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MEILLEURE APPROXIMATION LINEAIRE
ET ESPACES EUCLIDIENS

par A. ROBERT

INTRODUCTION

Il est étonnant de constater que certains théorémes affines dans I'espace R?
sont de démonstration délicate...

Ainsi en est-il d’une caractérisation de I’ellipsoide parmi les corps convexes
symétriques comme étant le seul pour lequel les limites ombre-lumiere (sur sa
surface) sont des courbes planes dans toutes les directions d’éclairage parallele
(sec. 1, th. B). On trouvera plusieurs variantes de ce résultat dans la section 1.

Il est méme génant de devoir remarquer que ce résultat connu n’est exposé de
fagon compléte nulle part (4 notre connaissance). On pourra consulter la fin de la
section 1 pour de plus amples commentaires concernant la bibliographie relative
a ce sujet.

Je tiens a exprimer tous mes remerciements a R. Bader qui m’a stimulé par
son intérét a cette question et qui m’a de plus fourni la plupart des références
citées.

1. THEOREME PRINCIPAL, DIVERSES FORMULATIONS

Tous les espaces normés considérés dans cet article seront réels. Soit E un tel
espace. On dit que E est euclidien lorsque sa norme dérive d’un produit scalaire,
c'est-a-dire lorsqu’il existe une application bilinéaire symétrique

E x E-R,(x,y)—(x]y)
telle que

Ix 1* = (x]x).

D’apres un resultat bien connu di 4 Jordan et von Neumann, un espace normé

est euclidien des que tous ses sous-espaces de dimension 2 le sont. L’identité du
parallélogramme

Ix+yIP+lx—=yl>=20x2+2]y]?

caractérise en effet les normes dérivant d’un produit scalaire.
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Lorsque E et F sont deux espaces normeés, I’espace L(E, F) des applications
linéaires continues u : E — F est aussi un espace normé avec la définition
lul = ||Sﬁlp Il u(x) |-
x|l =1
En particulier, le dual topologique E’ de E (cas F = R) et I(E) = L(E, E) sont
des espaces normés attachés canoniquement a E. Les projecteurs de E sont les

éléments P € L(E) tels que P? = P. Un projecteur non nul a nécessairement une
norme supérieure ou égale a 1.

Le résultat suivant est aussi connu, bien que moins populaire.

THEOREME A. Pour qu'un espace normé E de dimension supérieure ou
égale a 3 soit euclidien, il faut et il suffit que pour tout sous-espace F de dimension
2 de E, il existe un projecteur Pp de E sur F et de norme 1.

Avant de donner des références concernant les démonstrations de ce résultat
ou de ses formes équivalentes, nous en préSenterons diverses versions. D’abord,
s1 E est euclidien, on prendra pour Pg le projecteur orthogonal sur F. D’autre
part, d’apres le résultat de Jordan et von Neumann, il suffit de considérer le cas
dim(E) = 3. Dénotons alors par K = B, la boule unité fermée de E définie par
| x | < 1.Lesprojecteurs de norme 1 de E sur F correspondent aux cylindres de
base K n F contenant K (les génératrices de ces cylindres €tant paralleles aux
noyaux des projecteurs correspondants). Comme E est euclidien exactement
lorsque E' I'est, le théoréme A admet une forme duale que nous n’explicitons que
dans le cas crucial de la dimension 3 (dual algébrique E* et dual topologique E’
coincident en dimension finie et s’identifient a E lui-méme lorsque ce dernier est
euclidien griace au théoreme de Riesz, ¢lémentaire dans ce cas).

THEOREME A'. Pour qu'un espace normé E de dimension 3 soit euclidien, il
faut et il suffit que pour tout sous-espace G de dimension 1 de E, il existe un
projecteur de norme 1 et de noyau G.

Le passage entre les formes A et A’ s’effectue naturellement en transposant les
opérateurs:

l'ull = | ull, (vou) = 'uo'v (u projecteur <> ‘u projecteur) .

