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MEILLEURE APPROXIMATION LINEAIRE
ET ESPACES EUCLIDIENS

par A. ROBERT

INTRODUCTION

Il est étonnant de constater que certains théorémes affines dans I'espace R?
sont de démonstration délicate...

Ainsi en est-il d’une caractérisation de I’ellipsoide parmi les corps convexes
symétriques comme étant le seul pour lequel les limites ombre-lumiere (sur sa
surface) sont des courbes planes dans toutes les directions d’éclairage parallele
(sec. 1, th. B). On trouvera plusieurs variantes de ce résultat dans la section 1.

Il est méme génant de devoir remarquer que ce résultat connu n’est exposé de
fagon compléte nulle part (4 notre connaissance). On pourra consulter la fin de la
section 1 pour de plus amples commentaires concernant la bibliographie relative
a ce sujet.

Je tiens a exprimer tous mes remerciements a R. Bader qui m’a stimulé par
son intérét a cette question et qui m’a de plus fourni la plupart des références
citées.

1. THEOREME PRINCIPAL, DIVERSES FORMULATIONS

Tous les espaces normés considérés dans cet article seront réels. Soit E un tel
espace. On dit que E est euclidien lorsque sa norme dérive d’un produit scalaire,
c'est-a-dire lorsqu’il existe une application bilinéaire symétrique

E x E-R,(x,y)—(x]y)
telle que

Ix 1* = (x]x).

D’apres un resultat bien connu di 4 Jordan et von Neumann, un espace normé

est euclidien des que tous ses sous-espaces de dimension 2 le sont. L’identité du
parallélogramme

Ix+yIP+lx—=yl>=20x2+2]y]?

caractérise en effet les normes dérivant d’un produit scalaire.
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Lorsque E et F sont deux espaces normeés, I’espace L(E, F) des applications
linéaires continues u : E — F est aussi un espace normé avec la définition
lul = ||Sﬁlp Il u(x) |-
x|l =1
En particulier, le dual topologique E’ de E (cas F = R) et I(E) = L(E, E) sont
des espaces normés attachés canoniquement a E. Les projecteurs de E sont les

éléments P € L(E) tels que P? = P. Un projecteur non nul a nécessairement une
norme supérieure ou égale a 1.

Le résultat suivant est aussi connu, bien que moins populaire.

THEOREME A. Pour qu'un espace normé E de dimension supérieure ou
égale a 3 soit euclidien, il faut et il suffit que pour tout sous-espace F de dimension
2 de E, il existe un projecteur Pp de E sur F et de norme 1.

Avant de donner des références concernant les démonstrations de ce résultat
ou de ses formes équivalentes, nous en préSenterons diverses versions. D’abord,
s1 E est euclidien, on prendra pour Pg le projecteur orthogonal sur F. D’autre
part, d’apres le résultat de Jordan et von Neumann, il suffit de considérer le cas
dim(E) = 3. Dénotons alors par K = B, la boule unité fermée de E définie par
| x | < 1.Lesprojecteurs de norme 1 de E sur F correspondent aux cylindres de
base K n F contenant K (les génératrices de ces cylindres €tant paralleles aux
noyaux des projecteurs correspondants). Comme E est euclidien exactement
lorsque E' I'est, le théoréme A admet une forme duale que nous n’explicitons que
dans le cas crucial de la dimension 3 (dual algébrique E* et dual topologique E’
coincident en dimension finie et s’identifient a E lui-méme lorsque ce dernier est
euclidien griace au théoreme de Riesz, ¢lémentaire dans ce cas).

THEOREME A'. Pour qu'un espace normé E de dimension 3 soit euclidien, il
faut et il suffit que pour tout sous-espace G de dimension 1 de E, il existe un
projecteur de norme 1 et de noyau G.

Le passage entre les formes A et A’ s’effectue naturellement en transposant les
opérateurs:

l'ull = | ull, (vou) = 'uo'v (u projecteur <> ‘u projecteur) .

