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MEILLEURE APPROXIMATION LINÉAIRE
ET ESPACES EUCLIDIENS

par A. Robert

Introduction

Il est étonnant de constater que certains théorèmes affines dans l'espace R3

sont de démonstration délicate...

Ainsi en est-il d'une caractérisation de l'ellipsoïde parmi les corps convexes

symétriques comme étant le seul pour lequel les limites ombre-lumière (sur sa

surface) sont des courbes planes dans toutes les directions d'éclairage parallèle
(sec. 1, th. B). On trouvera plusieurs variantes de ce résultat dans la section 1.

Il est même gênant de devoir remarquer que ce résultat connu n'est exposé de

façon complète nuiie part (à notre connaissance). On pourra consulter la fin de la
section 1 pour de plus amples commentaires concernant la bibliographie relative
à ce sujet.

Je tiens à exprimer tous mes remerciements à R. Bader qui m'a stimulé par
son intérêt à cette question et qui m'a de plus fourni la plupart des références
citées.

1. Théorème principal, diverses formulations

Tous les espaces normés considérés dans cet article seront réels. Soit E un tel

espace. On dit que E est euclidien lorsque sa norme dérive d'un produit scalaire,
c'est-à-dire lorsqu'il existe une application bilinéaire symétrique

E x E->R, (x, (- (x
telle que

Il x II2 (x|x)

D'après un résultat bien connu dû à Jordan et von Neumann, un espace normé
est euclidien dès que tous ses sous-espaces de dimension 2 le sont. L'identité du
parallélogramme

Il * + y II2 + II X - y II2 2 II x II2 + 2 II yII2

caractérise en effet les normes dérivant d'un produit scalaire.
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