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6 F. L. WILLIAMS

2. INDUCTION AND RECIPROCITY

The notion of induced representations for finite groups was introduced in
1898 by G. Frobenius in the paper [37]. In the same paper Frobenius established
what 1s now called the Frobenius reciprocity relation. We recall his basic
construction which i1s fundamental in the entire theory of group
representations. ')

Let G be a finite group and let P be a subgroup of G. Let t be a representation
of G on a finite dimensional vector space V. That is t: G - GL (V) is a
homomorphism of G into the group of non-singular endomorphisms of V. We
shall also refer to V as a (left) G module. By restriction V is also a P module.
Conversely there is a functor I which converts P modules to G modules: Given a
P module W the G module IW is defined to be the space of functions f: G -» W
suchthat f (ap) = p '- f (a)forevery(a, p)in G x P.The action of G on IW is
defined by

(@ f)x) = fla'x

for (f,a,x) in (I W) x G x G.IW is called the G module induced by the P
module W. Induction and restriction are related in the following way.

THEOREM 2.1 (Frobenius reciprocity relation, 1898). If W isa P module
and if 'V isa G module then

Homg (V, I W) = Hom, (V, W).

We wish to consider extensions or analogues of this relation in a wider
context. For this it is most convenient first of all to re-describe the G module I W.
The'following “geometric” interpretation of I W is well-known. Consider the
right action of P on G x W given by

(@, w)-p = (ap,p~'w)
for (a, p, w)in G x P x W. Let
(2.2) Ey = orbit space (GxW)/P = G x p W.

Lety: Ey — G/P be the canonical (well-defined) map [a, w] — aP, where [a, w]
is the orbit of (a, w)e G x W. For each a € G the map w — [a, w] of W to
v~ ! {aP} is a bijection. That is we may identify W as the fibre over each point of

) For the theory of induced representations of locally compact groups see G. Mackey

[55], [56].
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G/P. G acts naturally on Ey and G/P on the left. y is an equivariant map. Let
[ (E,) be the space of sections of E. Thatis s € I" (Ey) is a map from G/P to Eyw
satisfyingy o s = 1;hence s maps each point to the fibre over it. [ (Ey)isaleft G
module:

(2.3) (a-s)(x) =a-s(@a ' x
for (a, s, x) in G x T'(Ey) x G/P. Moreover

PROPOSITION 2.4. There is a natural G module isomorphism s — f* of
[ (Ey) onto I W suchthat forevery a in G, s(aP) = [a, f*(a)]. Hence
by Theorem 2.1

(2.5) Homg (V, T (Ey)) = Hom, (V, W) .

This sets the stage for a possible extension of Frobenius. Namely, following
Bott, we consider the following data. G is a complex Lie group, P is a closed
complex Lie subgroup (thus the injection P — G is holomorphic), and W is a
finite dimensional holomorphic P module (i.e. for each w in W and f in the
complex dual space of W the map p — f (p - w) of P to the complex numbers is
holomorphic). We define E,, exactly as above. Then E,, has the structure of a
holomorphic vector bundle over the complex manifold G/P. Let I (Ey) now
denote the space of C® sections with the G module structure given by (2.3) and let
I, (Ew) denote the G stable subspace of holomorphic sections. Since all of our
data is now holomorphic the most natural question to ask, considering (2.5), is:
When is it true that

(2.6) Homyg (V, Ty (Ey)) = Hom, (V, W)

for a holomorphic G module V? (2.6) would then represent an exact
holomorphic analogue of Frobenius reciprocity. It turns out that (2.6) is valid if
the space G/P is sufficiently nice. For example suppose that G/P is a compact
simply connected Kahler manifold. Group theoretically this means that G is a
connected complex semisimple Lie group and P is a parabolic subgroup. Then it
is due to Bott [12] that (2.6) is valid. In fact in [12] Bott proves considerably
more: Let SEy, be the sheaf of germs of local holomorphic sections of E,, and let
H* (G/P, SEy,) be the cohomology of G/P with coefficients in SE,,. Then we have

THEOREM 2.7 (R. Bott, 1957). Suppose G isaconnected complex semisimple
Lie group and P isa parabolic subgroup of G. Let p bethe Lie algebra of P

and let V,W be finite dimensional holomorphic G and P modules
respectively. Then
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(2.8) Homg (V, H’ (G/P, SEy)) = H’ (p, p n p, Hom (V, W))
for each j = 0.

The bar — denotes conjugation of G with respect to a maximal compact
subgroup K of G and the right hand side of (2.8) is the relative Lie algebra
cohomology of p (in the sense of Hochschild, Serre [44]). Here H’ (G/P, SEy) ')
has the G module structure induced by the left action of G on Ey and Hom (V, W)
has the p module structure defined by

(2.9) x- ¢ = —d(xv) +x $(v)
for (x, ¢, v) in p x Hom (V, W) x V.

