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l'étude de certains problèmes variationnels [2]. Birkhoff [1] reprend l'argument
de Blaschke pour en déduire un énoncé voisin du théorème B (il fait encore une

hypothèse — explicite — d'unicité de plans d'appui, revenant immédiatement à

la différentiabilité de la surface S). Il utilise un théorème de représentation des

groupes (dû à von Neumann) pour parvenir à sa conclusion. Kakutani [9],
auquel ce théorème a parfois été attribué ultérieurement, se borne à dire que

l'hypothèse de lissité est superflue (se référant à Bonnesen-Fenchel [4] p. 13, il
croit pouvoir se dispenser de donner la moindre indication « since this may be

easily carried out » La première démonstration (relativement) complète de la

lissité est donnée par Phillips [10]. Pour pouvoir étendre le théorème A' au cas

complexe (dimc 3), Bohnenblust [3] introduit des méthodes plus

conceptuelles. En particulier, il remplace les arguments de Blaschke et de

Birkhoff par l'utilisation du théorème fondamental de la géométrie projective
(dans la formulation donnée par E. Cartan). Finalement, Bourbaki [6] formule

une suite de problèmes (difficiles) entrelaçant les cas réels (loc. cit. p. 142-143) et

complexes (p. 144). Il suit en gros la méthode inaugurée par Bohnenblust.
On trouvera aussi une démonstration du théorème B dans le livre de

géométrie différentielle de Guggenheimer ([8], p. 310-311 où ce théorème est

appelé théorème de Maschke (sic!): par l'intermédiaire de l'utilisation des

formules de Serret-Frenet pour certaines courbes tracées sur la surface, il fait
implicitement toutes les hypothèses de différentiabilité — jusqu'à l'ordre 3 —
requises).

Les références [11] à [15] montrent l'évolution des différentes notions
d'orthogonalité (et de géométrie fine) dans les espaces normés de 1945 à 1955.

2. Démonstration de la différentiabilité

Dans cette section, on démontrera l'affirmation suivante. Si E est un espace
normé de dimension 3 possédant (au moins) un projecteur de norme 1 sur chaque
plan (homogène), alors la boule unité fermée K de E possède un plan tangent
en chaque point de sa frontière S et cette surface est continûment différentiable.

Nous procéderons en plusieurs étapes, commençant par quelques rappels en
dimension 2.

Point 1. La frontière d'un convexe fermé possédant un point intérieur dans
le plan R2 est une courbe continue (fermée si ce convexe est borné). Cette courbe
possède des demi-tangentes à « gauche » et à « droite » de chaque point. De plus,
sauf en un ensemble au plus dénombrable de points appelés pointes, cette courbe
a une tangente (ses deux demi-tangentes sont en prolongement l'une de l'autre).



286 A. ROBERT

Géométriquement, on le voit facilement en attachant à chaque point x de la
frontière du convexe considéré, le secteur Sx intersection de tous les demi-plans
contenant le convexe et limités par une droite passant par x (dite droite d'appui en

x). Le dessin suivant illustre bien la situation.

^ 2tt => {x : ux > 0} est au plus dénombrable.

Un convexe du plan sans point intérieur est nécessairement linéaire (segment
limité ou non, éventuellement réduit à un point). On peut encore définir le secteur

Sx en un point quelconque d'un convexe linéaire fermé. Son angle au sommet

sera 0 (point intérieur au segment), n (extrémité- du segment) ou 2n (segment
réduit à un point). Pour toutes les propriétés de différentiabilité des convexes

plans, cf. Bourbaki [5] (chap. 1, §4, p. 41-55).

Point 2. Il est facile de généraliser les remarques précédentes aux convexes
fermés de dimension 3. Soit X un tel ensemble de R3, S sa frontière et x un point
de la surface S. On appelle cône d'appui de X en x l'intersection Cx CX(K) des

demi-espaces contenant X et limités par un plan contenant x (ces plans limites
sont donc les plans d'appui de X en x). Comme tout demi-espace contenant x sur

son bord est un cône de sommet x, il en est de même de Cx et par définition, les

plans d'appui en x de X et de Cx sont les mêmes. Soit A X n a une section

plane de X passant par x et non réduite à un segment. Alors l'intersection du cône

CX(K) avec le plan a est le secteur Sx SX(A). Ceci est géométriquement
clair (nous sommes dans R3) et peut être déduit formellement du théorème de

