then letting

T(g) T(g) |r one has T(-g) (Ti (g))*since
(f(-g)hSl,hS2) (QU(-g)hSl,hS2) (U*

(hSi,U(g)hS2),sinceQhs. and U**(g) U(g),

(QhSi,U(g)hS2)(hSl,QU(g)hS2)
(hsi,T(g)hS2) (T(g)*hsi,hS2),X, 1,2. (75)

Similarly,

t t (T(s;\)hSi,hs)=£ X (0U
i 1 j 1 i i j 1

X X
i=ij=i

X W»., II2 ^ o. (76)
i 1

The converse depends explicitly on an important theorem of Sz.-Nagy ([41],
Thm. Ill ; this is an extension of a classical result of Naïmark). According to this

result if T( • T(-) | f, then there is a super Hilbert space Jf x (Jf x may be

quite different from Jf) and a weakly (hence strongly) continuous group
{V(g), g e G} of unitary operators on Jf x such that T(g) QiTfef) |r, ßi being
the orthogonal projection of onto $f. Here JT x can be chosen as JT

sp{K(g)^, g e G}. If x0 g is arbitrary, then x0 e n X, and

T(g)x0 T(g)x0 Q1V(g)x0 X(g), (say), g g G

But {!%) F(ôf)x0, gl g G) c= jf x is a stationary process so that by the first
paragraph of the proof of Theorem 6.1, {X0(g\geG} a & is weakly
harmonizable. Thus for each x0 e {T(g)x0, g e G} is weakly harmonizable,
and this completes the proof.

Remark. In the converse direction one can take JT % However in the
forward direction, it is not always possible to take Y0 in so that 2T(0) 70, as

the example following Definition 2.1 shows. Thus there is an inherent asymmetry
in the statement of this theorem, and the mention of the super Hilbert space X in
the enunciation cannot be avoided. It should also be noted that the above quoted
theorem of Sz.-Nagy [41] can be deduced also from Naïmark's theorem and
Theorem 6.1. See [38] for a further discussion on this point.
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7. Characterizations of weak harmonizability

In this section a different type of characterization, based on the V-

boundedness concept crucially, of weak harmonizability as well as a

comprehensive statement embodying all the other equivalences of this concept
are given. The comparison will illuminate the structure of this general class of

processes. However, it is interesting and useful to obtain a characterization of V-

boundedness for a general Banach space, and then specialize the result for the

harmonizable case.

In this context let us say that X : G -> SC, a Banach space, is a generalized (or
vector) Fourier transform if G is an LCA group, and if there is a vector measure

v : ^(G) - SC Such that X(g) <gr, s> v(ds), g eG. In [33], Phillips has

extended the fundamental scalar result of Bochner's L-boundedness to certain
Banach spaces with G R. Later but apparently independently, the LCA group
case was given by Kluvanek in ([21], p. 269). In the present terminology this can
be stated as follows :

Proposition 7.1. Let G be an LCA group and SC a Banach space. Then a

mapping X : G - SC is a generalized Fourier transform of a regular vector

measure v : ^(G) - SC (i.e., for given 8 > 0 and E e C%(G), there exist an

open set 0 and a compact set C with 0 zd E zd C such thatfor each F a 0
— C, F g 0&(G) one has || v(F) || < e) iff X is weakly continuous and V-

bounded (in the sense of Definition 4.1).

On the other hand, when SC — C, a different kind of characterization was

given by Helson [12]. A vector extension of this is used for the weak

harmonizability problem, and will be presented here. Let 15(G) be the Lebesgue

space, k ^ 1, on G relative to a Haar measure, denoted dg. Similarly li(ô) is

defined on the dual group G, and Lj(G) for ^-valued function space. Let

L\G){/ : fit) Jc <t, s> f(s)ds, f e 0(0)} c C0(G),

a similar definition for L#(G), the integrals in the latter being in the sense of
Bochner, and (G) 3 L^{G)), (G) being the space of vector measures on G

into SC with semivariation norm.
The following result contains the desired extension :

Theorem 7.2. Let G be an LCA group, SC a reflexive separable Banach

space, and X : G -> SC be bounded. Then X is a generalized Fourier transform

ofa vector measure v on (5, into SC ifffor each p e Î}(G) the mapping Yp
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{Xp): G -> X is in .,M{ (<?), i.e., iff is the Fourier transform ofa vector

measure on G into SC.

Proof Suppose X is a generalized Fourier transform of v on G to SC, so that

X(g) Jg <9, s> v(ds\ g g G (77)

By hypothesis p e Î}(G) so that p f for a unique / g 17(G). Hence X(g)p(g) is

well defined, and if I e SC*, then by the scalar theory one has

l(X(g) • p(g)) p(g)l{X(g)) fe <& s> /(s)ds Jg <0, 0 I ° v(A)

— Jg ($5 s) (l°v*f)ds, since (/°v*/) (/°v) • / the denoting

convolution,

Jg <& s> >
(78)

where kt I ° v * / g lf(G) by the classical theory (cf. [24], p. 122 and p. 142).