Le noyau G du projecteur ‘P est 'ensemble polaire (ou I'orthogonal) de 'image de

P
feKer’'PcE¥< foP ="P(f) =0<« fnullesur F =Im P

< feF*,

d’ou la conclusion puisque dim F = 2 <> dim F* = codim F = 1.




MEILLEURE APPROXIMATION LINEAIRE ET ESPACES EUCLIDIENS 283

Le théoréme A’ admet aussi une formulation plus géométrique. Prenons un
ensemble convexe fermé symétrique K de R3. Dés que K est de dimension 3 (i.e.
contient un point intérieur), K est la boule unité fermée d’une norme sur R> qu’il
suffit de définir par

| x| = Inf {A >0:x/Ae K} pour x dans R’.

On peut alors considérer 'espace normeé E correspondant.

THEOREME B. Soit K un convexe fermé symétrique (relativement d un
point ) de dimension 3 ( possédant un point intérieur dans R?). Lorsque dans toute
direction d’éclairage paralléle, les zones d’ombre et de lumiére sur K sont
délimitées par une courbe plane, K est un ellipsoide.

Encore faut-il préciser le sens exact a attacher a cet énoncé dans le cas
(possible a priori) ou la frontiere S de K possede un segment de droite de
longueur non nulle. Dans la direction d’éclairage paralléle correspondant a un
tel segment, « la limite ombre-lumiére » n’est pas définie univoquement. Dans ce
cas, il doit y avoir une courbe plane coupant chacun des segments paralleéles ala -
direction d’éclairage et de longueur non nulle (de fagon a pouvoir construire un
cylindre ayant pour base la courbe plane et enveloppant S et K).

Mentionnons encore une application du théoréme A dans la théorie de la
meilleure approximation normée. Voici le cadre général de cette théorie. Soient E
un espace norme, F un sous-espace (fermé) de E. Pour x € E, on appelle meilleure
approximation de x dans F tout élément xp € F tel que

| x —xp | < ||x—y]| pourtout yeF.

Lorsque F est de dimension finie, donc localement compact, tout élément x € E
possede (au moins) une meilleure approximation dans F. Si la norme de E est
strictement convexe (cela signifie que la boule unité K de E ne contient aucun
segment de droite de longueur positive sur sa frontiére S), tout élément de E
admet une unique meilleure approximation dans F et l’épplication X — Xp est
donc bien definie dans ce cas. Quand est-elle linéaire? Une réponse a cette
question est donnée par le théoréme suivant.

THEOREME C. Soit E unespace normé de dimension supérieure ou égale d 3.
Pour que E soit euclidien, il faut et il suffit que pour tout sous-espace G de
dimension 1 de E, il existe une application linéaire 'E — G : x X donnant
une meilleure approximation de x par un élément de G.

Ce théoreme se démontre a partir du théoréme A’ comme suit. En prenant
y =0€eG dans la propriété de meilleure approximation, on voit que
| x — xg | < | x| et ’hypothése de linéarité montre alors que
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P, E - E, XX — Xg

est un projecteur de norme 1 et de noyaﬁ G (donc de rang 2 et d’'image
supplémentaire a G). Les sous-espaces de dimension 3 de E sont donc euclidiens
et la conclusion en résulte. Il est d’ailleurs clair que la meilleure approximation
existe (et est unique) dans tout espace euclidien et est donnée par projection
orthogonale.

Revenant au cas de la meilleure approximation en général, si x, est meilleure
approximation de x dans F, Ax, sera meilleure approximation de Ax dans
F(AeR). Le probleme de linéarité est donc I'additivité de x — xz. Comme on a
aussl xp + y meilleure approximation de x + y pour y € F, la linéarité est
automatique si F est de codimension 1 dans E. Remarquons en passant que si xp
est une meilleure. approximation de x dans F, on a

Ixp |l <l xp—xl+ x| <2)x].
(Il est facile de construire des exemples d’espaces normés E de dimension 2 et F de
dimension 1 avec || xg || arbitrairement voisin de 2 || x ||.) Par définition de la
meilleure approximation x; de x dans F on a
Ix —xp| = Inf||x —y| =] x| dans E/F
yeF

