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MEILLEURE APPROXIMATION LINÉAIRE
ET ESPACES EUCLIDIENS

par A. Robert

Introduction

Il est étonnant de constater que certains théorèmes affines dans l'espace R3

sont de démonstration délicate...

Ainsi en est-il d'une caractérisation de l'ellipsoïde parmi les corps convexes

symétriques comme étant le seul pour lequel les limites ombre-lumière (sur sa

surface) sont des courbes planes dans toutes les directions d'éclairage parallèle
(sec. 1, th. B). On trouvera plusieurs variantes de ce résultat dans la section 1.

Il est même gênant de devoir remarquer que ce résultat connu n'est exposé de

façon complète nuiie part (à notre connaissance). On pourra consulter la fin de la
section 1 pour de plus amples commentaires concernant la bibliographie relative
à ce sujet.

Je tiens à exprimer tous mes remerciements à R. Bader qui m'a stimulé par
son intérêt à cette question et qui m'a de plus fourni la plupart des références
citées.

1. Théorème principal, diverses formulations

Tous les espaces normés considérés dans cet article seront réels. Soit E un tel

espace. On dit que E est euclidien lorsque sa norme dérive d'un produit scalaire,
c'est-à-dire lorsqu'il existe une application bilinéaire symétrique

E x E->R, (x, (- (x
telle que

Il x II2 (x|x)

D'après un résultat bien connu dû à Jordan et von Neumann, un espace normé
est euclidien dès que tous ses sous-espaces de dimension 2 le sont. L'identité du
parallélogramme

Il * + y II2 + II X - y II2 2 II x II2 + 2 II yII2

caractérise en effet les normes dérivant d'un produit scalaire.
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Lorsque E et F sont deux espaces normés, l'espace L(E, F) des applications
linéaires continues u : E ->• F est aussi un espace normé avec la définition

Il u II Sup II u(x) Il

IMH1

En particulier, le dual topologique E' de E (cas F R) et IfE) L(E, E) sont
des espaces normés attachés canoniquement à E. Les projecteurs de E sont les

éléments P e L(E) tels que P2 P. Un projecteur non nul a nécessairement une

norme supérieure ou égale à 1.

Le résultat suivant est aussi connu, bien que moins populaire.

Théorème A. Pour qu'un espace normé E de dimension supérieure ou

égale à 3 soit euclidien, ilfaut et il suffit que pour tout sous-espace F de dimension
2 de E, il existe un projecteur PF de E sur F et de norme 1.

Avant de donner des références concernant les démonstrations de ce résultat

ou de ses formes équivalentes, nous en présenterons diverses versions. D'abord,
si E est euclidien, on prendra pour PF le projecteur orthogonal sur F. D'autre

part, d'après le résultat de Jordan et von Neumann, il suffit de considérer le cas

dim(E) 3. Dénotons alors par K la boule unité fermée de E définie par
Il x II ^ 1. Les projecteurs de norme 1 de £ sur F correspondent aux cylindres de

base Knf contenant K (les génératrices de ces cylindres étant parallèles aux

noyaux des projecteurs correspondants). Comme E est euclidien exactement

lorsque E' l'est, le théorème A admet une forme duale que nous n'explicitons que
dans le cas crucial de la dimension 3 (dual algébrique £* et dual topologique E'
coïncident en dimension finie et s'identifient à E lui-même lorsque ce dernier est

euclidien grâce au théorème de Riesz, élémentaire dans ce cas).

Théorème A'. Pour qu'un espace normé E de dimension 3 soit euclidien, il

faut et il suffit que pour tout sous-espace G de dimension 1 de £, il existe un

projecteur de norme 1 et de noyau G.

Le passage entre les formes A et A' s'effectue naturellement en transposant les

opérateurs :

Il lu II — Il m II, \vou) tu°tv {u projecteur <=> lu projecteur).

