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MEILLEURE APPROXIMATION LINÉAIRE
ET ESPACES EUCLIDIENS

par A. Robert

Introduction

Il est étonnant de constater que certains théorèmes affines dans l'espace R3

sont de démonstration délicate...

Ainsi en est-il d'une caractérisation de l'ellipsoïde parmi les corps convexes

symétriques comme étant le seul pour lequel les limites ombre-lumière (sur sa

surface) sont des courbes planes dans toutes les directions d'éclairage parallèle
(sec. 1, th. B). On trouvera plusieurs variantes de ce résultat dans la section 1.

Il est même gênant de devoir remarquer que ce résultat connu n'est exposé de

façon complète nuiie part (à notre connaissance). On pourra consulter la fin de la
section 1 pour de plus amples commentaires concernant la bibliographie relative
à ce sujet.

Je tiens à exprimer tous mes remerciements à R. Bader qui m'a stimulé par
son intérêt à cette question et qui m'a de plus fourni la plupart des références
citées.

1. Théorème principal, diverses formulations

Tous les espaces normés considérés dans cet article seront réels. Soit E un tel

espace. On dit que E est euclidien lorsque sa norme dérive d'un produit scalaire,
c'est-à-dire lorsqu'il existe une application bilinéaire symétrique

E x E->R, (x, (- (x
telle que

Il x II2 (x|x)

D'après un résultat bien connu dû à Jordan et von Neumann, un espace normé
est euclidien dès que tous ses sous-espaces de dimension 2 le sont. L'identité du
parallélogramme

Il * + y II2 + II X - y II2 2 II x II2 + 2 II yII2

caractérise en effet les normes dérivant d'un produit scalaire.
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Lorsque E et F sont deux espaces normés, l'espace L(E, F) des applications
linéaires continues u : E ->• F est aussi un espace normé avec la définition

Il u II Sup II u(x) Il

IMH1

En particulier, le dual topologique E' de E (cas F R) et IfE) L(E, E) sont
des espaces normés attachés canoniquement à E. Les projecteurs de E sont les

éléments P e L(E) tels que P2 P. Un projecteur non nul a nécessairement une

norme supérieure ou égale à 1.

Le résultat suivant est aussi connu, bien que moins populaire.

Théorème A. Pour qu'un espace normé E de dimension supérieure ou

égale à 3 soit euclidien, ilfaut et il suffit que pour tout sous-espace F de dimension
2 de E, il existe un projecteur PF de E sur F et de norme 1.

Avant de donner des références concernant les démonstrations de ce résultat

ou de ses formes équivalentes, nous en présenterons diverses versions. D'abord,
si E est euclidien, on prendra pour PF le projecteur orthogonal sur F. D'autre

part, d'après le résultat de Jordan et von Neumann, il suffit de considérer le cas

dim(E) 3. Dénotons alors par K la boule unité fermée de E définie par
Il x II ^ 1. Les projecteurs de norme 1 de £ sur F correspondent aux cylindres de

base Knf contenant K (les génératrices de ces cylindres étant parallèles aux

noyaux des projecteurs correspondants). Comme E est euclidien exactement

lorsque E' l'est, le théorème A admet une forme duale que nous n'explicitons que
dans le cas crucial de la dimension 3 (dual algébrique £* et dual topologique E'
coïncident en dimension finie et s'identifient à E lui-même lorsque ce dernier est

euclidien grâce au théorème de Riesz, élémentaire dans ce cas).

Théorème A'. Pour qu'un espace normé E de dimension 3 soit euclidien, il

faut et il suffit que pour tout sous-espace G de dimension 1 de £, il existe un

projecteur de norme 1 et de noyau G.

Le passage entre les formes A et A' s'effectue naturellement en transposant les

opérateurs :

Il lu II — Il m II, \vou) tu°tv {u projecteur <=> lu projecteur).

