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I’étude de certains problémes variationnels [2]. Birkhoff [1] reprend 'argument
de Blaschke pour en déduire un énoncé voisin du théoréme B (il fait encore une
hypothése — explicite — d’unicité de plans d’appui, revenant immédiatement a
la différentiabilité de la surface S). Il utilise un théoréme de représentation des
groupes (dii & von Neumann) pour parvenir a sa conclusion. Kakutani [9],
auquel ce théoréme a parfois été attribué ultérieurement, se borne a dire que
Phypothése de lissité est superflue (se référant a Bonnesen-Fenchel [4] p. 13, il
croit pouvoir se dispenser de donner la moindre indication « since this may be
easily carried out »!). La premiére démonstration (relativement) complete de la
lissité est donnée par Phillips [10]. Pour pouvoir étendre le théoreme A’ au cas
complexe (dim¢ = 3), Bohnenblust [3] introduit des méthodes plus
conceptuelles. En particulier, il remplace les arguments de Blaschke et de
Birkhoff par I'utilisation du théoréme fondamental de la géométrie projective
(dans la formulation donnée par E. Cartan). Finalement, Bourbaki [6] formule
une suite de problémes (difficiles) entrelagant les cas réels (loc. cit. p. 142-143) et
complexes (p. 144). Il suit en gros la méthode inaugurée par Bohnenblust.

On trouvera aussi une démonstration du théoréme B dans le livre de
géométrie différentielle de Guggenheimer ([8], p. 310-311 ou ce théoréme est
appelé théoreme de Maschke (sic!): par l'intermédiaire de I'utilisation des
formules de Serret-Frenet pour certaines courbes tracées sur la surface, il fait
implicitement toutes les hypothéses de différentiabilité — jusqu’a I'ordre 3 —
requises).

Les reférences [11] a [15] montrent I’évolution des différentes notions
d’orthogonalite (et de géométrie fine) dans les espaces normés de 1945 & 1955.

2. DEMONSTRATION DE LA DIFFERENTIABILITE

Dans cette section, on démontrera I'affirmation suivante. Si E est un espace
normé de dimension 3 possédant (au moins) un projecteur de norme 1 sur chaque
plan (homogéne ), alors la boule unité fermée K de E posséde un plan tangent
en chaque point de sa frontiére S et cette surface est contintiment différentiable.

Nous procederons en plusieurs étapes, commengant par quelques rappels en
dimension 2.

Point 1. La frontiere d’'un convexe fermé possédant un point intérieur dans
le plan R? est une courbe continue (fermée si ce convexe est borné). Cette courbe
possede des demi-tangentes a « gauche » et d « droite » de chaque point. De plus,
sauf en un ensemble au plus dénombrable de points appelés pointes, cette courbe
a une tangente (ses deux demi-tangentes sont en prolongement l'une de l'autre).
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Géomeétriquement, on le voit facilement en attachant a chaque point x de la
frontiere du convexe considéré, le secteur S, intersection de tous les demi-plans
contenant le convexe et limités par une droite passant par x (dite droite d’appui en
x). Le dessin suivant illustre bien la situation.

SX 0,
N
X

Yo, < 2n = {x: 0, > 0} estau plus dénombrable.

Un convexe du plan sans point intérieur est nécessairement linéaire (segment
limité ou non, éventuellement réduit a un point). On peut encore définir le secteur
S, en un point quelconque d’un convexe linéaire fermé. Son angle au sommet
sera 0 (point intérieur au segment), © (extrémité. du segment) ou 27n (segment
réduit a un point). Pour toutes les propriétés de différentiabilité des convexes
plans, cf. Bourbaki [5] (chap. 1, §4, p. 41-55).

Point 2. 1l est facile de généraliser les remarques précédentes aux convexes
fermés de dimension 3. Soit K un tel ensemble de R?, S sa frontiére et x un point
de la surface S. On appelle cone d’appui de K en x I'intersection C, = C(K) des
demi-espaces contenant K et limités par un plan contenant x (ces plans limites
sont donc les plans d’appui de K en x). Comme tout demi-espace contenant x sur
son bord est un cone de sommet x, il en est de méme de C, et par définition, les
plans d’appui en x de K et de C, sont les mémes. Soit A = K n o une section
plane de K passant par x et non reduite & un segment. Alors l'intersection du cone
C(K) avec le plan o est le secteur 'S, = S,(A). Ceci est géométriquement
clair (nous sommes dans R?) et peut étre déduit formellement du théoréme de
Hahn-Banach... De fagon générale, le cOne C, étant convexe, trois cas seulement
peuvent se présenter.