Le noyau G du projecteur XP est l'ensemble polaire (ou l'orthogonal) de l'image de

P

/GKer?c£*o/oP 'p(f) 0 <=> f nulle sur F Im P

of e F1,

d'où la conclusion puisque dim F — 2 o dim F1 codim F 1.
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Le théorème A' admet aussi une formulation plus géométrique. Prenons un

ensemble convexe fermé symétrique K de R3. Dès que K est de dimension 3 (i.e.

contient un point intérieur), K est la boule unité fermée d'une norme sur R3 qu'il
suffit de définir par

Il x II Inf {X > 0 : x/X e K} pour x dans R3.

On peut alors considérer l'espace normé E correspondant.

Théorème B. Soit K un convexe fermé symétrique (relativement à un

point) de dimension 3 (possédant un point intérieur dans R3^). Lorsque dans toute

direction d'éclairage parallèle, les zones d'ombre et de lumière sur K sont

délimitées par une courbe plane, K est un ellipsoïde.

Encore faut-il préciser le sens exact à attacher à cet énoncé dans le cas

(possible a priori) où la frontière S de K possède un segment de droite de

longueur non nulle. Dans la direction d'éclairage parallèle correspondant à un
tel segment, « la limite ombre-lumière » n'est pas définie univoquement. Dans ce

cas, il doit y avoir une courbe plane coupant chacun des segments parallèles à la
direction d'éclairage et de longueur non nulle (de façon à pouvoir construire un
cylindre ayant pour base la courbe plane et enveloppant S et K).

Mentionnons encore une application du théorème A dans la théorie de la
meilleure approximation normée. Voici le cadre général de cette théorie. Soient E
un espace normé, F un sous-espace (fermé) de E. Pour x e E, on appelle meilleure

approximation de x dans F tout élément xF e F tel que

Il x — xF II ^ Il x — y II pour tout y e F

Lorsque F est de dimension finie, donc localement compact, tout élément xe E
possède (au moins) une meilleure approximation dans F. Si la norme de E est
strictement convexe (cela signifie que la boule unité K de E ne contient aucun
segment de droite de longueur positive sur sa frontière S), tout élément de E
admet une unique meilleure approximation dans F et l'application x \-+ xF est
donc bien définie dans ce cas. Quand est-elle linéairel Une réponse à cette
question est donnée par le théorème suivant.

Théorème C. Soit E un espace normé de dimension supérieure ou égale à 3.

Pour que E soit euclidien, il faut et il suffit que pour tout sous-espace G de
dimension 1 de E, il existe une application linéaire E — G : x i—» xG donnant
une meilleure approximation de x par un élément de G.

Ce théorème se démontre à partir du théorème A' comme suit. En prenant
y 0 e G dans la propriété de meilleure approximation, on voit que
Il x - xG II ^ II x II et l'hypothèse de linéarité montre alors que
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PG \ E -> F, X X — XG

est un projecteur de norme 1 et de noyau G (donc de rang 2 et d'image
supplémentaire à G). Les sous-espaces de dimension 3 de £ sont donc euclidiens

et la conclusion en résulte. Il est d'ailleurs clair que la meilleure approximation
existe (et est unique) dans tout espace euclidien et est donnée par projection
orthogonale.

Revenant au cas de la meilleure approximation en général, si xF est meilleure

approximation de x dans F, XxF sera meilleure approximation de Xx dans

F(XeR). Le problème de linéarité est donc l'additivité de x i— xF. Comme on a

aussi xF + y meilleure approximation de x -h y pour y e F, la linéarité est

automatique si F est de codimension 1 dans F. Remarquons en passant que si xF
est une meilleure, approximation de x dans F, on a

Il *F II < Il XF — X II + II X 1 4g 2 II X II

(Il est facile de construire des exemples d'espaces normés E de dimension 2 et F de

dimension 1 avec || xF || arbitrairement voisin de 2 || x ||.) Par définition de la
meilleure approximation xF de x dans F on a

H x — xF H Inf II x — y II Il x II dans F/F
ye F

(c'est en effet ainsi qu'on définit la norme quotient de F/F). La linéarité de

x i—> xF, équivalente à la linéarité de x i— x — xF, revient ainsi à l'existence d'un

plongement isométrique de F/F sur un supplémentaire convenable de F dans F
(le quotient F/F doit être réalisé avec sa norme sur un supplémentaire de F). En
d'autres termes, la suite exacte courte d'espaces normés

F - E% E/F
p

doit être scindée par une section isométrique s. On a donc

Théorème C. Soit F un espace normé de dimension supérieure ou égale à

3. Pour que F soit euclidien, il faut et il suffit que pour tout sous-espace F de

dimension 1 de F, l'espace normé E/F s'identifie à un hyperplan fermé
supplémentaire de F dans F.