Also /c(.j(s) : -> C is additive, and

II /c,(• II1 < II / 111 II / II-II v II (6)-0
as I 0 in #**. Hence /q(s) -* 0 as / - 0 for a • a • (s), so that /q(s) £(s) (/) for a

lc(s) g ^** ^ by reflexivity, and for a - a - (s). Thus £(•) is Pettis integrable on
G, and the mapping Zp( • : A t-> \A E(s)ds, defines a a-additive bounded set

function into SC, a vector measure, by known results in Abstract Analysis.
Consequently,

l{X(g)) p(g) je (g, s> I ° Zp(ds)=l($ô/6<r*. (79)

Since Zp is a vector measure, || Zp || (G) < 00, and I e is arbitrary, one has

Yp{g)(X-p) (g) je <g, s) Zp(ds) eî, (80)

to be well-defined. Also

\Yp(g) lr \p(g)\\x(g)\j < II / Hi • I *(<?) |r

so that || Yp ||
oo < II / Hi II X ||

oo < °o and by (80) Yp is the Fourier transform of
the vector measure Zp on G into SC. Hence Yp g JC t(G). This proves the direct
part. The converse implication is more involved.

Thus, for the converse, let Xp Ype (G) for each p e ß(G). Since SP is
reflexive, by Proposition 7.1, it is enough to establish that the (weakly
continuous) X is F-bounded (cf. Definition 4.1). This is accomplished in two
stages.
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Let us first define an operator x : 1}(G) -> L^G) by the equation :

(T/r p-XYp,pf, e 1/(0). (81)

Then (x/) e Jlf (G) by hypothesis for each/e l}(G). Clearly x is linear. It is also
bounded. To see this, let us show that it is closed so that the desired assertion
follows by the closed graph theorem. So let /n, / e 1}(G\ fn -> / in norm, and hn

xfn h in J^(G). Then (cf. [21], p. 268)

Il l-/ L < fl fn~/ Iii - 0 and || L < II ~ I j - 0,

as n -> oo. But then

h n (x/„)~ .Y •/„->£ and /„ -> / uniformly.
|| A"/ - fi II (s) < || *(/„-/) || (s) + || Xl - || (s)

«S II -X(s) III In-/I (s) + II II (s) -> 0, as oo, s e G.

Hence Xf h(x/) and x/ h(by uniqueness). So x is closed.

Next let us verify the key property of L-boundedness for X. Since Yp is

continuous for each p e L?(G), it follows that X is weakly continuous. Let
h e I}(G). Consider the operator T : I}(G) -* SC defined by

T(h)T(K) |G X(g)h(g)||||„ « 1 (82)

Since the correspondence h <-+ h is 1 — 1, f is well defined on Î}(G\ and it is to be

shown that T : Î}(G) - SC is bounded when the former is endowed with the

uniform norm. [Note : h below is different from h above !]
Let he l}(G) be arbitrarily fixed and (ea, a el} c= !}{G) be an approximate

unit (cf. [24], p. 124) so that || e^\\1 1, ea ^ 0 and || (ea — eß) * h ||t -» 0 as

a, ß / "oo". Now (xea) X • êa Xa, say). The hypothesis implies
Xa e Jk%{G\ a el, and

Il (Xa-Xp)£ Il (t) II (0 < II x((ea-ep)

«£ Il t S II (e«-eP) *hh~0,teG, (83)

since x was shown to be bounded. Thus Xa -* X uniformly. Since h e L*(G)

c= C0(G) and is uniformly dense in the latter, it follows that !| Xa ||M ^ C < oo,

and the operator Ta defined below is bounded uniformly in a :

TJh) J XJt)h(t)dt, h e I}(G). (84)
G

But X is the uniform limit of X^s so it is also bounded, and hence T of (82) is

bounded. Moreover, for / e C00(G) (c=C0(G)) of compact supports,
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|| T(hf) - W) H, || J II

G

< II L • 11 Ht) | dt -> 0,
G

by (83), as a / "co". Hence || TJhf) || #-> || || r, and

T(hf)lim J XJt)h(t)f(t)dt J (85)
a G G

If / e$"*, (85) implies, with h e Ü(G) n C00(G) C00(G),

(l°T)( h)lim J l(Xa(t))h(t)dt(=lim(7:Tj
a G a

On the other hand,

(ZoTJ )G l(XM)h(t)dtJG (K(ref)h)

Ig h(t)'(Je <g, t)(xej(g)dg)dt

Ig Ig h(t)<9,0 Z(tea) (g)dtdg, by Fubini's theorem,

Ig (g)kg)dg, by Fubini again.