a) C,ne contient aucune droite. On dit alors que ce cOne est strict et que x est
une pointe de K (et de C,).

b) C, contient une droite passant par x. Dans ce cas, tous les demi-espaces
fermés contenant K et d’appui en x doivent contenir cette droite. Ainsi, C, est
limité par deux demi-espaces extrémes et est un toit. Lorsque ces deux demi-
espaces extrémes sont distincts (i.e. lorsque C, ne contient qu’une seule droite
passant par x), on dit que C, est un toit strict, avec pour faite la droite unique de
C, passant par x, et pour pans les deux demi-plans limitant C,. Le cas du toit
(strict ou non) se présente chaque fois que x est dérivable sur une courbe de K.
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c¢) C, contient deux droites distinctes passant par x. Dans ce cas de toit plat,
C. est un demi-espace dont le plan limite est 'unique plan d’appui de K en x. (On
peut démontrer que ce cas correspond a la différentiabilité de x sur §: nous
n’aurons pas a utiliser ce fait.)

Point 3. Nous aurons aussi a considérer I'ensemble B des projecteurs
plans, de norme 1 de E (dimg E = 3). Comme il y a une seule topologie (séparée!)
compatible a la structure vectorielle sur tout espace de dimension finie, nous
pourrons parler sans ambiguité de continuité, de parties compactes... dans £(E)
= Hom(E, E). L’ensemble des projecteurs de cet espace est fermé : il est défini par
P? = P (la composition des applications est continue). Il en est de méme de
'ensemble des projecteurs plans qui est caractéris¢é par la condition
supplémentaire Tr(P) = 2. Finalement, la partie 8 définie encorepar || P || = 1
est compacte. Il est bon de se représenter géométriquement la condition | P ||
= 1 (C’est ainsi que nous l'utiliserons dans la suite) par le fait que P doit
appliquer la boule unité fermée K de E dans la boule unité fermée du plan sur
lequelil projette: P(K) = K n Im(P). Autrement dit, K doit étre contenu dans le
cylindre de base K n Im(P) et de génératrices paralleles a Ker(P). L’application
P — (Ker(P), Im(P)) (par exemple définie sur 'ensemble des projecteurs plans)
est continue. La premiere composante de 'image varie dans I’espace projectif des
droites homogenes de E, tandis que la deuxiéme composante varie dans I'espace
des plans homogenes de E (que 'on peut identifier a 'espace projectif des droites
homogenes du dual E* de E).

Point 4. a) S’il y a deux projecteurs distincts P; de norme 1 sur un méme
plan (homogene) o, il y a un cone d’appui C,(K) (en un point x € o) qui est un toit
strict. En effet, appelons d; = Ker P;(droites supplémentaires a o) et choisissons
un point dérivable x de la courbe plane €, = S n a (il y en a puisque 'ensemble
des pointes de K N o est au plus dénombrable). On peut méme choisir ce point x
de fagon que sa tangente ¢ ne soit pas paralléle au plan engendré par d, et d,:
pour ceci, il suffit d’exclure la direction de tangente donnée par la droite
d’intersection du plan engendré par d, et d, avec o (I'ensemble des tangentes aux
points dérivables de €, a au moins deux directions distinctes, le cas de deux
directions exactement se présentant lorsque €, est le bord d’un
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paralléelogramme!). Comme les projecteurs P; ont norme 1, P(K) est contenu
dans K n a et C(K) est un toit contenu dans le toit strict de faite ¢ et de pans
paralleles aux droites d,.

b) Montrons que lorsqu’un cone d’appui C,(K) est un toit strict, il y a un plan
homogene B passant par x sur lequel il est impossible de projeter avec norme 1.
Tout plan § # a contenant Ox doit couper le toit strict C (K) selon un secteur
d’angle < m:x est pointe de toutes ces sections planes €, Mais lorsqu’un

projecteur Q de rang 2 n’applique pas le faite ¢ sur un seul point, Q(t) est tangente
a Q(€,) (dans B = Im Q). Si de plus | Q | = 1, x n’est pas pointe de K N B
> Q(€,). Donc dans notre cas, les P e P ayant une image B # o, f > Ox
devraient avoir méme noyau (parallele a t) : cela est contraire a la compacité de la
partie de ‘B formée des projecteurs d’image contenant Ox. ,

Au total, nos hypothéses impliquent donc qu’il y a un seul projecteur de
norme 1 sur chaque plan (homogene) a.