Voici maintenant quelques remarques concernant l'origine des problèmes
considérés.

Le théorème C, à l'origine de cette rédaction, est cité par Dhombres [7]
(p. 21 : il n'en donne pas la démonstration « pénible »). Avec des hypothèses de

lissité implicites, le théorème B a été démontré par Blaschke à l'occasion de
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l'étude de certains problèmes variationnels [2]. Birkhoff [1] reprend l'argument
de Blaschke pour en déduire un énoncé voisin du théorème B (il fait encore une

hypothèse — explicite — d'unicité de plans d'appui, revenant immédiatement à

la différentiabilité de la surface S). Il utilise un théorème de représentation des

groupes (dû à von Neumann) pour parvenir à sa conclusion. Kakutani [9],
auquel ce théorème a parfois été attribué ultérieurement, se borne à dire que

l'hypothèse de lissité est superflue (se référant à Bonnesen-Fenchel [4] p. 13, il
croit pouvoir se dispenser de donner la moindre indication « since this may be

easily carried out » La première démonstration (relativement) complète de la

lissité est donnée par Phillips [10]. Pour pouvoir étendre le théorème A' au cas

complexe (dimc 3), Bohnenblust [3] introduit des méthodes plus

conceptuelles. En particulier, il remplace les arguments de Blaschke et de

Birkhoff par l'utilisation du théorème fondamental de la géométrie projective
(dans la formulation donnée par E. Cartan). Finalement, Bourbaki [6] formule

une suite de problèmes (difficiles) entrelaçant les cas réels (loc. cit. p. 142-143) et

complexes (p. 144). Il suit en gros la méthode inaugurée par Bohnenblust.
On trouvera aussi une démonstration du théorème B dans le livre de

géométrie différentielle de Guggenheimer ([8], p. 310-311 où ce théorème est

appelé théorème de Maschke (sic!): par l'intermédiaire de l'utilisation des

formules de Serret-Frenet pour certaines courbes tracées sur la surface, il fait
implicitement toutes les hypothèses de différentiabilité — jusqu'à l'ordre 3 —
requises).

Les références [11] à [15] montrent l'évolution des différentes notions
d'orthogonalité (et de géométrie fine) dans les espaces normés de 1945 à 1955.

2. Démonstration de la différentiabilité

Dans cette section, on démontrera l'affirmation suivante. Si E est un espace
normé de dimension 3 possédant (au moins) un projecteur de norme 1 sur chaque
plan (homogène), alors la boule unité fermée K de E possède un plan tangent
en chaque point de sa frontière S et cette surface est continûment différentiable.

Nous procéderons en plusieurs étapes, commençant par quelques rappels en
dimension 2.

Point 1. La frontière d'un convexe fermé possédant un point intérieur dans
le plan R2 est une courbe continue (fermée si ce convexe est borné). Cette courbe
possède des demi-tangentes à « gauche » et à « droite » de chaque point. De plus,
sauf en un ensemble au plus dénombrable de points appelés pointes, cette courbe
a une tangente (ses deux demi-tangentes sont en prolongement l'une de l'autre).



286 A. ROBERT

Géométriquement, on le voit facilement en attachant à chaque point x de la
frontière du convexe considéré, le secteur Sx intersection de tous les demi-plans
contenant le convexe et limités par une droite passant par x (dite droite d'appui en

x). Le dessin suivant illustre bien la situation.

^ 2tt => {x : ux > 0} est au plus dénombrable.