Le noyau G du projecteur ‘P est 'ensemble polaire (ou I'orthogonal) de 'image de

P
feKer’'PcE¥< foP ="P(f) =0<« fnullesur F =Im P

< feF*,

d’ou la conclusion puisque dim F = 2 <> dim F* = codim F = 1.
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Le théoréme A’ admet aussi une formulation plus géométrique. Prenons un
ensemble convexe fermé symétrique K de R3. Dés que K est de dimension 3 (i.e.
contient un point intérieur), K est la boule unité fermée d’une norme sur R> qu’il
suffit de définir par

| x| = Inf {A >0:x/Ae K} pour x dans R’.

On peut alors considérer 'espace normeé E correspondant.

THEOREME B. Soit K un convexe fermé symétrique (relativement d un
point ) de dimension 3 ( possédant un point intérieur dans R?). Lorsque dans toute
direction d’éclairage paralléle, les zones d’ombre et de lumiére sur K sont
délimitées par une courbe plane, K est un ellipsoide.

Encore faut-il préciser le sens exact a attacher a cet énoncé dans le cas
(possible a priori) ou la frontiere S de K possede un segment de droite de
longueur non nulle. Dans la direction d’éclairage paralléle correspondant a un
tel segment, « la limite ombre-lumiére » n’est pas définie univoquement. Dans ce
cas, il doit y avoir une courbe plane coupant chacun des segments paralleéles ala -
direction d’éclairage et de longueur non nulle (de fagon a pouvoir construire un
cylindre ayant pour base la courbe plane et enveloppant S et K).

Mentionnons encore une application du théoréme A dans la théorie de la
meilleure approximation normée. Voici le cadre général de cette théorie. Soient E
un espace norme, F un sous-espace (fermé) de E. Pour x € E, on appelle meilleure
approximation de x dans F tout élément xp € F tel que

| x —xp | < ||x—y]| pourtout yeF.

Lorsque F est de dimension finie, donc localement compact, tout élément x € E
possede (au moins) une meilleure approximation dans F. Si la norme de E est
strictement convexe (cela signifie que la boule unité K de E ne contient aucun
segment de droite de longueur positive sur sa frontiére S), tout élément de E
admet une unique meilleure approximation dans F et l’épplication X — Xp est
donc bien definie dans ce cas. Quand est-elle linéaire? Une réponse a cette
question est donnée par le théoréme suivant.

THEOREME C. Soit E unespace normé de dimension supérieure ou égale d 3.
Pour que E soit euclidien, il faut et il suffit que pour tout sous-espace G de
dimension 1 de E, il existe une application linéaire 'E — G : x X donnant
une meilleure approximation de x par un élément de G.

Ce théoreme se démontre a partir du théoréme A’ comme suit. En prenant
y =0€eG dans la propriété de meilleure approximation, on voit que
| x — xg | < | x| et ’hypothése de linéarité montre alors que
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P, E - E, XX — Xg

est un projecteur de norme 1 et de noyaﬁ G (donc de rang 2 et d’'image
supplémentaire a G). Les sous-espaces de dimension 3 de E sont donc euclidiens
et la conclusion en résulte. Il est d’ailleurs clair que la meilleure approximation
existe (et est unique) dans tout espace euclidien et est donnée par projection
orthogonale.

Revenant au cas de la meilleure approximation en général, si x, est meilleure
approximation de x dans F, Ax, sera meilleure approximation de Ax dans
F(AeR). Le probleme de linéarité est donc I'additivité de x — xz. Comme on a
aussl xp + y meilleure approximation de x + y pour y € F, la linéarité est
automatique si F est de codimension 1 dans E. Remarquons en passant que si xp
est une meilleure. approximation de x dans F, on a

Ixp |l <l xp—xl+ x| <2)x].
(Il est facile de construire des exemples d’espaces normés E de dimension 2 et F de
dimension 1 avec || xg || arbitrairement voisin de 2 || x ||.) Par définition de la
meilleure approximation x; de x dans F on a
Ix —xp| = Inf||x —y| =] x| dans E/F
yeF

(Cest en effet ainsi qu'on définit la norme quotient de E/F). La linéarité de
X — Xp, équivalente a la linéarité de x — x — xj, revient ainsi a ’existence d’un
plongement isométrique de E/F sur un supplémentaire convenable de F dans E
(le quotient E/F doit étre réalisé avec sa norme sur un supplémentaire de F). En
d’autres termes, la suite exacte courte d’espaces normes

F—ES EF

p

doit étre scindée par une section isométrique s. On a donc

THEOREME C’. Soit E un espace normé de dimension supérieure ou égale a
3. Pour que E soit euclidien, il faut et il suffit que pour tout sous-espace F de
dimension 1 de E, Tlespace normé E/F <sidentifie a un hyperplan fermé
supplémentaire de F dans E.