Thus for all h g C00(g) a I}(G),

I (ZoTJ (Ä) I < Il h L II IM |[j < il h LIIIII IIT lb II e. II,. (86)

Taking suprema on || I || ^ 1, and noting that || ea\\1 1, (86) implies

II Ta(h) || ^ || îi L II t II
• (87)

Thus (85) and (87) yield that || T(h) || < c || ft ||M with c || x || < oo. Since

C00(G) is dense in I}{G), the same holds for all h g I}(G). So X is T-bounded. Since
SC is reflexive, Proposition 7.1 now applies and yields (77) for a unique vector
measure v on G into SC. This completes the proof.

Remark. The necessity proof also holds (and thus the theorem) if Î}(G) is

replaced by

{A : AW Ig <9> p e

where - //(G) is the space of regular signed Borel measures on G. In fact let
Yp ÇiX, where p A (is a function), so that for / e TT*,

'(ypW) Ig <g.t) p(dg) jG <s, t> I ° Z(ds) (A

(g*l°Z)"(t) l(JGt) (p*Z) (dg)),
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using the convolution products appropriately (cf., e.g. [21]). Hence p*Z is a

vector measure on G and

|| p*Z || (G) < I n I (G) || Z || (G) < a)

Thus Yp is a Fourier transform of p*Z. Identifying li{G) c> <y#(G) as

p, : Z I—» \A f(t)dt, the sufficiency proof of theorem and the above lines show that
Î}(G) can be replaced by^(G) every where in that result.

Taking 3C Lq(P) so that F-boundedness is the same as weak

harmonizability, the above theorem together with Theorems 3.3, 6.3, yield the

following two summary statements on characterizations of weakly
harmonizable random fields.

Theorem 7.3. Let G be an LCA group, SC Lq(P) be separable and

X : G -> SC be a weakly continuous mapping. Then the following statements are

equivalent :

(i) X is weakly harmonizable.

(ii) X is V-bounded.

(iii) X is the Fourier transform of a regular vector measure on G into SC.

(iv) for each p e 1}{G), the process Yp Xp : G -» Lq(P) is weakly
harmonizable and bounded.

Furthermore, the following implies (i)-(iv) :

(v) if XF — sp{X(g),geG} c= dC, then there exists a weakly continuous

contractive positive type family of operators {T(g), g e G} c= such

that T(0) identity, and X(g) T(g)X(0), g eG.

In order to present a similar description of the dilation results, these

individual statements should be couched in terms of classes. Let us therefore

define various classes with 9C — L%(P), separable.

Y — the set of weakly continuous F-bounded random fields on G.

W the set of weakly harmonizable random fields on G.

3F — the class of all random fields which are Fourier transforms of regular
vector measures on G - 3C.

Ji the module over Î}{G) of all functions onG-^f which belong to Jt#(G),
i.e., M {X : G -+ %\X • Î}(G) a (G)}.

& the class of all random fields on G->i which are projections of

stationary fields on G -» Jf, where JT => 9C is some extension (or super)

Hilbert space of SC.
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Then the following result obtains :

Theorem 7.4. With the above notation, one has — Jt & — ^
tT
These two theorems embody essentially all the known as well as new results

on the structure of weakly harmonizable processes or fields. Some applications
and extensions will be indicated in the rest of the paper.

8. Associated spectra and consequences

For a large class of nonstationary processes, including the (strongly)
harmonizable ones, it is possible to associate a (nonnegative) spectral measure

and study some of the key properties of the process through it. One such

reasonably large class, isolated by Kampé de Fériet and Frankiel ([15]-[17]),
called class (KF) in [35], is the desired family. This was also considered under the

name "asymptotic stationarity" by E. Parzen [32] (cf. also [14] with the same

name for a subclass), and by Rozanov ([40], p. 283) without a name. All these

authors, motivated by applications, arrived at the concept independently. But it
is Kampé de Fériet and Frankiel who emphasized the importance of this class

and made a deep study. This was further analyzed in [35].

If X : R -> Lq(P) is a process with covariance k(s, t) E(X(s)X(t)), then it is

said to be of class (KF), after its authors [15]-[17], provided the following limit
exists for all h e R :

1 T-\h\
r(h) lim — J k(s,s + \h\)ds lim rT(h). (88)

T^oo T 0 t-> oo

It is easy to see that rT( • hence r( • is a positive definite function when X( • is a
measurable process. If AT( • is continuous in mean square, the latter is implied. It
is clear that stationary processes are in class (KF). By the classical theorem of
Bochner (or its modified form by F. Riesz) there is a unique bounded increasing
function F : R -+ R+ such that

r(h) jR e"h F(dt), (Leb). (89)

