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Fiir r € F* hat t9—r keine mehrfachen Faktoren (in F[t]). Es gibt also
eine auf F triviale Bewertung o, von F(¢), fur die 7, (#7—r) das kleinste
positive Element von G;, ist. Wir wihlen fiir jedes r eine Fortsetzung w,
von 7, auf E;. Dann ist G; = G,,_fiir fast alle r. Die Menge

C = {reF*|q teilt w,(t?—r)}

ist also endlich. Wir bemerken noch, dal w, (¢9—r’) = 0, wenn r # r’.
Wir wihlen jetzt r, € F so, daB3 r; # 0, a,, 2r; # a, und r; in keiner der
Mengen

C,a,—C, M — B, a, — (M-—B)

liegt. Es sei ¥, = a, — r;. Lemma 3 liefert uns s;€ F* mit s; (¢*—r;) e L.
Wir setzen
(Eit1,Si41) = (Eia S; v {51 (11 —ry), s, (¢ —7”2)}) .

Es muB noch (4) gezeigt werden.

Weil ¢ w,, (¢7—r;) und w,, (¢7—r,) nicht teilt, gilt zundchst (4.1) fir die
Bewertungen w,,;, w,,, v, (s€S§;). Um (4.2) zu zeigen, seien r; # F, € F,
ry + ¥, € M gegeben. Es ist dann z.B. fiir alle s€ S; v, (1?7 —7,) durch g
teilbar. Wenn auch w,, (¢2—7;) und w,, (t?—7;) durch g teilbar sind, sind
wir fertig. Sei also z.B. w, (¢?—7;) nicht g-teilbar. Dann ist ry. = 7y,
ri # Fyund 7, € M — ry. Folglich ist w, . (¢t9—7,) = 0, und alle v, (17— F,),
(s € S)), sind durch g teilbar.

Damit ist die Konstruktion von K abgeschlossen.

4) DIE EIGENSCHAFTEN VON K

Wir zeigen in diesem Abschnitt (2) und
(5) (KnLH\K? =( U S;)

: ieN

(5). K\F*-K* =F*-( U §)

ieN -

(6) F ={aeK|Vbels (1+beK?&a?+b™'eK?) = be K9}

(6) F ={aeK|VbeK (1+beK?&a'+b 'eK) = beF*- K%

(1) M ={reF|Vr,r,eF (ri#r,&r +r,=r) = (t!—r,eF* - K¢
oder #?—r,eF* - K9)}
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Beweis von (2): Sei K « H < L und H endlich iiber K. Wir wollen

#*
zeigen, dall ¢ den Grad [H: K] teilt. Wir konnen H = K (a) annehmen.

Fir beliebig grofBe n ist a = a,. Wir wihlen »n so groB3, daf3

[Esn(a): Ey] = [K(a): K].

In der Konstruktion tritt bei i = 4n der Fall a) ein. Also teilt g

[E4n (a): E4n] .

Beweis von (5) und (5') :

(13

, 2 SeiaeF*- K9 Fir alle geniigend groBlen 7 ist dann a € F* - E%
und v (a) fiir alle auf F trivialen v durch ¢ teilbar. Nach (4.1) liegt a nicht
in F*-§,.

,C“ Sei aeK\F*-K% Nach Lemma 3 wihlen wir fe F* mit
a = afe L. Wir haben jetzt a e (K n LY\ K

Es sei @, = a und n so groB, daB a € E,,, ;. In der Konstruktion tritt
beii = 4n+1 der Fall b) ein. Also ist a € S;, ;. Daraus folgt ae F* - §;, ;.

Beweis von (6) und (6') :

,c“ SeiaeF. FiureinbeKseil + beK?und a? + b~ e K% i sei
so groB daB 1 + beEf und a? -+ b~ ' € E4. v sei eine auf F triviale Be-
wertung von E;. Wenn v (b) > 0, istv (b)) = —v (a?+b~ ") durch ¢ teilbar.
Wenn v (b) < 0, ist v (b) = v (1+b) durch g teilbar. Weil also v (b) immer
durch ¢ teilbar ist, ist nach (4) b¢ F* - S,. (5') ergibt be F* - K% Wenn
b e L1, folgt aus (5), dall b € K.

,2 SeiaeK\F. nsei so groB, dall ae E,,.,, und es sei a = a,.
In der Konstruktion tritt bei i = 4n+2 der Fall b) ein. In S, ; gibt es dann

ein b mit 1 + b, a? + b~ e E%,,. Wir haben also

beli, 1 +beK% a?+b K b¢F*- K.

Beweis von (7) :

,c“ Seir, +r,eM,r # r,. Wenn die t?—r, beide nicht in F* - K*
sind, ist nach (5) ¢t — ry, t® — r, e F* . S, fir geniigend groBes i. Das
widerspricht aber (4).

,2“ Sei r = a,e F\ M. In der Konstruktion tritt bei i = 4n + 3
der Fall b) ein. Es gibt dann ry # r, e F, ry + r, = r und s; € F*, fir die
s (t9—ry), s, (t1—r,) € S;44. Also nach (§') t7 —ry, t* — ry, ¢ F* - K%
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