Un convexe du plan sans point intérieur est nécessairement linéaire (segment
limité ou non, éventuellement réduit à un point). On peut encore définir le secteur

Sx en un point quelconque d'un convexe linéaire fermé. Son angle au sommet

sera 0 (point intérieur au segment), n (extrémité- du segment) ou 2n (segment
réduit à un point). Pour toutes les propriétés de différentiabilité des convexes

plans, cf. Bourbaki [5] (chap. 1, §4, p. 41-55).

Point 2. Il est facile de généraliser les remarques précédentes aux convexes
fermés de dimension 3. Soit X un tel ensemble de R3, S sa frontière et x un point
de la surface S. On appelle cône d'appui de X en x l'intersection Cx CX(K) des

demi-espaces contenant X et limités par un plan contenant x (ces plans limites
sont donc les plans d'appui de X en x). Comme tout demi-espace contenant x sur

son bord est un cône de sommet x, il en est de même de Cx et par définition, les

plans d'appui en x de X et de Cx sont les mêmes. Soit A X n a une section

plane de X passant par x et non réduite à un segment. Alors l'intersection du cône

CX(K) avec le plan a est le secteur Sx SX(A). Ceci est géométriquement
clair (nous sommes dans R3) et peut être déduit formellement du théorème de

Hahn-Banach... De façon générale, le cône Cx étant convexe, trois cas seulement

peuvent se présenter.

a) Cx ne contient aucune droite. On dit alors que ce cône est strict et que x est

une pointe de X (et de Cx).

b) Cx contient une droite passant par x. Dans ce cas, tous les demi-espaces
fermés contenant X et d'appui en x doivent contenir cette droite. Ainsi, Cx est

limité par deux demi-espaces extrêmes et est un toit. Lorsque ces deux demi-

espaces extrêmes sont distincts (i.e. lorsque Cx ne contient qu'une seule droite

passant par x), on dit que Cx est un toit strict, avec pourfaîte la droite unique de

Cx passant par x, et pour pans les deux demi-plans limitant Cx. Le cas du toit
(strict ou non) se présente chaque fois que x est dérivable sur une courbe de X.
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c) Cx contient deux droites distinctes passant par x. Dans ce cas de toit plat,

Cx est un demi-espace dont le plan limite est l'unique plan d'appui de K en x. (On

peut démontrer que ce cas correspond à la différentiabilité de x sur S: nous

n'aurons pas à utiliser ce fait.)

Point 3. Nous aurons aussi à considérer l'ensemble des projecteurs

plans, de norme 1 de E (dimR E 3). Comme il y a une seule topologie (séparée!)

compatible à la structure vectorielle sur tout espace de dimension finie, nous

pourrons parler sans ambiguïté de continuité, de parties compactes... dans 2(E)

Hom(£, E). L'ensemble des projecteurs de cet espace est fermé : il est défini par
p2 p (la composition des applications est continue). Il en est de même de

l'ensemble des projecteurs plans qui est caractérisé par la condition
supplémentaire Tr(P) 2. Finalement, la partie définie encore par || P || 1

est compacte. Il est bon de se représenter géométriquement la condition || P ||

1 (c'est ainsi que nous l'utiliserons dans la suite) par le fait que P doit
appliquer la boule unité fermée K de E dans la boule unité fermée du plan sur
lequel il projette : P(K) a K n Im(P). Autrement dit, K doit être contenu dans le

cylindre de base K n Im(P) et de génératrices parallèles à Ker(P). L'application
P i— (Ker(P), Im(P)) (par exemple définie sur l'ensemble des projecteurs plans)
est continue. La première composante de l'image varie dans l'espace projectif des

droites homogènes de P, tandis que la deuxième composante varie dans l'espace
des plans homogènes de E (que l'on peut identifier à l'espace projectif des droites
homogènes du dual E* de E).