This F is termed the associated spectralfunction of the process X. Every strongly
harmonizable process is of class (KF). This is not obvious, but was shown in
([40], p. 283), and in [35] as a consequence of the membership of a more general
class called almost (strongly) harmonizable. The latter is not necessarily V-
bounded and so the weakly harmonizable class is not included. (Almost
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harmonizable need not imply weakly harmonizable.) Since the bimeasure of (30)

is not necessarily ofbounded variation, the elementary proofof [40] given for the

strongly harmonizable process does not extend. Perhaps for this reason,
Rozanov (cf. [40], footnote on p. 283) felt that the weakly harmonizable

processes may not be in class (KF). However, a positive solution can be obtained
as follows :

Theorem 8.1. Let X : R Ll(P) be weakly harmonizable. Then

X g class (KF), so that it has a well defined associated spectral function.

Proof: Since X is weakly harmonizable,

X(t) J eiaZ(dX), te R
R

for a stochastic measure Z on R into Lq(P), and if

F(A, B) {Z(A\Z(B)),
then F : gß x $ C is a bounded bimeasure. Considering (88) for h ^ 0 (the

case h < 0 being similar), one has with k(s, t) E(X{s)X(t))

^ T~h 1

rT(h) —- T - h
k(s, s + h)ds

To show that lim rT(h) exists it suffices to consider
T ->• oo

k(s, s + h)ds — I E(X(s) • X(s-\-h))ds

£,ï ds elsl Z(dX) Z(dX') (90)

and show that the right side has a limit as T - go. Let % — Ll(P), andJf
1}(P). Since Z : Z Z \ $ are stochastic measures, one can

define a product measure on R x R into Jf, using the bilinear mapping (x, y)

-+ xy, of & x & as the pointwise product which is continuous in their

respective norm topologies. Under these conditions and identifications, the

product measure Z®Z:^ x ^-*Jfis defined and satisfies (D-S integrals) :

| f(s, t) (Z®Z) (ds, dt) J Z(ds) J f(s, t)Z(dt)
RxR

J Z(dt) J f(s, t)Z(ds,(91)
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for all / e Cb(R x R), by ([5], p. 388). In most of the work on product vector

measures, Dinculeanu assumes that they are "dominated". However, as shown in

a separate Remark (cf. [5], p. 388 ; cf. also [7], Cor. 3), such a product measure as

in (91) is well defined even though it need not be "dominated". It has finite
semivariation : indeed,

|| Z ® Z || (RxR) ^ || Z || (R) • || Z || (R) (|| Z || (R))2 < oo

so that Z 0 Z is again a stochastic measure. Letting

fs,h(KK) eisX-e~i(s+h)X\

so fSt h g Cb(R x R), (91) becomes :

j Z(dX) J e~i{s+h)X' Z(dX')

I ei:

RxR

is(k — A.') — ihX' Z <g> Z(dX, (92)

the right side being an element of li{P). Applying the same calculation to the
measures Z ® Z : MR x R) -> JT and p : ^([0, T]) -> R+ (p is Lebesgue
measure), with (x, a) -> ax being the mapping of 2? x R -»• 2£, one can define

p (g) (Z®Z) : MO, T) x f(RxR)^f
and, with X for the pair (X, X'),

T

J.
0 RxR

Writing [i(dt) as dt, (90)-(93) yield:

j p (dt)J f{t,X_)Z ® Z(dX)j Z ® Z(dX)} fit, (93)

(\
: - ds
VU

7is(X - X') — ihl' Z ® Z(dX, dl']

El

El

' Z ® Z(dX, dk') - eis(l~y)ds

1

/T(X-X') Xp.?».'] + Ax- Z ® Zid'K, dX') (94)

But the quantity inside the expectation symbol E is bounded for all and since
the dominated convergence is valid for the D-S integral ([8], IV. 10.10), constants
being Z ® Z-integrable, one can pass the limit as T ^ oo under the expectation
as well as the D-S integral in (94). Hence

L'Enseignement mathém., t. XXVIII, fasc. 3-4.
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lim —
T -> ce T

k{s, s + h)ds E\ e~ihr ôu, Z ® Z(dX9 dX)
Rxr J

e~ihr 8U, E(Z (g) Z(dX, dX))

F(dX, <&'),
[X X']

where F is the bimeasure of Z. Hence lim rT(/i) r(h) exists and r(h)
oo

— |r G(dX), where G : A i— J 8U' F(dX, dX), A g J*, is a positive finite
k-1M)

measure which therefore is the associated spectral measure of g class (KF).
(Here 7t : R2 - R is the coordinate projection.) This completes the proof.

The above result implies that several other considerations of [40] hold for
weakly harmonizable processes.

As another application of the present work, especially as a consequence of
Theorem 6.1, the following precise version of a result stated in ([40], Thm. 3.2)

will be deduced from the corresponding classical stationary case.