Point 5. Pour tout plan a, dénotons par P, € P le projecteur de norme 1
sur aet pard, = Ker(P,)sa direction de projection. Le graphe I" de I’'application
o — d, est la partie de P* x P formée des couples (o, d,), donc est 'image de B
par I'application continue

¢ : P — (Im(P), Ker(P)) .
Ce graphe I' = ¢(*P) est donc compact et il en résulte que
o+ d, estcontinue.

En effet, la restriction p* au graphe I' de la premiere projection du produit
P* x P est continue et bijective, donc un homéomorphisme et o+ d, est
composé de 'homéomorphisme inverse avec la deuxieme projection du produit.
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Point 6. Montrons maintenant que toutes les sections planes (homogenes)
de S sont des courbes continiiment dérivables. Fixons donc le plan homogene
fournissant la section plane € = €, et appelons d = d, la direction du
projecteur P = P, de norme 1 sur «. Introduisons des coordonnées polaires
d’angle ¢ en 0 dans a, de fagon a paramétrer les points de € par cet angle. Un
point x, € € définit naturellement un plan (encore noté @ par abus!) contenant d

ettelque €N = +x,
\/
Le projecteur P, de norme 1 sur ¢ a un noyau d, supplémentaire de ¢ donc

distinct de d = ¢ : P(d,) n’est jamais réduit & un point. De plus, nous avons
montré (point 5) que d,, est continu en ¢ d’ou aussi

—-‘

¢+ d,— P, continu.

La famille de droites ¢ — P(d,) fournit ainsi un champ continu de droites
sur €

o x, + P(d,).

Je prétends qu’en tous les points x,, dérivables sur @, X, + P(d,) = t,estla
tangente a € en x,. Supposons donc x,, dérivable sur €. D’apreés le point 2, C, (K)
-est un toit. Mieux, d’apreés le point 4 b), ce toit doit étre platet X, est dérivable sur
K (ie. sur S). Le plan homogéne paralléle au plan tangent a S en x, doit
‘contenir les deux droites d et d,,, donc étre engendré par elles. En particulier, P(d,)
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(qui appartient a ce plan homogene) doit étre paralléle a 1a tangente & € en x,,. Le
champ continu de droites

¢ x, + P(d,)

est défini sur toute la courbe € et fournit la tangente ¢, 4 € en x, chaque fois que
ce point est dérivable sur €, c’est-a-dire sauf en un ensemble au plus dénombrable
de points. Il ne reste plus qu’a démontrer le lemme suivant (formulé avec des
notations légerement différents et plus usuelles).

LEMME. Soient I un intervalle (d’intérieur non vide dans R) et f une
fonction continue I — R. Supposons f dérivable en tous les pointsde I — D
ou D estune partie au plus dénombrablede 1. §’il existe une fonction continue
g: I - R telle que g(x) = f'(x) en tout xel — D, alors [ est
contintiment dérivable sur tout I et f' = g.

La démonstration de ce lemme est facile! Appelons A la primitive de g nulle en

h(x) = [ g(t)de .

Par définition h est continiment dérivable avec i’ = g. Par hypothése, f — h
est dérivable en tout x € I — D et de dérivée nulle en ces points. Comme cette
fonction f — hest continue, le théoréme des accroissements finis montre qu’elle
est constante: f = h + c est continiment dérivable et ' = h' = g.

3. DEMONSTRATION DU THEOREME A (CAS DIFFERENTIABLE)

Nous avons vu (point 4, sec. 2) que sous les hypotheses du théoréme A, il y a
un unique projecteur P, de norme 1 sur chaque plan homogeéne a. Montrons
maintenant que

o — Ker(P,) = d,

est injective : & deux plans (homogeénes) distincts correspondent des directions de
projection de norme 1 distinctes. En effet, prenons deux plans homogenes o # B.
Si les projecteurs P, et Py avaient méme noyau d, la surface S = Fr(K)
contiendrait une portion de cylindre de génératrices paralleles a d, limitée par o
et B. Considérons alors une section intermédiaire €, = S Ny (y est un plan
homogéne contenant la droite a N B et situé entre o et B relativement a d).
D’aprés le théoréme de Krein-Milman, on peut choisir un point x de €, extrémal
sur K n vy et non situé sur la droite a n B (1l pourrait arriver que les seuls points
ayant les propriétés indiquées soient x et — x : ce cas se présenterait si K N vy était
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