Voici maintenant quelques remarques concernant I'origine des problemes
consideéres.

Le théoreme C, a l'origine de cette rédaction, est cité par Dhombres [7]
(p. 21: il n’en donne pas la démonstration « pénible »). Avec des hypothéses de
lissité implicites, le théoréme B a été démontré par Blaschke a 'occasion de

3 e
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I’étude de certains problémes variationnels [2]. Birkhoff [1] reprend 'argument
de Blaschke pour en déduire un énoncé voisin du théoréme B (il fait encore une
hypothése — explicite — d’unicité de plans d’appui, revenant immédiatement a
la différentiabilité de la surface S). Il utilise un théoréme de représentation des
groupes (dii & von Neumann) pour parvenir a sa conclusion. Kakutani [9],
auquel ce théoréme a parfois été attribué ultérieurement, se borne a dire que
Phypothése de lissité est superflue (se référant a Bonnesen-Fenchel [4] p. 13, il
croit pouvoir se dispenser de donner la moindre indication « since this may be
easily carried out »!). La premiére démonstration (relativement) complete de la
lissité est donnée par Phillips [10]. Pour pouvoir étendre le théoreme A’ au cas
complexe (dim¢ = 3), Bohnenblust [3] introduit des méthodes plus
conceptuelles. En particulier, il remplace les arguments de Blaschke et de
Birkhoff par I'utilisation du théoréme fondamental de la géométrie projective
(dans la formulation donnée par E. Cartan). Finalement, Bourbaki [6] formule
une suite de problémes (difficiles) entrelagant les cas réels (loc. cit. p. 142-143) et
complexes (p. 144). Il suit en gros la méthode inaugurée par Bohnenblust.

On trouvera aussi une démonstration du théoréme B dans le livre de
géométrie différentielle de Guggenheimer ([8], p. 310-311 ou ce théoréme est
appelé théoreme de Maschke (sic!): par l'intermédiaire de I'utilisation des
formules de Serret-Frenet pour certaines courbes tracées sur la surface, il fait
implicitement toutes les hypothéses de différentiabilité — jusqu’a I'ordre 3 —
requises).

Les reférences [11] a [15] montrent I’évolution des différentes notions
d’orthogonalite (et de géométrie fine) dans les espaces normés de 1945 & 1955.

2. DEMONSTRATION DE LA DIFFERENTIABILITE

Dans cette section, on démontrera I'affirmation suivante. Si E est un espace
normé de dimension 3 possédant (au moins) un projecteur de norme 1 sur chaque
plan (homogéne ), alors la boule unité fermée K de E posséde un plan tangent
en chaque point de sa frontiére S et cette surface est contintiment différentiable.

Nous procederons en plusieurs étapes, commengant par quelques rappels en
dimension 2.

Point 1. La frontiere d’'un convexe fermé possédant un point intérieur dans
le plan R? est une courbe continue (fermée si ce convexe est borné). Cette courbe
possede des demi-tangentes a « gauche » et d « droite » de chaque point. De plus,
sauf en un ensemble au plus dénombrable de points appelés pointes, cette courbe
a une tangente (ses deux demi-tangentes sont en prolongement l'une de l'autre).
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Géomeétriquement, on le voit facilement en attachant a chaque point x de la
frontiere du convexe considéré, le secteur S, intersection de tous les demi-plans
contenant le convexe et limités par une droite passant par x (dite droite d’appui en
x). Le dessin suivant illustre bien la situation.

SX 0,
N
X

Yo, < 2n = {x: 0, > 0} estau plus dénombrable.