Theorem 8.2. Let X : R -> Ll(P) be a weakly harmonizable process with

Z : -> Lq(P) as its representing stochastic measure. Thenfor any — co<X1
< X2 < oo, writing Z(X) for Z((—oo, À]), one has

Ti-m
T-+ oo

- itX 2

— it
X(t)dt

Z(X2 + + Z(X2 — Z(Xi~\~) -b Z(X,—)
(95)

where Ti-m is the L?(P)-limit. Further the covariance bimeasure F of Z
can be obtained for intervals A (X^ X2), B (X\, X2) as:

T i T2

lim
O^Ti, T2^oo

-T i -T2

çfi~2 t _ p~CX\ t

-r(s, t)dsdt F(A, B), (96)

provided A, B are continuity intervals of F in the sense that

F((-co,Xj±%(-co, kj±)) F((-co, (-co, 1, 2
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and where r( -, • is the covariance function of the X-process. In particular, if the

s-mapping S : R - C is continuous, — S(t)dt -> a0 exists as T -> go, am/

lim r(s, t) 0, thenfor the observed process Y(t) — S(t) + X(t), so that
\s\ + \t\-*CO

S{ is the nonstochastic "signal" and X(') is the weakly harmonizable "noise",
the estimator

MST - Y(t)dt ^ a0

in Lq{P) (i.e., E(\ST-ao\2)-+0) as T -> oo. Thus ST is a consistent

estimator of a0, and in other terms, both X- and Y-processes obey the law of large
numbers.

Proof: The key idea of the proof is to reduce the result to the classical

stationary case through an application of the dilation theorem. Thus by
Theorem 6.1, there exists a probability space (ß, 2, P), with Ll(P) id Lq(P), and a

stationary process Y : R Ll(P) such that ^(t) QY(t), te R where Q is the

orthogonal projection on Lq(P) with range Ll(P). There is an orthogonally
scattered stochastic measure Z : & - Lq(P) such that

7(0 JR eia 2(dX), te R (97)

and Z(A) QZ(A), Ae M, with Z: 3 Lq{P) representing the given X-
process. Since Q is bounded, as is well-known, it commutes with the integral as

well as the Tim. Thus (95) is true for the 7-process with Z in place of Z there (cf.,

e.g., [6], p. 527). Then the result follows on applying Q to both sides and

interchanging the T i * m as well as the integral with Q, which is legitimate. Hence

(95) is true as stated.

Next consider the left hand side (LHS) of (96). With (95) it can be expressed

as:

LHS lim El
fTi

X. X(s)
-itX i

X(t) dsdt

lim E
Ti, T2-+00

ten
" is%2

X(s)ds
— It

X(t)\
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E
Z(X2 + + Z(X2-) Z(X, + + Z(V

2 2

Z(X2 + + Z(X2 - Z(Vi + + Z(X\ -

F(A, B),

by the continuity hypothesis on F, after expanding and taking expectations. This

proves (96).

Finally, if Y(t) S{t) + X(t), t e R, let

ar — E(ST) — — S(t)dt.

Noting that Y e class (KF) since X does (cf. Thm. 8.1), and aT -> a0, by
hypothesis, as T -> oo,

E(\ST-a0\2)
2 T

fi ^ 0 *

1 T

2Tt -T

r(s, t)dsdt + 2 \ aT — a0 \2

rT(h)dh + 2 | aT — a0 |2 (98)

where, as usual, rT( • is given by (88). Since rT(h) -> r(/z) due to the fact that
F e class (KF), and since r(s, s + h) -> 0 as | s | oo by hypothesis together with
the fact that

r(s, 11 ^ (r(s, s)r(t, t))1/2 ^ M2 < oo

where || X(t) || ^ M < oo (X being F-bounded), one can invoke a classical result

on Cesarô summability (cf., [8], IV. 13.83(a)). By this result r(h) 0 for each

he R. Actually rT(h) -> r(/z) 0), uniformly in h on compact sets of R. It follows
that E(\ST — a0\2) - 0, and this completes the proof of the theorem.

Remark. The key reduction for (95), which is used in (96), is possible in the

above proof since the linear operation of Q on the process mattered. However,
for Theorem 8.1, the dilation result itself is not immediately applicable since the

problem there is nonlinear, and one had to use alternate arguments as was done

there. Also since Fubini's theorem is not available for the MT-integral (cf. [27],
§8), a special computation has to be used for this special case. Thus the point of
the general theory here is to clarify the structure of these processes, and a

reduction to the stationary case is not always possible.
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9. Multivariate extension and related problems

Here a multidimensional extension of weakly harmonizable processes and

the filtering problem on them will be briefly discussed. Even though some results

have direct /c-dimensional analogs (k^2), there are some new and non-trivial
problems in this case for a successful application of the theory. The infinite
dimensional case will not be considered here since the key finite dimensional

problems are not well-understood and resolved.