Remarks. (i) For j = 0, H® (p, p n p, Hom (¥, W)) is independent of the
subalgebra p n p of p and has the value Hom (V, W)F (the space of invariants)
which 1s precisely Hom, (V, W) = Hom, (V, W) by (2.9) (P is connected). Also
H° (G/P, SEy) is precisely I'y,; (Ew). Thus taking j = 0 in (2.8) we get

HomG (Va l—‘hol (EW)) = HomP (Va W)

which is (2.6). This shows that (2.8) represents a rather remarkable extension of
Frobenius reciprocity to higher cohomology. Here the induction functor is
I: W — H* (G/P, SEy).

(i1) As shown by Bott (2.8) is valid, more generally, for C-spaces G/P in the
sense of Wang [90]. The latter need not be Kahler, as we have assumed for our
purposes. ‘

The functor I in remark (i) can be explicated by the use of differential forms:
Let A% 7 (G/P, E,) denote the space of Ey, valued C® differential forms on G/P of
pure type (0, j). That is

o e A%/ (G/P, Ey)
assigns to each x € G/P a skew-symmetric j linear map

0p: T, (GIP)E % .. x T,(G/PIC — (Ey), = v~ {x}

on the complexified tangent space T, (G/P)€ of G/P at x to the fiber (Ew), over x
such that (a) given smooth vector fields X, .., X; on G/P the map

O(Xg, 0 X)X = 0, (X, X))
is C*—i.e. it belongs to I' (Ey) and (b) for each real number 0,

0 (Ug Xy, UgX) = eV 100 (X4, oy X)

1y Since G/P is compact H’ (G/P, SE,) is known to be finite-dimensional.
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where ,
Uy X, = cos 0 X; + sin 6 JX,

and J is the complex structure tensor on G/P. Let 8: A%/ — A% %1 denote, as

usual, the Cauchy-Riemann operator so that 92 = 0.1If f is a C* function on
G/P and X is a C*® vector field on G/P then

- 1
(2.10) 0f)(X) = i[Xf+\/—1(JX)f]-
Since 6% = 0 let Hg*f (G/P, Ey) denote the corresponding F cohomology:

(2.11) H27(G/P, Ey)
_ ker 0: A%I(G/P, Ey) - A®7" ' (G/P, Ey)

OA* 7% (G/P, Ey)

By Dolbeault’s theorem [35]

(2.12) H/ (G/P, SEy) = Hg’-i (G/P, Ey) .
The induced action of G on Hg’j (G/P, Ey) is given explicitly as follows. First G
acts on A%/ (G/P, Ey) by

(2.13) (@ ©),(Ly, .. L))

= a- O)a_ 1x (dla‘ lx(Ll)’ st dla_ 1x (LJ))
where

(a,m,x) € G x A®/(G/P, Ey) x G/P,
eachL,e T, (G/P) and dl,_is the derivative of left translation /,: G/P — G/P on
G/P at x. Note that (2.13) generalizes the action of G on
[ (Ey) = A*°(G/P, Ey)

given in (2.3). Because left translation is holomorphic the diagram

%1 (G/P, Ey) > A%T*1 (G/P, Ey)

a l ) l a
A®7 (G/P, Ew) > A®7* (G/P, Ey)

is commutative for each a in G. Thus (2.13) induces a well-defined action of G on
H‘a}j (G/P, Ey). We may now write (2.8) as

(2.14) Homg (V, HY 7 (G/P, Ew)) = H(p, pnp, Hom (V, W)).
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Now assume that W is in fact irreducible. The parabolic subalgebra p has a
decomposition p = (pnp) @ ninto a reductive part p n p and a nilpotent part
n = an ideal in p. By general principles

H’ (p, pnp, Hom (V, W)) = H’ (n, Hom (V, W))P " ?
— H/ (n, V*QW)P"P = (Hi (n V*) @ W)P"P.

The last statement of equality follows by the irreducibility of W since by Lie’s
theorem, W is a trivial n module. Now

(H’ (n, V*¥) @ W)P"? = Hom W*, H' (n, V*)).

ponl

From (2.14) we obtain (see [50]).

