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5) Beweis des Satzes

Wir haben noch zu zeigen, daß A in K interpretierbar ist. Wegen (7),

genügt es zu zeigen, daß F in K definierbar ist. Wir unterscheiden drei

Fälle:
L Lpi C oder q # 2 und L R

Dann ist K cz Lp und wir haben nach (6)

F {fleKl VbeiCCl+frei^&a. + fr-'ei^) => b e Kq}

L R, q 2

Dann ist F* - Kq Kq \j -~Kq. Und wir haben mit (6')

F {a e K | V b e K (1 +beKq & aq + b~1eKq) => b e Kq u - Kq}

L — Qp.

Wir erhalten aus (6) eine Definition von F, wenn wir K n Lq in K
definieren können. Weil aber Q dicht in Qp ist, ist nach Hensels Lemma

c eLq gdw. es gibt deK (oder: Q) mit w (c — d*) > w (c) + 3

Es genügt also die /?-adische Bewertung w in K elementar zu beschreiben :

Wenn r relativ prim zu p ist, ist für alle ceL

w (c) > o gdw. 1 + pcr e U

Wenn r eine von q und p verschiedene Primzahl ist, gewinnen wir daraus
mit (2) für alle ceK

w (c) > o gdw. 1 + pcr e Kr.
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