Let Lq(P, Ck) Lq(Q, D, P ; Ckj) be the space of equivalence classes of
measurable functions / : Q -> Ck, the complex /c-space, such that (i) | / |2

k

I m2is P-integrable, and (ii) E(f) /(co)P(doc>) 0, or equivalently,
i i v-

E(Q ffi/i(co)W 0, i 1

where / — (f1}fk), | / | is the Euclidean norm of / in Ck, and (£2, £, P) is a

probability space. If fge L&P, Ck), define || / \\\ (/, /) where the inner
product is given by

(/. 0) In (/(w), g{a))P{d&) L In M(oMw)P(dw).
£= 1

Then ?i~ Lq(F, C*) becomes a Hilbert space of fc-vectors with zero means. If k
1, one has the space considered in the preceding sections (Jtf Lq{P, C)).

Definition 9.1. Let G be an LCA group. Then a mapping -> is a
weakly or strongly harmonizable vector (or /c-dimensional) random field (or
process) if for each a (au ak)eC\ the mapping

Yaa-X{= £a^Xj: G ^ Jf
1=1

is a (scalar) weakly or strongly harmonizable random field (or process).
Similarly a vector stationary, Karhunen, or class (C), processes are defined by

reducing to the scalar cases.

It is immediate from this definition that the component processes are also
harmonizably or stationarily etc. correlated according to the class they belong.
Thus if ra is the covariance function of the ya-process and is the covariance
matrix of the A-process, so that ra(g,h) E(Ya(g)Yjh)) and R(g, h)

E(X'(g)X{h)) where X(g) is a fc-th order (row) vector and "t" denotes the
usual transpose of a vector or matrix, then ra(g, h) aR(g, h)a'. With this
notation, the integral representations of multivariate weakly and strongly
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harmonizable random fields can be obtained, using Theorem 3.3, in a

straightforward manner.

Theorem 9.2. Let G be an LCA group and X : G -> SC Ll(P, Cfc), a

weakly continuous bounded mapping. Then X is weakly harmonizable iff there is

a stochastic measure Z on G -> (or if Z(A) (Z^A),..., Zk(A)), A c= G is

a Borel set, then each Zj is a stochastic measure on G -> XF,j 1,..., k), such

that

X(g) jo <g, S> (99)

where G is the dual group of G. The mapping X is strongly harmonizable if
further the matrix F — (Fjhj, I — 1,..., k) with

F(A, B) ((Z/A),Zt(B)),j, I 1,

is ofbounded variation on G, or equivalently each Fß is ofbounded variation on
G. The covariance matrix R is representable as :

R{g, h) fô |g < g,S>< h,t>F{ds, dt), (100)

where the right side is the MT-integral, or the Lebesgue-Stieltjes integral, defined

componentwise, accordingly as X is weakly or strongly harmonizable, and where

F is a positive definite matrix of bounded bimeasures or of Lebesgue-Stieltjes

measures. Conversely, if R( -, • is a positive definite matrix representable as

(100), then it is the covariance matrix ofa multivariate harmonizable random field.
Sketch of proof : Let a eCk be arbitrarily fixed and consider

Ya a - X(— aXl).

If X is weakly harmonizable, so that Ya is also, then by Theorem 3.3 (trivially
extended when R is replaced by G), there is a stochastic measure Za on G -
such that

Ya(g) iô<g,syza(ds), geG.

From this and the definition of Ya, it follows that Z^A) : Ck -> is linear and

continuous. Hence there is a Zon G #"** by reflexivity) such that Za(A)

a • Z(A), and it is evident that Z is a-additive on ^(G) - 3C so that it is a

stochastic measure. It follows from the properties of the D-S integral that :

Ya(g) a X{g) {g,s>a Z(ds) <0, s> Z(ds), (101)

where the last integral defines an element of This implies (99) since "a" is

arbitrary and X( • as well as the integral operator are continuous. The converse
is similarly deduced from the corresponding part of Theorem 3.3.
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If X is strongly harmonizable, then so is Ya and if Fa is its covariance

bimeasure, then Fa aFä* where

F(A, B) «Z/A), Zk).

Now taking special values for a in Ck, it follows immediately that each

component Fn of F is of bounded variation. Interpreting (100) componentwise,
the result follows from the scalar case. The same representation holds with the

MT-integration for the weakly harmonizable case. All other statements,

including the converses, are similarly deduced. This terminates the sketch.