Un convexe du plan sans point intérieur est nécessairement linéaire (segment
limité ou non, éventuellement réduit a un point). On peut encore définir le secteur
S, en un point quelconque d’un convexe linéaire fermé. Son angle au sommet
sera 0 (point intérieur au segment), © (extrémité. du segment) ou 27n (segment
réduit a un point). Pour toutes les propriétés de différentiabilité des convexes
plans, cf. Bourbaki [5] (chap. 1, §4, p. 41-55).

Point 2. 1l est facile de généraliser les remarques précédentes aux convexes
fermés de dimension 3. Soit K un tel ensemble de R?, S sa frontiére et x un point
de la surface S. On appelle cone d’appui de K en x I'intersection C, = C(K) des
demi-espaces contenant K et limités par un plan contenant x (ces plans limites
sont donc les plans d’appui de K en x). Comme tout demi-espace contenant x sur
son bord est un cone de sommet x, il en est de méme de C, et par définition, les
plans d’appui en x de K et de C, sont les mémes. Soit A = K n o une section
plane de K passant par x et non reduite & un segment. Alors l'intersection du cone
C(K) avec le plan o est le secteur 'S, = S,(A). Ceci est géométriquement
clair (nous sommes dans R?) et peut étre déduit formellement du théoréme de
Hahn-Banach... De fagon générale, le cOne C, étant convexe, trois cas seulement
peuvent se présenter.

a) C,ne contient aucune droite. On dit alors que ce cOne est strict et que x est
une pointe de K (et de C,).

b) C, contient une droite passant par x. Dans ce cas, tous les demi-espaces
fermés contenant K et d’appui en x doivent contenir cette droite. Ainsi, C, est
limité par deux demi-espaces extrémes et est un toit. Lorsque ces deux demi-
espaces extrémes sont distincts (i.e. lorsque C, ne contient qu’une seule droite
passant par x), on dit que C, est un toit strict, avec pour faite la droite unique de
C, passant par x, et pour pans les deux demi-plans limitant C,. Le cas du toit
(strict ou non) se présente chaque fois que x est dérivable sur une courbe de K.
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pan
"gauche"'

c¢) C, contient deux droites distinctes passant par x. Dans ce cas de toit plat,
C. est un demi-espace dont le plan limite est 'unique plan d’appui de K en x. (On
peut démontrer que ce cas correspond a la différentiabilité de x sur §: nous
n’aurons pas a utiliser ce fait.)

Point 3. Nous aurons aussi a considérer I'ensemble B des projecteurs
plans, de norme 1 de E (dimg E = 3). Comme il y a une seule topologie (séparée!)
compatible a la structure vectorielle sur tout espace de dimension finie, nous
pourrons parler sans ambiguité de continuité, de parties compactes... dans £(E)
= Hom(E, E). L’ensemble des projecteurs de cet espace est fermé : il est défini par
P? = P (la composition des applications est continue). Il en est de méme de
'ensemble des projecteurs plans qui est caractéris¢é par la condition
supplémentaire Tr(P) = 2. Finalement, la partie 8 définie encorepar || P || = 1
est compacte. Il est bon de se représenter géométriquement la condition | P ||
= 1 (C’est ainsi que nous l'utiliserons dans la suite) par le fait que P doit
appliquer la boule unité fermée K de E dans la boule unité fermée du plan sur
lequelil projette: P(K) = K n Im(P). Autrement dit, K doit étre contenu dans le
cylindre de base K n Im(P) et de génératrices paralleles a Ker(P). L’application
P — (Ker(P), Im(P)) (par exemple définie sur 'ensemble des projecteurs plans)
est continue. La premiere composante de 'image varie dans I’espace projectif des
droites homogenes de E, tandis que la deuxiéme composante varie dans I'espace
des plans homogenes de E (que 'on peut identifier a 'espace projectif des droites
homogenes du dual E* de E).

