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290 A. ROBERT

(qui appartient à ce plan homogène) doit être parallèle à la tangente à C en xr Le

champ continu de droites

(p x9 + P(d9)

est défini sur toute la courbe C et fournit la tangente à QL en x9 chaque fois que
ce point est dérivable sur C, c'est-à-dire saufen un ensemble au plus dénombrable
de points. Il ne reste plus qu'à démontrer le lemme suivant (formulé avec des

notations légèrement différents et plus usuelles).

Lemme. Soient I un intervalle (d'intérieur non vide dans RJ et f une

fonction continue I -* R. Supposons f dérivable en tous les points de I — D

où D est une partie au plus dénombrable de I. S'il existe unefonction continue

g : / -> R telle que g(x) /'(x) en tout x e I — D, alors f est

continûment dérivable sur tout I et f g.

La démonstration de ce lemme est facile! Appelons h la primitive de g nulle en

x a

h{x) \xa g{t)dt.

Par définition h est continûment dérivable avec h' g. Par hypothèse, f — h

est dérivable en tout xeî — D et de dérivée nulle en ces points. Comme cette

fonction / — h est continue, le théorème des accroissements finis montre qu'elle
est constante : / h + c est continûment dérivable et f' hf g.

3. Démonstration du théorème A (cas différentiable)

Nous avons vu (point 4, sec. 2) que sous les hypothèses du théorème A, il y a

un unique projecteur Pa de norme 1 sur chaque plan homogène a. Montrons
maintenant que

oc (- Ker(Pa) da

est injective : à deux plans (homogènes) distincts correspondent des directions de

projection de norme 1 distinctes. En effet, prenons deux plans homogènes a ^ ß.

Si les projecteurs Pa et Pß avaient même noyau d, la surface S Fr(K)
contiendrait une portion de cylindre de génératrices parallèles à d, limitée par a

et ß. Considérons alors une section intermédiaire CY S n y (y est un plan
homogène contenant la droite an ß et situé entre a et ß relativement à d).

D'après le théorème de Krein-Milman, on peut choisir un point x de (2Ly extrêmal

sur K n y et non situé sur la droite a n ß (il pourrait arriver que les seuls points

ayant les propriétés indiquées soient x et — x : ce cas se présenterait si K n y était
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un parallélogramme avec deux sommets sur a n ß! On comparera d ailleurs

cette situation avec sa duale du point 4, sec. 2). Ainsi, x est intérieur à un segment

de S parallèle à d, tout en étant extrêmal sur toutes les sections planes de K

définies par des plans homogènes y' contenant Ox et distinctes du plan engendré

par d et Ox. Les projecteurs de norme 1 sur ces plans y' devraient avoir d comme

noyau, contrairement au fait que l'ensemble des projecteurs correspondant au

faisceau de plans d'axe Ox est compact.

L'application bijective a i— da Ker(Pa) transforme plans coaxiaux en

droites coplanaires. En effet, les droites dt correspondant à un système de plans c\>t

contenant une droite commune d (homogène) doivent être parallèles aux plans

tangents en les deux points symétriques de S n d. En d'autres termes,

l'application considérée transforme droites de P* en droites de P. Le théorème

fondamental de la géométrie projective affirme alors qu'il existe une application
linéaire bijective de R3 (R3)* dans R3 qui induit oc i— da au niveau des espaces

projectifs (puisque le corps R n'a aucun automorphisme non trivial, il n'y a pas à

utiliser le résultat de continuité ici).

L'Enseignement mathém., t. XXVIII, fasc. 3-4.
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En particulier, si on fixe une section plane C (£a de S, il existe une

application linéaire A bijective a - a telle que ^(Ox^) dv (d9 étant la droite
homogène parallèle à la tangente à (£ enx9: les notations sont celles du point 6

de la sec. 1). Dans le plan a, et en coordonnées polaires d'angle cp en 0, la courbe (£

est ainsi une solution (stricte puisque continûment dérivable) d'une équation
différentielle vectorielle du type

d
—— x Ax (x Oxea).
dq>

Comme cette solution £ est fermée, la discussion de ces systèmes autonomes en

dimension 2 montre que les valeurs propres de A doivent être imaginaires pures
(conjuguées) et (£ est une ellipse!

Globalement, prenant un système d'axes 0xyz, les trois sections de S par les

plans de coordonnées doivent être des ellipses et S est engendrée par une famille

d'ellipses (verticales pour fixer les idées) s'appuyant sur une ellipse de base fixe.

C'est un ellipsoïde.
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