Point 4. a) S'il y a deux projecteurs distincts Pt de norme 1 sur un même
plan (homogène) a, il y a un cône d'appui CX(K) (en un point x g a) qui est un toit
strict. En effet, appelons dt Ker P; (droites supplémentaires à a) et choisissons
un point dérivable x de la courbe plane Œa S n a (il y en a puisque l'ensemble
des pointes de K n a est au plus dénombrable). On peut même choisir ce point x
de façon que sa tangente t ne soit pas parallèle au plan engendré par d1Qtd2 :

pour ceci, il suffit d'exclure la direction de tangente donnée par la droite
d'intersection du plan engendré par d1 et d2 avec a (l'ensemble des tangentes aux
points dérivables de (£a a au moins deux directions distinctes, le cas de deux
directions exactement se présentant lorsque (£a est le bord d'un
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parallélogramme!). Comme les projecteurs P, ont norme 1, Pi(K) est contenu
dans K n a et CX{K) est un toit contenu dans le toit strict de faîte t et de pans
parallèles aux droites dt.

b) Montrons que lorsqu'un cône d'appui CX(K) est un toit strict, il y a un plan
homogène ß passant par x sur lequel il est impossible de projeter avec norme 1.

Tout plan ß # a contenant Ox doit couper le toit strict CX(K) selon un secteur

d'angle < n : x est pointe de toutes ces sections planes (£p. Mais lorsqu'un

projecteur ß de rang 2 n'applique pas le faîte t sur un seul point, Q(t) est tangente
à ß((£J (dans ß Im ß). Si de plus || ß || 1, x n'est pas pointe deKnß
=3 ß(Ca). Donc dans notre cas, les P ety ayant une image ß ^ a, ß Ox

devraient avoir même noyau (parallèle à t) : cela est contraire à la compacité de la

partie de formée des projecteurs d'image contenant Ox.

Au total, nos hypothèses impliquent donc qu'il y a un seul projecteur de

norme 1 sur chaque plan (homogène) a.

Point 5. Pour tout plan a, dénotons par le projecteur de norme 1

sur a et par da Ker(PJ sa direction de projection. Le graphe T de l'application
oc t— est la partie de P* x P formée des couples (a, da), donc est l'image de ^
par l'application continue

En effet, la restriction p* au graphe T de la première projection du produit
P* x P est continue et bijective, donc un homéomorphisme et an da est

composé de l'homéomorphisme inverse avec la deuxième projection du produit.

t

<(> : P t-» (Im(P), Ker(P)).

Ce graphe T (j>(^ß) est donc compact et il en résulte que

a i— da est continue.
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P

Point 6. Montrons maintenant que toutes les sections planes (homogènes)
de S sont des courbes continûment dérivables. Fixons donc le plan homogène
fournissant la section plane (£ (£a et appelons d da la direction du

projecteur P Pa de norme 1 sur a. Introduisons des coordonnées polaires
d'angle cp en 0 dans a, de façon à paramétrer les points de (£ par cet angle. Un
point x?g(I définit naturellement un plan (encore noté cp par abus!) contenant d

et tel que (£ n cp ±xr

Le projecteur P9 de norme 1 sur cp a un noyau d9 supplémentaire de cp donc
distinct de d ci cp : P(d(p) n'est jamais réduit à un point. De plus, nous avons
montré (point 5) que d9 est continu en cp d'où aussi

La famille de droites cp i— P(d9) fournit ainsi un champ continu de droites

Je prétends qu'en tous les points x9 dérivables sur (£, x9 + P(d9) t9 est la
tangente à Œ en xr Supposons donc x9 dérivable sur (£. D'après le point 2, Cx (.K)
est un toit. Mieux, d'après le point 4 b), ce toit doit être plat et x9 est dérivable sur
K (i.e. sur S). Le plan homogène parallèle au plan tangent à S en x9 doit
contenir les deux droites d et d9, donc être engendré par elles. En particulier, P(d

cp i * dy i > P(d9) continu.

sur (£

cp i-> + P(d9).
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(qui appartient à ce plan homogène) doit être parallèle à la tangente à C en xr Le

champ continu de droites

(p x9 + P(d9)

est défini sur toute la courbe C et fournit la tangente à QL en x9 chaque fois que
ce point est dérivable sur C, c'est-à-dire saufen un ensemble au plus dénombrable
de points. Il ne reste plus qu'à démontrer le lemme suivant (formulé avec des

notations légèrement différents et plus usuelles).

