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290 ‘ A. ROBERT

(qui appartient a ce plan homogene) doit étre paralléle a 1a tangente & € en x,,. Le
champ continu de droites

¢ x, + P(d,)

est défini sur toute la courbe € et fournit la tangente ¢, 4 € en x, chaque fois que
ce point est dérivable sur €, c’est-a-dire sauf en un ensemble au plus dénombrable
de points. Il ne reste plus qu’a démontrer le lemme suivant (formulé avec des
notations légerement différents et plus usuelles).

LEMME. Soient I un intervalle (d’intérieur non vide dans R) et f une
fonction continue I — R. Supposons f dérivable en tous les pointsde I — D
ou D estune partie au plus dénombrablede 1. §’il existe une fonction continue
g: I - R telle que g(x) = f'(x) en tout xel — D, alors [ est
contintiment dérivable sur tout I et f' = g.

La démonstration de ce lemme est facile! Appelons A la primitive de g nulle en

h(x) = [ g(t)de .

Par définition h est continiment dérivable avec i’ = g. Par hypothése, f — h
est dérivable en tout x € I — D et de dérivée nulle en ces points. Comme cette
fonction f — hest continue, le théoréme des accroissements finis montre qu’elle
est constante: f = h + c est continiment dérivable et ' = h' = g.

3. DEMONSTRATION DU THEOREME A (CAS DIFFERENTIABLE)

Nous avons vu (point 4, sec. 2) que sous les hypotheses du théoréme A, il y a
un unique projecteur P, de norme 1 sur chaque plan homogeéne a. Montrons
maintenant que

o — Ker(P,) = d,

est injective : & deux plans (homogeénes) distincts correspondent des directions de
projection de norme 1 distinctes. En effet, prenons deux plans homogenes o # B.
Si les projecteurs P, et Py avaient méme noyau d, la surface S = Fr(K)
contiendrait une portion de cylindre de génératrices paralleles a d, limitée par o
et B. Considérons alors une section intermédiaire €, = S Ny (y est un plan
homogéne contenant la droite a N B et situé entre o et B relativement a d).
D’aprés le théoréme de Krein-Milman, on peut choisir un point x de €, extrémal
sur K n vy et non situé sur la droite a n B (1l pourrait arriver que les seuls points
ayant les propriétés indiquées soient x et — x : ce cas se présenterait si K N vy était
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un parallélogramme avec deux sommets sur a N B! On comparera d’ailleurs
cette situation avec sa duale du point 4, sec. 2). Ainsi, x est intérieur a un segment
de S paralléle a d, tout en étant extrémal sur toutes les sections planes de K
définies par des plans homogénes ¥’ contenant Ox et distinctes du plan engendré
par d et Ox. Les projecteurs de norme 1 sur ces plans v’ devraient avoir d comme
noyau, contrairement au fait que 'ensemble des projecteurs correspondant au
faisceau de plans d’axe Ox est compact.

L’application bijective o+ d, = Ker(P,) transforme plans coaxiaux en
droites coplanaires. En effet, les droites d; correspondant a un systeme de plans ¢;
contenant une droite commune d (homogéne) doivent étre paralleles aux plans
tangents en les deux points symeétriques de S nd. En d’autres termes,
I'application considérée transforme droites de P* en droites de P. Le théoréme
fondamental de la géomeétrie projective affirme alors qu’il existe une application
linéaire bijective de R; = (R?)* dans R? qui induit o — d, au niveau des espaces
projectifs (puisque le corps R n’a aucun automorphisme non trivial, il n’y a pas a
utiliser le résultat de continuité ici).

¥
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292 A. ROBERT

En particulier, si on fixe une section plane € = €, de S, il existe une
application linéaire A4 bijective o — a telle que 4(0x,) = d, (d, étant la droite
homogene parallele a la tangente t, a € en x,,: les notations sont celles du point 6
delasec. 1). Dans le plan a, et en coordonnées polaires d’angle @ en 0, la courbe €
est ainsi une solution (stricte puisque continiment dérivable) d’une équation
différentielle vectorielle du type

— X = AXx (X = Oxeq) .

Comme cette solution € est fermée, la discussion de ces systémes autonomes en
dimension 2 montre que les valeurs propres de A doivent étre imaginaires pures
(conjuguées) et € est une ellipse!

Globalement, prenant un systeme d’axes Oxyz, les trois sections de S par les
plans de coordonnées doivent étre des ellipses et S est engendrée par une famille
d’ellipses (verticales pour fixer les idées) s’appuyant sur une ellipse de base fixe.
Cest un ellipsoide.
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