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Für re F* hat tq-r keine mehrfachen Faktoren (in F[F]). Es gibt also

eine auf F triviale Bewertung vr von F (t), für die vr(tq~r) das kleinste

positive Element von G~r ist. Wir wählen für jedes r eine Fortsetzung wr

von vr auf Et. Dann ist G~r — GWr für fast alle r. Die Menge

C {reF*\q teilt wr(tq — r)}

ist also endlich. Wir bemerken noch, daß wr (tq — r ') 0, wenn r # r'.
Wir wählen jetzt e F so, daß rt ^ 0, an, 2r1 ^ an und ri in keiner der

Mengen

C,an- C, M - B, an - (M —B)

liegt. Es sei r2 — an — U- Lemma 3 liefert uns ste F* mit st {tq — r^ eLq.
Wir setzen

CEi+1,Si+1) (Ei,Siu{s1(f-ri
Es muß noch (4) gezeigt werden.

Weil q wrl (tq — r1) und wr2(tq — r2) nicht teilt, gilt zunächst (4.1) für die

Bewertungen wn, wr2, vs, (s g St). Um (4.2) zu zeigen, seien r1 =£ f2 e F,

r1 + r2 g M gegeben. Es ist dann z.B. für alle s e St vs(tq — rt) durch q
teilbar. Wenn auch wn (tq-f1) und wr2 (tq-rt) durch q teilbar sind, sind
wir fertig. Sei also z.B. wn(tq — r1) nicht ^-teilbar. Dann ist r1,= ru

^ r2 und r2e M - rv Folglich ist wr. (tq — r2) 0, und alle vs (tq-f2),
(s g Si), sind durch q teilbar.
Damit ist die Konstruktion von K abgeschlossen.

4) Die Eigenschaften von K

Wir zeigen in diesem Abschnitt (2) und

(5) (Kr,Lq)\Kq=(U St)
isN

(5'). K\F* KqF*•(U St)
isN

(6) F {a e K \ \/ b eLq(1 + beK=>

(6') F {aeK\VbeK(1 +beKq&=>

(7) M {reF|V rur2 eF (rt #r2&f1+r2=r) => (tq — r^eF* Kq

oder tq-r2eF* Kq)}
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Beweis von (2) : Sei K a H c L und H endlich über K. Wir wollen

zeigen, daß q den Grad [H: K] teilt. Wir können H K(a) annehmen.
Für beliebig große n ist a an. Wir wählen n so groß, daß

[F4„(a):F4J [K(a): K]

In der Konstruktion tritt bei i 4n der Fall a) ein. Also teilt q

[E4n (a): E4n]

Beweis von (5) und (5') :

„ =5" Sei ae F* - Kq. Für alle genügend großen i ist dann ae F* - Eq

und v (a) für alle auf F trivialen v durch q teilbar. Nach (4.1) liegt a nicht
in F* • Si.

„c=" Sei ae K\F* - Kq. Nach Lemma 3 wählen wir fe F* mit
ä af e Lq. Wir haben jetzt ä e (K n Fq) \ Kq.

Es sei an ä und n so groß, daß a e E4n + 1. In der Konstruktion tritt
bei z 4n+ 1 der Fall b) ein. Also ist ä e Si+1. Daraus folgt a e F* • Si+1.

Beweis von (6) und (6') :

„ c " Sei ae F. Für ein b e K sei 1 + b e Kq und aq + b~1 e Kq. i sei

so groß daß 1 + b e Eq und aq -f Z?-1 e E\. v sei eine auf F triviale
Bewertung von Fj. Wenn v (b) > 0, ist v (b) -v (aq + b~1) durch q teilbar.
Wenn v (b) < 0, ist v (b) v (1 +b) durch q teilbar. Weil also v (b) immer
durch q teilbar ist, ist nach (4) b $ F* • St. (5') ergibt b e F* • Kq. Wenn
b e Fq, folgt aus (5), daß b e Kq.

„=F' Sei aeK\F. n sei so groß, daß aeE4n+2, und es sei a an.

In der Konstruktion tritt bei i 4n + 2 der Fall b) ein. In Si+1 gibt es dann
ein b mit 1 4- b, aq + b'1 eEqi+1. Wir haben also

b e Lq, 1 + beKq, aq + b~l eKq, h£F* • Kq.

Beweis von (7) :

cz" Sei r1 + r2 e M, rl ^ r2. Wenn die tq-r1 beide nicht in F* • Kq

sind, ist nach (5') tq - ru tq - r2e F* St für genügend großes z. Das

widerspricht aber (4).

„3" Sei r aneF\M. In der Konstruktion tritt bei z 4n + 3

der Fall b) ein. Es gibt dann rx ± r2 e F, r1 + r2 - r und st e F*, für die

s2(tq-r2) e Si+1. Also nach (5') tq - ru tq - r2$F*-Kq.
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