By an analogous reasoning, it is evidently possible to assert that there is a 2-

majorant of Z, and the A-process has a (vector) stationary dilation. These results

are of real interest in the context of the important filtering problem which can be

abstractly stated following Bochner [2].
If X : G - % is a random field, a (not necessarily bounded) linear operator

; A : -+ SC is called afilter of X, if A commutes with the translation operator on
X, i.e., if (xhX) (g) X(hg), then xh(AI) A(xhX), where the domain

dorn (A) =3 {t hX{g)geG,heG}.
The problem is to find solutions X of the equation :

XX Y(eX), (102)

such that if Y is a given weakly or strongly harmonizable random field so must X
be.

For the stationary case, a general concept of filter was discussed by Hannan
m

[11]. If k 1, A Z aAi is a reverse shift operator with G R (so AjA'(t)
i 1

X(t — i)) and Y is stationary, then this problem was completely solved by
Nagabhushanam [28], and by Kelsh [19] in the strongly harmonizable case. In
both these studies, the conditions are on the measure function of (33). If 2,
under the usual assumptions on the random fields, the following new questions
arise with (99) and (100). Frequently employed general forms of A include the
constant coefficient difference, differential, or integral operators, or a mixture of

m

these. For instance, if A £ AjD\ where the A are k-by-k constant matrices,
j=o

dJ
andZ)J - (G R) then (102) takes the following form in order that it admit

a (weakly) harmonizable solution for a harmonizable Y where denotes the
> mean-square y'-th derivative (assumed to exist) :

L
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\ReiaZy{dX) Y(t) (AX)(t) X aj Xu\k-j)
j=o

mI Aj\Re^-^(iXyZx(dX)
j=o

JR T(k) eiZx(d'K),(103)

m

where T(X) J] ^"^(zXy, called the generator of A in [2], and Zx, Zy are
i o

the representing stochastic measures of X- and 7-processes. Clearly the existence

of solutions of (102) depends on the coefficients AJs determining the analytical
properties of the generator T{ • If the process is strongly harmonizable then

(103) implies (*-denoting conjugate transpose)

Ry(s, t) JR JR eisX~M Fy(dX, d\')

JR |R T(k)Fx(d\,dX')(T(k')eia')* (104)

where Fx and Fy are the k-by-k matrix covariance bimeasures of X- and Y-

processes. For a special class of strongly harmonizable k-vector processes,

recently Kelsh [19] found sufficient conditions on the generator T(-) for a

solution of (102) when differential operators are replaced by difference operators
so that {X : T(k) 0} is finite. The solution here hinges on the properties of the

structure of the space :

L\FX) {T : R - B(Ck), || JR fR T(k)Fx(dX, dX')T*(K) || < oo} (105)

Since the integral in (105) defines a positive (semi-) definite matrix, its trace gives

a semi-norm. The measure function F being a matrix bimeasure, several new

problems arise for an analysis of the L2(Fx)-space. For the weakly harmonizable

case, an extension of the MT-integration, to include such integrals, should be

established. The resulting theory can then be utilized for the multivariate

filtering study. Even if k 2, the problem is non-trivial, involving the rank

questions of Fx. Application of the dilation results to the filtering problem has

some novel features, but it does not materially simplify the problem.

Another interesting point is to seek "weak solutions" of the filtering equation
(102) in the sense of distribution theory. This idea is introduced in [2]. If ^ is a

class of functions on R (e.g. the Schwartz space Coo(R)) with a locally convex

topology, then one says that (102) has a (weak) solution iff for each / e 0

j„ f(t)Y(t)dt JR f(t)AX(t)dt jR(Ä/) (106)
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where Ä : ^ ^ is an operator, associated with A, defined by the last two

integrals above. It is an "adjoint" to A. For instance, ifA is a differential operator
with T{ • as its generator, if k 1 and X, Y are stationary, then Ä is given by

(A/) (t) fR T(t- X)mFxm / e 0 (107)

where Fx is the spectral measure function of the X-process. Clearly many other

possibilities are available. Thus there are a number of directions to pursue the

research on these problems, and the paper [2] has a wealth of ideas of great
interest here.

This essentially includes what is known about weakly harmonizable random
fields and processes, as far as their structure is concerned. Since the class (C) of
Cramér and its weak counterpart (cf. Definition 3.1) and the Karhunen class of

processes, defined by (31), are natural generalizations of harmonizable and

stationary classes, it is reasonable to ask whether the latter is a dilation of the

former, i.e., is the analog of Theorem 6.1 true for weakly class (C)? A restricted
version can be establshed by the same methods, but the parallel generalization
does not hold. (See [38] on this point.) This question will be briefly discussed
here in order to include it in the set of problems raised by the present study.

Recall that a mapping X : R - Ll(P) is a Karhunen process if its covariance
function r( -, • admits a representation

r(s, t)J gs(k)g,(X)F{dX),R,
R

relative to a family {gs( • s e R} of measurable functions and F which defines a
locally finite positive regular (or Radon) measure on R and gs e lf(F) (cf. also

[10], p. 241). As an immediate consequence of Theorem 3.2 (cf. Remark 2

following its proof), an integral representation for Karhunen processes can be

given.