Hahn-Banach... De façon générale, le cône Cx étant convexe, trois cas seulement

peuvent se présenter.

a) Cx ne contient aucune droite. On dit alors que ce cône est strict et que x est

une pointe de X (et de Cx).

b) Cx contient une droite passant par x. Dans ce cas, tous les demi-espaces
fermés contenant X et d'appui en x doivent contenir cette droite. Ainsi, Cx est

limité par deux demi-espaces extrêmes et est un toit. Lorsque ces deux demi-

espaces extrêmes sont distincts (i.e. lorsque Cx ne contient qu'une seule droite

passant par x), on dit que Cx est un toit strict, avec pourfaîte la droite unique de

Cx passant par x, et pour pans les deux demi-plans limitant Cx. Le cas du toit
(strict ou non) se présente chaque fois que x est dérivable sur une courbe de X.
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c) Cx contient deux droites distinctes passant par x. Dans ce cas de toit plat,

Cx est un demi-espace dont le plan limite est l'unique plan d'appui de K en x. (On

peut démontrer que ce cas correspond à la différentiabilité de x sur S: nous

n'aurons pas à utiliser ce fait.)

Point 3. Nous aurons aussi à considérer l'ensemble des projecteurs

plans, de norme 1 de E (dimR E 3). Comme il y a une seule topologie (séparée!)

compatible à la structure vectorielle sur tout espace de dimension finie, nous

pourrons parler sans ambiguïté de continuité, de parties compactes... dans 2(E)

Hom(£, E). L'ensemble des projecteurs de cet espace est fermé : il est défini par
p2 p (la composition des applications est continue). Il en est de même de

l'ensemble des projecteurs plans qui est caractérisé par la condition
supplémentaire Tr(P) 2. Finalement, la partie définie encore par || P || 1

est compacte. Il est bon de se représenter géométriquement la condition || P ||

1 (c'est ainsi que nous l'utiliserons dans la suite) par le fait que P doit
appliquer la boule unité fermée K de E dans la boule unité fermée du plan sur
lequel il projette : P(K) a K n Im(P). Autrement dit, K doit être contenu dans le

cylindre de base K n Im(P) et de génératrices parallèles à Ker(P). L'application
P i— (Ker(P), Im(P)) (par exemple définie sur l'ensemble des projecteurs plans)
est continue. La première composante de l'image varie dans l'espace projectif des

droites homogènes de P, tandis que la deuxième composante varie dans l'espace
des plans homogènes de E (que l'on peut identifier à l'espace projectif des droites
homogènes du dual E* de E).

Point 4. a) S'il y a deux projecteurs distincts Pt de norme 1 sur un même
plan (homogène) a, il y a un cône d'appui CX(K) (en un point x g a) qui est un toit
strict. En effet, appelons dt Ker P; (droites supplémentaires à a) et choisissons
un point dérivable x de la courbe plane Œa S n a (il y en a puisque l'ensemble
des pointes de K n a est au plus dénombrable). On peut même choisir ce point x
de façon que sa tangente t ne soit pas parallèle au plan engendré par d1Qtd2 :

pour ceci, il suffit d'exclure la direction de tangente donnée par la droite
d'intersection du plan engendré par d1 et d2 avec a (l'ensemble des tangentes aux
points dérivables de (£a a au moins deux directions distinctes, le cas de deux
directions exactement se présentant lorsque (£a est le bord d'un
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parallélogramme!). Comme les projecteurs P, ont norme 1, Pi(K) est contenu
dans K n a et CX{K) est un toit contenu dans le toit strict de faîte t et de pans
parallèles aux droites dt.

b) Montrons que lorsqu'un cône d'appui CX(K) est un toit strict, il y a un plan
homogène ß passant par x sur lequel il est impossible de projeter avec norme 1.

Tout plan ß # a contenant Ox doit couper le toit strict CX(K) selon un secteur

d'angle < n : x est pointe de toutes ces sections planes (£p. Mais lorsqu'un

projecteur ß de rang 2 n'applique pas le faîte t sur un seul point, Q(t) est tangente
à ß((£J (dans ß Im ß). Si de plus || ß || 1, x n'est pas pointe deKnß
=3 ß(Ca). Donc dans notre cas, les P ety ayant une image ß ^ a, ß Ox

devraient avoir même noyau (parallèle à t) : cela est contraire à la compacité de la

partie de formée des projecteurs d'image contenant Ox.