THEOREM 2.15 (Bott-Kostant reciprocity, 1960). Let G, P beasin Theorem
2.7,let n be the nilradical of the parabolic subalgebra p, andlet W be a finite
dimensional irreducible holomorphic P module. Then for any finite dimensional
holomorphic G module V we have

(2.16)  Homyg (V, HY/ (G/P, Ey)) = Hom, . , (W*, Hi (n, V'¥)).

pnp (
Again p n p is the reductive part of p where the bar denotes conjugation of G
= K€ with respect to a maximal compact subgroup K. We refer to (2.16) as “the
debut of n cohomology” ! Since 1960 it has played some rather important roles in
both finite dimensional and infinite dimensional representation theory. There is
an equivalent version of (2.16): The G module structure on Hg’j (G/P, Ey)
induced by (2.13) may be restricted to K. Let K denote, as usual, the equivalence
classes of the irreducible unitary representations of K and let V, be the
~ representation space of m € K. Then we have (again for W irreducible).

, THEOREM 2.17 (B. Kostant).  The decompositionof H:’(G/P, Ey) asa K
~ module is

- (2.18) H® I (G/P, Ey) = Zﬁ V, ® Hom, ., (W*, Hi (n, V¥))
= ZIE V¥ ® Hom, ., (W* H’ (n, V})).

~ In the direct sum on the right hand side the action of K on a summandist ® 1 or
n* ® 1 in the second equation.

From (2.18) (or from (2.16)) we see that the multiplicity of an irreducible K
module V., in Hg’j(G/P, Eyw) is governed precisely by the n cohomology
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H/ (n, V*). Here, by analytic continuation, we consider V, also as a
representation of the complex Lie algebra of G. Its n module structure is the
restriction thereof to n.

Remarks. (i) Incontrast to remark (ii) made earlier, following Theorem 2.7,
Theorems (2.15) and (2.17) do require that G/P should be Kahler.

(ii) One knows that K acts transitively on G/P so that G/P is diffeomorphic
to K/K n P.

Now Kostant in [50] has computed the Lie algebra cohomology groups
H (n, V*). Two outstanding consequences of his results, among others, which we
shall briefly discuss are (a) Weyl’s character formula and (b) Bott’s generalized
Borel-Weil theorem. Suppose more generally that g is any complex semisimple
Lie algebra (for example g could be the Lie algebra of G above). Let h < g be a
Cartan subalgebra of g, let A be the set of non-zero roots of (g, h), and let A" be a
choice of positive roots. The equivalence classes of finite dimensional irreducible
representations of g (over the complex numbers) correspond univalently to linear
(o, o)
integer foreachain A*. Thatis Ais A* dominant integral ;( , ) denotes the Killing
form on g. This is Cartan’s highest weight theory alluded to in the introduction.
Let m, be a finite dimensional irreducible representation of g with corresponding
highest weight A € h*. Its character X ,: h — C is defined to be the function H
— trace exp m, (H), H € h. This definition is independent of the choice of Cartan
subalgebra h since any two are conjugate. We consider the special “minimal”
parabolic subalgebra p = g whose nilradical is
(2.19) n= Y g,

aeA+

1S a non-negative

functionals A on h which satisfy the condition that 2

and whose reductive part is h where g, is the root space of o € A. That is p is just
the Borel subalgebra h + n. Let V, denote the representation space of rt,. Then
by restriction to n we again form the Lie algebra cohomology groups H’ (n, V,).
Let 0 denote the adjoint representation of h on An*. Then 6 ® =, defines a
representation of h on the cochain complex An* ® V,. This h action commutes

with the coboundary operator and therefore passes to cohomology. Applying
the Euler-Poincaré principle one gets

dim n
(2.20) Y. (—1Y trace exp 6 ® m, (H) =
j=0 Ain* ® V5
dimn )
Y (—1y trace exp 8 ® n, (H)
j=0 Hi(n, V)




12 F. L. WILLIAMS

foreach H in h. One evaluates the left hand side of (2.20) by general principles and
the right hand side using Kostant’s main theorem, Theorem 5.14 of [50].
Actually Theorem 5.14 of [ 50] gives the h; module structure of H’ (n,, V) for an
arbitrary parabolic p, = h; + n, of g with reductive and nilpotent parts h,, n,
respectively. For the derivation of Weyl’s formula only the simplest case p;, = p
= h + nis needed, where n is given in (2.19). Thus we shall state only a special
case of Kostant’s result.

THEOREM 2.21 (B. Kostant, 1960).  The decomposition of H’(n, V,) asa h
module is HnVy) =Y Vi,
c € Weyl group #" of (g, h) such'that [ (o) = j,

where each summand V. . inthe direct sum is one-dimensionaland H € h acts
on V. o by the scalar [o (A+3)—0d] (H).