Proposition 9.3. Let S be a locally compact space and X : S -> Lj(P)
be a process of Karhunen class relative to a locally finite positive regular (or
Radon) measure F on S and a family {gt, t e S} a I}(F), the space of all
scalar square integrable functions on (S, F). Then there is a locally bounded
regular (or Radon) stochastic measure Z : 0SQ -> L2Q{P) where a 08 is the
b-ring of bounded sets, such that (i)

E(Z(A) • Z(B)) F(AnB), A,Be08o,

i.e., Z is orthogonally scattered, and (ii) one has

*(0 Is gfi-)Z(d'k), tes, (108)
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where the right side symbol is a D-S integral (cf. also [42], §1 Conversely, if
X : S -> Lq(-P) is a process defined by (108) relative to an orthogonally scattered

measure Z on S and {gv t e S} satisfies the above conditions, then it is a

Karhunen process with respect to the family {gt, t e S} and F defined by
F(AnB) (Z(A), Z(B)). Moreover

XFx sp{X{tl t e S} C 3tez ~sp{Z(A), A e ^o} «= Lg(P)

and XFx — XFz iff {gt9 t e S} is dense in L2(F).

A proof of this result is essentially given in ([10], p. 242) and is a

simplification of that of Theorem 3.2. Even a multidimensional version is not
difficult, which in fact is analogous to that of Theorem 9.2 above. Actually, the

version in [10] is sketched for the k-dimensional case.

It follows from the arguments of the D-S theory of integration that a bounded
linear operator T and the vector integral such as that of (108) commute even if Z
is of locally finite semivariation on the locally compact space S. This extension of
([8], IV. 10) was proved in ([42], p. 79), and shown to be easy. Thus if X : S

Lq(P) is a Karhunen process, so that it is representable as in (108) and if
T e B(Lq(P))9 then it follows that

TX(t) \sgfk)ToZ{dX)9 (109)

and it is simple to see that Z T ° Z is a stochastic measure of locally finite
semivariation, but not necessarily orthogonally scattered. Hence by Theorem

3.2, TX is weakly of class (C).

In the opposite direction, for a process (X(s), s e S} e weakly class (C), one

cannot apply the theory of Section 5 above if only {gt, t e S} e L2(FX), and no
further restrictions are imposed, where lf{Fx) is the space of functions g such that
I g I is MT-integrable relative to the covariance bimeasure Fx representing X (cf.

(105), with k 1). Suppose now that Fx is such that if each gt is a bounded Borel

function and M(S) is the uniformly closed algebra generated by {gt, t e S} then

M(S) c L2(Fx). Let

Tg, X(t) j g,(X)Z(dX)
S

and extend T linearly to M(S). Then T e B(M(S\ Jf) when M(S) is given the

uniform norm. This forces Fx to be of finite semivariation if at least one gs has

noncompact support. Under this assumption T is a 2-absolutely summing, and

Proposition 5.6 is applicable. Hence

II Tf || ^||/||2,,, / 6 M(S) (110)
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for a finite measure p on S. (A similar result seems possible if Z is restricted so

that T e B(Ü{FX), M), defined above is Hilbert-Schmidt by [22], p. 302. But it is

not a good assumption here.) Thus one can repeat the proof of Theorem 6.1

essentially verbatim and establish a dilation result. Omitting the details of this

computation one obtains the following result. (For related remarks, details and

other results, see [38].)

Theorem 9.4. Let S be a locally compact space and

X : S -> L20(P)

be a Karhunen process relative to a Radon measure F and a family

{,gt, teS] c L2(F).

If Q : JF JF is any (bounded) projection, then X(t) QX(t), t e S, is a

process in weakly class (C). On the other hand if {X(t), t e S} is an element of
weakly class (C), and so is representable in the form (108) for some family

{yt, t e S} c L2(FJ where Fx is a bounded covariance bimeasure of the

process (Lf{Fx) is defined above), and if each gt is also bounded, then there

exists an extension Hilbert space Jf =3 a probability space (fö, £, P) with
JF Lq(P), and a Karhunen process Y : S - C/f such that

X(f) ß 7(0, te S,

where Q is the orthogonal projection on JF with range JF.

This result points out clearly the need to consider the domination problem
for other Banach spaces than those covered by the results of Section 5. Indeed the

associated abstract problem of classifying Banach spaces admitting a positive p-
majorizable measure for each vector measure from a probability space into that

space is essentially open. Also the preceding theorem and related analysis
presumably extend to class^ (C)-processes of Definition 3.4. This will be of
independent interest in addition to its use in a treatment of the general filtering
theory on these processes. Other problems noted in the main text of the paper are
of both methodological and applicational importance for a future study.
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