Le noyau G du projecteur XP est l'ensemble polaire (ou l'orthogonal) de l'image de

P

/GKer?c£*o/oP 'p(f) 0 <=> f nulle sur F Im P

of e F1,

d'où la conclusion puisque dim F — 2 o dim F1 codim F 1.
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Le théorème A' admet aussi une formulation plus géométrique. Prenons un

ensemble convexe fermé symétrique K de R3. Dès que K est de dimension 3 (i.e.

contient un point intérieur), K est la boule unité fermée d'une norme sur R3 qu'il
suffit de définir par

Il x II Inf {X > 0 : x/X e K} pour x dans R3.

On peut alors considérer l'espace normé E correspondant.

Théorème B. Soit K un convexe fermé symétrique (relativement à un

point) de dimension 3 (possédant un point intérieur dans R3^). Lorsque dans toute

direction d'éclairage parallèle, les zones d'ombre et de lumière sur K sont

délimitées par une courbe plane, K est un ellipsoïde.

Encore faut-il préciser le sens exact à attacher à cet énoncé dans le cas

(possible a priori) où la frontière S de K possède un segment de droite de

longueur non nulle. Dans la direction d'éclairage parallèle correspondant à un
tel segment, « la limite ombre-lumière » n'est pas définie univoquement. Dans ce

cas, il doit y avoir une courbe plane coupant chacun des segments parallèles à la
direction d'éclairage et de longueur non nulle (de façon à pouvoir construire un
cylindre ayant pour base la courbe plane et enveloppant S et K).

Mentionnons encore une application du théorème A dans la théorie de la
meilleure approximation normée. Voici le cadre général de cette théorie. Soient E
un espace normé, F un sous-espace (fermé) de E. Pour x e E, on appelle meilleure

approximation de x dans F tout élément xF e F tel que

Il x — xF II ^ Il x — y II pour tout y e F

Lorsque F est de dimension finie, donc localement compact, tout élément xe E
possède (au moins) une meilleure approximation dans F. Si la norme de E est
strictement convexe (cela signifie que la boule unité K de E ne contient aucun
segment de droite de longueur positive sur sa frontière S), tout élément de E
admet une unique meilleure approximation dans F et l'application x \-+ xF est
donc bien définie dans ce cas. Quand est-elle linéairel Une réponse à cette
question est donnée par le théorème suivant.

Théorème C. Soit E un espace normé de dimension supérieure ou égale à 3.

Pour que E soit euclidien, il faut et il suffit que pour tout sous-espace G de
dimension 1 de E, il existe une application linéaire E — G : x i—» xG donnant
une meilleure approximation de x par un élément de G.

Ce théorème se démontre à partir du théorème A' comme suit. En prenant
y 0 e G dans la propriété de meilleure approximation, on voit que
Il x - xG II ^ II x II et l'hypothèse de linéarité montre alors que
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PG \ E -> F, X X — XG

est un projecteur de norme 1 et de noyau G (donc de rang 2 et d'image
supplémentaire à G). Les sous-espaces de dimension 3 de £ sont donc euclidiens

et la conclusion en résulte. Il est d'ailleurs clair que la meilleure approximation
existe (et est unique) dans tout espace euclidien et est donnée par projection
orthogonale.

Revenant au cas de la meilleure approximation en général, si xF est meilleure

approximation de x dans F, XxF sera meilleure approximation de Xx dans

F(XeR). Le problème de linéarité est donc l'additivité de x i— xF. Comme on a

aussi xF + y meilleure approximation de x -h y pour y e F, la linéarité est

automatique si F est de codimension 1 dans F. Remarquons en passant que si xF
est une meilleure, approximation de x dans F, on a

Il *F II < Il XF — X II + II X 1 4g 2 II X II

(Il est facile de construire des exemples d'espaces normés E de dimension 2 et F de

dimension 1 avec || xF || arbitrairement voisin de 2 || x ||.) Par définition de la
meilleure approximation xF de x dans F on a