Point 4. a) S’il y a deux projecteurs distincts P; de norme 1 sur un méme
plan (homogene) o, il y a un cone d’appui C,(K) (en un point x € o) qui est un toit
strict. En effet, appelons d; = Ker P;(droites supplémentaires a o) et choisissons
un point dérivable x de la courbe plane €, = S n a (il y en a puisque 'ensemble
des pointes de K N o est au plus dénombrable). On peut méme choisir ce point x
de fagon que sa tangente ¢ ne soit pas paralléle au plan engendré par d, et d,:
pour ceci, il suffit d’exclure la direction de tangente donnée par la droite
d’intersection du plan engendré par d, et d, avec o (I'ensemble des tangentes aux
points dérivables de €, a au moins deux directions distinctes, le cas de deux
directions exactement se présentant lorsque €, est le bord d’un
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paralléelogramme!). Comme les projecteurs P; ont norme 1, P(K) est contenu
dans K n a et C(K) est un toit contenu dans le toit strict de faite ¢ et de pans
paralleles aux droites d,.

b) Montrons que lorsqu’un cone d’appui C,(K) est un toit strict, il y a un plan
homogene B passant par x sur lequel il est impossible de projeter avec norme 1.
Tout plan § # a contenant Ox doit couper le toit strict C (K) selon un secteur
d’angle < m:x est pointe de toutes ces sections planes €, Mais lorsqu’un

projecteur Q de rang 2 n’applique pas le faite ¢ sur un seul point, Q(t) est tangente
a Q(€,) (dans B = Im Q). Si de plus | Q | = 1, x n’est pas pointe de K N B
> Q(€,). Donc dans notre cas, les P e P ayant une image B # o, f > Ox
devraient avoir méme noyau (parallele a t) : cela est contraire a la compacité de la
partie de ‘B formée des projecteurs d’image contenant Ox. ,

Au total, nos hypothéses impliquent donc qu’il y a un seul projecteur de
norme 1 sur chaque plan (homogene) a.

Point 5. Pour tout plan a, dénotons par P, € P le projecteur de norme 1
sur aet pard, = Ker(P,)sa direction de projection. Le graphe I" de I’'application
o — d, est la partie de P* x P formée des couples (o, d,), donc est 'image de B
par I'application continue

¢ : P — (Im(P), Ker(P)) .
Ce graphe I' = ¢(*P) est donc compact et il en résulte que
o+ d, estcontinue.

En effet, la restriction p* au graphe I' de la premiere projection du produit
P* x P est continue et bijective, donc un homéomorphisme et o+ d, est
composé de 'homéomorphisme inverse avec la deuxieme projection du produit.
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]p*

Point 6. Montrons maintenant que toutes les sections planes (homogenes)
de S sont des courbes continiiment dérivables. Fixons donc le plan homogene
fournissant la section plane € = €, et appelons d = d, la direction du
projecteur P = P, de norme 1 sur «. Introduisons des coordonnées polaires
d’angle ¢ en 0 dans a, de fagon a paramétrer les points de € par cet angle. Un
point x, € € définit naturellement un plan (encore noté @ par abus!) contenant d

ettelque €N = +x,
\/
Le projecteur P, de norme 1 sur ¢ a un noyau d, supplémentaire de ¢ donc

distinct de d = ¢ : P(d,) n’est jamais réduit & un point. De plus, nous avons
montré (point 5) que d,, est continu en ¢ d’ou aussi

—-‘

¢+ d,— P, continu.

La famille de droites ¢ — P(d,) fournit ainsi un champ continu de droites
sur €

o x, + P(d,).

Je prétends qu’en tous les points x,, dérivables sur @, X, + P(d,) = t,estla
tangente a € en x,. Supposons donc x,, dérivable sur €. D’apreés le point 2, C, (K)
-est un toit. Mieux, d’apreés le point 4 b), ce toit doit étre platet X, est dérivable sur
K (ie. sur S). Le plan homogéne paralléle au plan tangent a S en x, doit
‘contenir les deux droites d et d,,, donc étre engendré par elles. En particulier, P(d,)
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(qui appartient a ce plan homogene) doit étre paralléle a 1a tangente & € en x,,. Le
champ continu de droites

¢ x, + P(d,)

est défini sur toute la courbe € et fournit la tangente ¢, 4 € en x, chaque fois que
ce point est dérivable sur €, c’est-a-dire sauf en un ensemble au plus dénombrable
de points. Il ne reste plus qu’a démontrer le lemme suivant (formulé avec des
notations légerement différents et plus usuelles).