Here by definition 20 = Z+ o and [ (o) (the length of o) is the cardinality of the

aeA

set AT N o (—A"). From the remarks following (2.20) and the knowledge of n

cohomology given by Theorem 2.21 one derives Weyl’s famous character
formula [93]:

THEOREM 2.22 (H. Weyl, 1926). For Heh

Z (det 6) e[" (A +0)] (H)

GE Y
XA (H) = H (ea(H)/z___ e—a(H)/z)'

acAt

The denominator is also given by the sum Y (det o) *® * (this fact can be

CEY

proved too using n cohomology) and det ¢ = (—1)'“. As a corollary of
Theorem 2.22 one obtains Weyl’s formula for the dimension of the irreducible
module V', in terms of its highest weight A. The result is

[1, (A+38,0)
(2.23) dim v, = %<2

[T G 0

acAT

Kostant’s result on n cohomology can also be used to derive the generalized
Borel-Weil theorem. Here one may apply formula (2.18) decisively. Let g now
denote the Lie algebra of G. Extend a maximal abelian subalgebra of the Lie
algebra of K to a Cartan subalgebra h of g. Again let A" = A be a choice of

positive roots where A is the set of non-zero roots of (g, h) and let 26 = Z o
aeAT
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We choose the parabolic P such that its Lie algebra p contains the Borel
subalgebra h + Y g_,-his also a Cartan subalgebra of the reductive Lie
+

aeA

algebra p N p so that we have the decompositions

p=@prp®n, pnp=h+ Y 4,

xeA(pnp)

(2.24)

n = > J-a
aeA+—A(pmﬁ)

where A (pnp) is the set of roots of (pnp, h).

Let W be an irreducible holomorphic P module. Then W is an irreducible
p » p module thereby such that n- W = 0. We let A denote its highest weight
relative to the positive system A* n A (pnp) for p n p. Applying Kostant’s n
cohomology theorem to (2.18) one obtains (see [12], [50]).

THEOREM 2.25 (R. Bott, 1957).  The spaces HYJ(G/P, Ey) vanish for all but
at most one j. If

HO 7 (G/P, Eyy) # 0
then HZ'7°(G/P, Ey) is an irreducible K module.

More precisely we have the following. Let A be the highest weight of W (as
above) relative to the positive roots in the reductive part of P. If (A+96,a) = 0
forsome ain A then HY/ (G/P, Ey) = Oforeveryj. If (A+39, a) # Oforeachain
A (i.e. A+ d1s regular) there is a unique element o in the Weyl group of (g, h) such
that (o (A+39), o) > O for every a. € A™. Then H3'/ (G/P, Ey) = Oforj # [ (o)
where again [ (o) is the length of o (see remarks following Theorem 2.21).
Moreover Hg"(") (G/P, Ey) is an irreducible K module (= an irreducible g
module since g is the complexification of the Lie algebra of K) with highest
weight o (A +8) — 8 relative to A™.

Remarks. (1) By definition of o it follows that
o 'ATNnAT = {aeAT | (A+3,0) < 0}.
Also since A is a highest weight (A, o) > 0 for

f aeAt " A(pnp) = (A+3,a) >0
or

aeAT nA(pnp).
Hence

{we AT [(A+8, 0) < 0}
= {0 € AT —(A"NA (pnp) | (A+38, %) < 0}
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so that [ (o) in Theorem 2.25 has the value
| {oe AT — (ATnA(prp) | (A+8,a) < 0} | 1).
AT — AT nA(pnp)
1s the set of roots in the nilradical of the “opposite” parabolic p. Since
(0 (A+3),00) = (A+8,0) > 0

for ae A" n A (pnp) (as we have just seen) we also conclude that the Weyl
group element o in Theorem 2.25 satisfies

ATnA(pnp) coc LA™

(i) The irreducible holomorphic P modules W in the statement of Theorem
2.25 can be obtained as follows. Start with an arbitrary irreducible
representation w of P n K on a complex vector space W. Since p n p is the
complexification of the Lie algebra of P n K, w defines a unique irreducible
representation ©t on p such that n (n) = 0. This infinitesimal representation can
be “integrated” to a representation of P since P and P n K have the same
fundamental groups. Thus every irreducible representation © of P n K extends
uniquely to an irreducible holomorphic representation of P. The highest weight
A of m is integral and A" n A (pnp) dominant. Conversely if G is simply
connected, any integral A € h* which is A* n A (pnp) dominant is the highest
weight of irreducible representation of P n K and hence is the highest weight of
an irreducible- holomorphic representation of P.

(i) Suppose in particular G is simply connected, p is chosen to be

h+ ) g_y»

aecAt

and that A is A" dominant integral. Then in Theorem 2.25 ¢ = 1 so that the
~ irreducible K, G or g module with highest weight A is given by H>' ° (G/P, Ey)
- = space of holomorphic sections of the line bundle Ey,. Indeed dim¢ W = 1
- since in this case P n K is abelian. This gives the geometric realization of V,

[

1} | S| denotes the cardinality of a set S.
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