(Cest en effet ainsi qu'on définit la norme quotient de E/F). La linéarité de
X — Xp, équivalente a la linéarité de x — x — xj, revient ainsi a ’existence d’un
plongement isométrique de E/F sur un supplémentaire convenable de F dans E
(le quotient E/F doit étre réalisé avec sa norme sur un supplémentaire de F). En
d’autres termes, la suite exacte courte d’espaces normes

F—ES EF

p

doit étre scindée par une section isométrique s. On a donc

THEOREME C’. Soit E un espace normé de dimension supérieure ou égale a
3. Pour que E soit euclidien, il faut et il suffit que pour tout sous-espace F de
dimension 1 de E, Tlespace normé E/F <sidentifie a un hyperplan fermé
supplémentaire de F dans E.

Voici maintenant quelques remarques concernant I'origine des problemes
consideéres.

Le théoreme C, a l'origine de cette rédaction, est cité par Dhombres [7]
(p. 21: il n’en donne pas la démonstration « pénible »). Avec des hypothéses de
lissité implicites, le théoréme B a été démontré par Blaschke a 'occasion de

3 e
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I’étude de certains problémes variationnels [2]. Birkhoff [1] reprend 'argument
de Blaschke pour en déduire un énoncé voisin du théoréme B (il fait encore une
hypothése — explicite — d’unicité de plans d’appui, revenant immédiatement a
la différentiabilité de la surface S). Il utilise un théoréme de représentation des
groupes (dii & von Neumann) pour parvenir a sa conclusion. Kakutani [9],
auquel ce théoréme a parfois été attribué ultérieurement, se borne a dire que
Phypothése de lissité est superflue (se référant a Bonnesen-Fenchel [4] p. 13, il
croit pouvoir se dispenser de donner la moindre indication « since this may be
easily carried out »!). La premiére démonstration (relativement) complete de la
lissité est donnée par Phillips [10]. Pour pouvoir étendre le théoreme A’ au cas
complexe (dim¢ = 3), Bohnenblust [3] introduit des méthodes plus
conceptuelles. En particulier, il remplace les arguments de Blaschke et de
Birkhoff par I'utilisation du théoréme fondamental de la géométrie projective
(dans la formulation donnée par E. Cartan). Finalement, Bourbaki [6] formule
une suite de problémes (difficiles) entrelagant les cas réels (loc. cit. p. 142-143) et
complexes (p. 144). Il suit en gros la méthode inaugurée par Bohnenblust.

On trouvera aussi une démonstration du théoréme B dans le livre de
géométrie différentielle de Guggenheimer ([8], p. 310-311 ou ce théoréme est
appelé théoreme de Maschke (sic!): par l'intermédiaire de I'utilisation des
formules de Serret-Frenet pour certaines courbes tracées sur la surface, il fait
implicitement toutes les hypothéses de différentiabilité — jusqu’a I'ordre 3 —
requises).

Les reférences [11] a [15] montrent I’évolution des différentes notions
d’orthogonalite (et de géométrie fine) dans les espaces normés de 1945 & 1955.

2. DEMONSTRATION DE LA DIFFERENTIABILITE

Dans cette section, on démontrera I'affirmation suivante. Si E est un espace
normé de dimension 3 possédant (au moins) un projecteur de norme 1 sur chaque
plan (homogéne ), alors la boule unité fermée K de E posséde un plan tangent
en chaque point de sa frontiére S et cette surface est contintiment différentiable.

Nous procederons en plusieurs étapes, commengant par quelques rappels en
dimension 2.

Point 1. La frontiere d’'un convexe fermé possédant un point intérieur dans
le plan R? est une courbe continue (fermée si ce convexe est borné). Cette courbe
possede des demi-tangentes a « gauche » et d « droite » de chaque point. De plus,
sauf en un ensemble au plus dénombrable de points appelés pointes, cette courbe
a une tangente (ses deux demi-tangentes sont en prolongement l'une de l'autre).
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