H x — xF H Inf II x — y II Il x II dans F/F
ye F

(c'est en effet ainsi qu'on définit la norme quotient de F/F). La linéarité de

x i—> xF, équivalente à la linéarité de x i— x — xF, revient ainsi à l'existence d'un

plongement isométrique de F/F sur un supplémentaire convenable de F dans F
(le quotient F/F doit être réalisé avec sa norme sur un supplémentaire de F). En
d'autres termes, la suite exacte courte d'espaces normés

F - E% E/F
p

doit être scindée par une section isométrique s. On a donc

Théorème C. Soit F un espace normé de dimension supérieure ou égale à

3. Pour que F soit euclidien, il faut et il suffit que pour tout sous-espace F de

dimension 1 de F, l'espace normé E/F s'identifie à un hyperplan fermé
supplémentaire de F dans F.

Voici maintenant quelques remarques concernant l'origine des problèmes
considérés.

Le théorème C, à l'origine de cette rédaction, est cité par Dhombres [7]
(p. 21 : il n'en donne pas la démonstration « pénible »). Avec des hypothèses de

lissité implicites, le théorème B a été démontré par Blaschke à l'occasion de



MEILLEURE APPROXIMATION LINÉAIRE ET ESPACES EUCLIDIENS 285

l'étude de certains problèmes variationnels [2]. Birkhoff [1] reprend l'argument
de Blaschke pour en déduire un énoncé voisin du théorème B (il fait encore une

hypothèse — explicite — d'unicité de plans d'appui, revenant immédiatement à

la différentiabilité de la surface S). Il utilise un théorème de représentation des

groupes (dû à von Neumann) pour parvenir à sa conclusion. Kakutani [9],
auquel ce théorème a parfois été attribué ultérieurement, se borne à dire que

l'hypothèse de lissité est superflue (se référant à Bonnesen-Fenchel [4] p. 13, il
croit pouvoir se dispenser de donner la moindre indication « since this may be

easily carried out » La première démonstration (relativement) complète de la

lissité est donnée par Phillips [10]. Pour pouvoir étendre le théorème A' au cas

complexe (dimc 3), Bohnenblust [3] introduit des méthodes plus

conceptuelles. En particulier, il remplace les arguments de Blaschke et de

Birkhoff par l'utilisation du théorème fondamental de la géométrie projective
(dans la formulation donnée par E. Cartan). Finalement, Bourbaki [6] formule

une suite de problèmes (difficiles) entrelaçant les cas réels (loc. cit. p. 142-143) et

complexes (p. 144). Il suit en gros la méthode inaugurée par Bohnenblust.
On trouvera aussi une démonstration du théorème B dans le livre de

géométrie différentielle de Guggenheimer ([8], p. 310-311 où ce théorème est

appelé théorème de Maschke (sic!): par l'intermédiaire de l'utilisation des

formules de Serret-Frenet pour certaines courbes tracées sur la surface, il fait
implicitement toutes les hypothèses de différentiabilité — jusqu'à l'ordre 3 —
requises).

Les références [11] à [15] montrent l'évolution des différentes notions
d'orthogonalité (et de géométrie fine) dans les espaces normés de 1945 à 1955.

2. Démonstration de la différentiabilité

Dans cette section, on démontrera l'affirmation suivante. Si E est un espace
normé de dimension 3 possédant (au moins) un projecteur de norme 1 sur chaque
plan (homogène), alors la boule unité fermée K de E possède un plan tangent
en chaque point de sa frontière S et cette surface est continûment différentiable.

Nous procéderons en plusieurs étapes, commençant par quelques rappels en
dimension 2.

Point 1. La frontière d'un convexe fermé possédant un point intérieur dans
le plan R2 est une courbe continue (fermée si ce convexe est borné). Cette courbe
possède des demi-tangentes à « gauche » et à « droite » de chaque point. De plus,
sauf en un ensemble au plus dénombrable de points appelés pointes, cette courbe
a une tangente (ses deux demi-tangentes sont en prolongement l'une de l'autre).
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