Au total, nos hypothèses impliquent donc qu'il y a un seul projecteur de

norme 1 sur chaque plan (homogène) a.

Point 5. Pour tout plan a, dénotons par le projecteur de norme 1

sur a et par da Ker(PJ sa direction de projection. Le graphe T de l'application
oc t— est la partie de P* x P formée des couples (a, da), donc est l'image de ^
par l'application continue

En effet, la restriction p* au graphe T de la première projection du produit
P* x P est continue et bijective, donc un homéomorphisme et an da est

composé de l'homéomorphisme inverse avec la deuxième projection du produit.

t

<(> : P t-» (Im(P), Ker(P)).

Ce graphe T (j>(^ß) est donc compact et il en résulte que

a i— da est continue.
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P

Point 6. Montrons maintenant que toutes les sections planes (homogènes)
de S sont des courbes continûment dérivables. Fixons donc le plan homogène
fournissant la section plane (£ (£a et appelons d da la direction du

projecteur P Pa de norme 1 sur a. Introduisons des coordonnées polaires
d'angle cp en 0 dans a, de façon à paramétrer les points de (£ par cet angle. Un
point x?g(I définit naturellement un plan (encore noté cp par abus!) contenant d

et tel que (£ n cp ±xr

Le projecteur P9 de norme 1 sur cp a un noyau d9 supplémentaire de cp donc
distinct de d ci cp : P(d(p) n'est jamais réduit à un point. De plus, nous avons
montré (point 5) que d9 est continu en cp d'où aussi

La famille de droites cp i— P(d9) fournit ainsi un champ continu de droites

Je prétends qu'en tous les points x9 dérivables sur (£, x9 + P(d9) t9 est la
tangente à Œ en xr Supposons donc x9 dérivable sur (£. D'après le point 2, Cx (.K)
est un toit. Mieux, d'après le point 4 b), ce toit doit être plat et x9 est dérivable sur
K (i.e. sur S). Le plan homogène parallèle au plan tangent à S en x9 doit
contenir les deux droites d et d9, donc être engendré par elles. En particulier, P(d

cp i * dy i > P(d9) continu.

sur (£

cp i-> + P(d9).
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(qui appartient à ce plan homogène) doit être parallèle à la tangente à C en xr Le

champ continu de droites

(p x9 + P(d9)

est défini sur toute la courbe C et fournit la tangente à QL en x9 chaque fois que
ce point est dérivable sur C, c'est-à-dire saufen un ensemble au plus dénombrable
de points. Il ne reste plus qu'à démontrer le lemme suivant (formulé avec des

notations légèrement différents et plus usuelles).

Lemme. Soient I un intervalle (d'intérieur non vide dans RJ et f une

fonction continue I -* R. Supposons f dérivable en tous les points de I — D

où D est une partie au plus dénombrable de I. S'il existe unefonction continue

g : / -> R telle que g(x) /'(x) en tout x e I — D, alors f est

continûment dérivable sur tout I et f g.

La démonstration de ce lemme est facile! Appelons h la primitive de g nulle en

x a

h{x) \xa g{t)dt.

Par définition h est continûment dérivable avec h' g. Par hypothèse, f — h

est dérivable en tout xeî — D et de dérivée nulle en ces points. Comme cette

fonction / — h est continue, le théorème des accroissements finis montre qu'elle
est constante : / h + c est continûment dérivable et f' hf g.

3. Démonstration du théorème A (cas différentiable)

Nous avons vu (point 4, sec. 2) que sous les hypothèses du théorème A, il y a

un unique projecteur Pa de norme 1 sur chaque plan homogène a. Montrons
maintenant que

oc (- Ker(Pa) da

est injective : à deux plans (homogènes) distincts correspondent des directions de

projection de norme 1 distinctes. En effet, prenons deux plans homogènes a ^ ß.

Si les projecteurs Pa et Pß avaient même noyau d, la surface S Fr(K)
contiendrait une portion de cylindre de génératrices parallèles à d, limitée par a

et ß. Considérons alors une section intermédiaire CY S n y (y est un plan
homogène contenant la droite an ß et situé entre a et ß relativement à d).

D'après le théorème de Krein-Milman, on peut choisir un point x de (2Ly extrêmal

sur K n y et non situé sur la droite a n ß (il pourrait arriver que les seuls points

ayant les propriétés indiquées soient x et — x : ce cas se présenterait si K n y était
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