Lemme. Soient I un intervalle (d'intérieur non vide dans RJ et f une

fonction continue I -* R. Supposons f dérivable en tous les points de I — D

où D est une partie au plus dénombrable de I. S'il existe unefonction continue

g : / -> R telle que g(x) /'(x) en tout x e I — D, alors f est

continûment dérivable sur tout I et f g.

La démonstration de ce lemme est facile! Appelons h la primitive de g nulle en

x a

h{x) \xa g{t)dt.

Par définition h est continûment dérivable avec h' g. Par hypothèse, f — h

est dérivable en tout xeî — D et de dérivée nulle en ces points. Comme cette

fonction / — h est continue, le théorème des accroissements finis montre qu'elle
est constante : / h + c est continûment dérivable et f' hf g.

3. Démonstration du théorème A (cas différentiable)

Nous avons vu (point 4, sec. 2) que sous les hypothèses du théorème A, il y a

un unique projecteur Pa de norme 1 sur chaque plan homogène a. Montrons
maintenant que

oc (- Ker(Pa) da

est injective : à deux plans (homogènes) distincts correspondent des directions de

projection de norme 1 distinctes. En effet, prenons deux plans homogènes a ^ ß.

Si les projecteurs Pa et Pß avaient même noyau d, la surface S Fr(K)
contiendrait une portion de cylindre de génératrices parallèles à d, limitée par a

et ß. Considérons alors une section intermédiaire CY S n y (y est un plan
homogène contenant la droite an ß et situé entre a et ß relativement à d).

D'après le théorème de Krein-Milman, on peut choisir un point x de (2Ly extrêmal

sur K n y et non situé sur la droite a n ß (il pourrait arriver que les seuls points

ayant les propriétés indiquées soient x et — x : ce cas se présenterait si K n y était
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un parallélogramme avec deux sommets sur a n ß! On comparera d ailleurs

cette situation avec sa duale du point 4, sec. 2). Ainsi, x est intérieur à un segment

de S parallèle à d, tout en étant extrêmal sur toutes les sections planes de K

définies par des plans homogènes y' contenant Ox et distinctes du plan engendré

par d et Ox. Les projecteurs de norme 1 sur ces plans y' devraient avoir d comme

noyau, contrairement au fait que l'ensemble des projecteurs correspondant au

faisceau de plans d'axe Ox est compact.

L'application bijective a i— da Ker(Pa) transforme plans coaxiaux en

droites coplanaires. En effet, les droites dt correspondant à un système de plans c\>t

contenant une droite commune d (homogène) doivent être parallèles aux plans

tangents en les deux points symétriques de S n d. En d'autres termes,

l'application considérée transforme droites de P* en droites de P. Le théorème

fondamental de la géométrie projective affirme alors qu'il existe une application
linéaire bijective de R3 (R3)* dans R3 qui induit oc i— da au niveau des espaces

projectifs (puisque le corps R n'a aucun automorphisme non trivial, il n'y a pas à

utiliser le résultat de continuité ici).

L'Enseignement mathém., t. XXVIII, fasc. 3-4.
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En particulier, si on fixe une section plane C (£a de S, il existe une

application linéaire A bijective a - a telle que ^(Ox^) dv (d9 étant la droite
homogène parallèle à la tangente à (£ enx9: les notations sont celles du point 6

de la sec. 1). Dans le plan a, et en coordonnées polaires d'angle cp en 0, la courbe (£

est ainsi une solution (stricte puisque continûment dérivable) d'une équation
différentielle vectorielle du type

d
—— x Ax (x Oxea).
dq>

Comme cette solution £ est fermée, la discussion de ces systèmes autonomes en

dimension 2 montre que les valeurs propres de A doivent être imaginaires pures
(conjuguées) et (£ est une ellipse!

Globalement, prenant un système d'axes 0xyz, les trois sections de S par les

plans de coordonnées doivent être des ellipses et S est engendrée par une famille

d'ellipses (verticales pour fixer les idées) s'appuyant sur une ellipse de base fixe.

C'est un ellipsoïde.
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