LEMME. Soient I un intervalle (d’intérieur non vide dans R) et f une
fonction continue I — R. Supposons f dérivable en tous les pointsde I — D
ou D estune partie au plus dénombrablede 1. §’il existe une fonction continue
g: I - R telle que g(x) = f'(x) en tout xel — D, alors [ est
contintiment dérivable sur tout I et f' = g.

La démonstration de ce lemme est facile! Appelons A la primitive de g nulle en

h(x) = [ g(t)de .

Par définition h est continiment dérivable avec i’ = g. Par hypothése, f — h
est dérivable en tout x € I — D et de dérivée nulle en ces points. Comme cette
fonction f — hest continue, le théoréme des accroissements finis montre qu’elle
est constante: f = h + c est continiment dérivable et ' = h' = g.

3. DEMONSTRATION DU THEOREME A (CAS DIFFERENTIABLE)

Nous avons vu (point 4, sec. 2) que sous les hypotheses du théoréme A, il y a
un unique projecteur P, de norme 1 sur chaque plan homogeéne a. Montrons
maintenant que

o — Ker(P,) = d,

est injective : & deux plans (homogeénes) distincts correspondent des directions de
projection de norme 1 distinctes. En effet, prenons deux plans homogenes o # B.
Si les projecteurs P, et Py avaient méme noyau d, la surface S = Fr(K)
contiendrait une portion de cylindre de génératrices paralleles a d, limitée par o
et B. Considérons alors une section intermédiaire €, = S Ny (y est un plan
homogéne contenant la droite a N B et situé entre o et B relativement a d).
D’aprés le théoréme de Krein-Milman, on peut choisir un point x de €, extrémal
sur K n vy et non situé sur la droite a n B (1l pourrait arriver que les seuls points
ayant les propriétés indiquées soient x et — x : ce cas se présenterait si K N vy était
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un parallélogramme avec deux sommets sur a N B! On comparera d’ailleurs
cette situation avec sa duale du point 4, sec. 2). Ainsi, x est intérieur a un segment
de S paralléle a d, tout en étant extrémal sur toutes les sections planes de K
définies par des plans homogénes ¥’ contenant Ox et distinctes du plan engendré
par d et Ox. Les projecteurs de norme 1 sur ces plans v’ devraient avoir d comme
noyau, contrairement au fait que 'ensemble des projecteurs correspondant au
faisceau de plans d’axe Ox est compact.

L’application bijective o+ d, = Ker(P,) transforme plans coaxiaux en
droites coplanaires. En effet, les droites d; correspondant a un systeme de plans ¢;
contenant une droite commune d (homogéne) doivent étre paralleles aux plans
tangents en les deux points symeétriques de S nd. En d’autres termes,
I'application considérée transforme droites de P* en droites de P. Le théoréme
fondamental de la géomeétrie projective affirme alors qu’il existe une application
linéaire bijective de R; = (R?)* dans R? qui induit o — d, au niveau des espaces
projectifs (puisque le corps R n’a aucun automorphisme non trivial, il n’y a pas a
utiliser le résultat de continuité ici).

¥
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En particulier, si on fixe une section plane € = €, de S, il existe une
application linéaire A4 bijective o — a telle que 4(0x,) = d, (d, étant la droite
homogene parallele a la tangente t, a € en x,,: les notations sont celles du point 6
delasec. 1). Dans le plan a, et en coordonnées polaires d’angle @ en 0, la courbe €
est ainsi une solution (stricte puisque continiment dérivable) d’une équation
différentielle vectorielle du type

— X = AXx (X = Oxeq) .

Comme cette solution € est fermée, la discussion de ces systémes autonomes en
dimension 2 montre que les valeurs propres de A doivent étre imaginaires pures
(conjuguées) et € est une ellipse!

Globalement, prenant un systeme d’axes Oxyz, les trois sections de S par les
plans de coordonnées doivent étre des ellipses et S est engendrée par une famille
d’ellipses (verticales pour fixer les idées) s’appuyant sur une ellipse de base fixe.
Cest un ellipsoide.
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