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3) KONSTRUKTION VON K

t € L sei transzendent iiber F.
Wir wollen K = L als algebraische Erweiterung von F (¢) so konstruieren,
daf} neben (2)

F ={aeK|VbeLi(1+beK?&a'+b"'eK?) — be K7}
und
M = {reF|Vry, ryeF(ry #r, &ry + 1, =71 = (1—reF*  K*
oder 12 —r,eF* - K%)}
(F* = F\{0})
K gewinnen wir als Vereinigung einer Folge

F(t)zEO CEI CE2C.-.CL

von endlichen Erweiterungen von F(z). Um die g-ten Potenzen zu kon-
trollieren, wihlen wir gleichzeitig eine Folge

¢ = SO CSI CSZ"'
von endlichen Teilmengen S; = E; n L? mit dem Ziel, daB

(KNnLY\K? =( v )
ieN
Um die gewiinschten Darstellungen von M und (K n L% \ K nicht schon
durch falsche Wahl von (E,, S;) unmoglich zu machen, fordern wir fiir
alle 1

(4)  Es gibt eine Familie (v,),s;, von Bewertungen v, : E; —» G,_, v, trivial
auf F, mit:
(4.1) (in G, ) ist v, (s) nicht durch g teilbar, (s € S))
(4.2) furallery, roeF,ry +r,eM, ri #r,:
VseS; qteilto, (t2—r))
oder
VsesS; gqteilto, (t2—r,)

Wir beginnen mit einer Aufzihlung a,, ay, ... aller a € L, die algebraisch
Uber F(¢) sind. Jedes Element der Folge soll unendlich oft vorkommen.
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Sei (E;, S;) schon konstruiert. Wir unterscheiden vier Fille:

i = 4n. Es gibt zwei Fille
a) q teilt [E; (a,): E;]. Wir setzen dann (E,,{, S;+,) = (E;, S))
b) ¢ teilt [E; (a,): E;] nicht. Dann setzen wir

(Eis1> Siv1) = (Ei (ay,), Si) .

Zum Nachweis von (4) verwenden wir

LemMA 1. H, sei eine endliche Erweiterung des Korpers Hy, ¢ ¥ [H,: H, ]
vy: Hy — G, sei eine diskrete Bewertung. Dann gibt es auf H, eine Fortset-
zung v, von vy mit g ¥ (G,,: G,,).

Beweis : Wir konnen annehmen, dal3 H, separabel oder rein inseparabel
iiber H, ist. Im separablen Fall gilt

[H23H1] = Z(szi: le)fi

wobei die v; alle Fortsetzungen von v, auf H, durchlaufen und f; der
Grad der jeweiligen Restklassenkorpererweiterung ist. ¢ kann also nicht
alle (G,,;: G,,) teilen.

Wenn H, rein inseparabel iiber H; ist, gibt es genau eine Fortsetzung v,.
(G,,: G,,) ist eine p-Potenz, p # q.

Wenn nun die v E; —» G,,, s€S;, (4.1) und (4.2) erfiillen, wéhlen wir
Fortsetzungen o;: E;; — G;, mit q ¥ (G;,: G,). Die o, se§; erfiillen
wieder (4.1) und (4.2).

[ = 4n+ 1. Es gibt drei Fille

a) a,¢E,; oder a, ¢ L% Wir setzen dann (E;, 4, S;11) = (E;, S))-
Wenn a, € E; n L% wihlen wir v;: E; - G, , s€ S; mit (4).

b) Es gibt ein s € S,, fiir das g nicht v, (a,) teilt. Setze in diesem Fall
(Ei+1, Siv1) = (Ei> S; v {a,,}) .
(4) gilt, wenn wir v, fiir v, nehmen.

c) ¢ teilt alle v, (a,), s € S;. Wir setzen

(Eiv1, Siv1) = (E; (A an), Si)) wobei q\/&ze E;, falls a, € Ef
Dal (4) gilt, folgt aus
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LEMMA 2. g sei verschieden von der Charakteristik des Restklassen-
korpers des bewerteten Korpers (H, v); es sei ae H\ H? und v (a) durch

g teilbar. Dann gibt es eine Fortsetzung w von v auf H (‘1\/ a_) mit G, = G,,.
Beweis : Zunidchst bemerken wir, daBl g = [H (q\/ a): H]. Es gibt ein
ce H mit v (c?) = v (a). Wenn die Restklasse von c%a~' im Restklassen-

korper keine g-Potenz ist, ist G,, = G, fiur alle Fortsetzungen w von v
(Gradungleichung). Sonst liegt die g-te Wurzel von c?a~ ! in der henselschen

Hiille von (H, v). Wir gewinnen w durch Einbettung von H (‘1\/ ;) in die
henselsche Hiille.

i = 4n+2. Es gibt zwei Fille
a) a,¢ E; oder a, e F. Wir setzen (E;,{, S;+{) = (E;, S))
b) a,eE;\F.

Es gibt dann eine auf F triviale Bewertung v von E;, fiir die v (a,) negativ
ist. (4) moge von (vy)s, etfiillt sein. Zuerst erweitern wir E; zu einem
 Korper E, fiir den (4.2) fiir v, v, (s € S;) gilt:

Wenn (4.2) schon in E; fiir v, v, (s € S;) gilt, bleiben wir bei E = E,. Sonst
mulB} es ein r € F geben mit

q teilt nicht v (r7—r)
VseS; qteilt v, (¢9—1).

(Man beachte: Es gibt hochstens ein re F, fiir das ¢ »(z9—r) nicht teilt.)
Wir brauchen noch

LEMMA 3. L = 19 F

Beweis: Sei ae L. Wir suchen ein be F* mit ab~'eL?. Wenn L
algebraisch- oder reell abgeschlossen ist, finden wir b e {1, —1 } Im Fall
L = Q, bemerken wir, daB3 ¢ in Q, eine g-te Potenz ist, wenn w (c—d¥9)
> w(c) + 3 (Hensels Lemma, w ist die p-adische Bewertung von Q,).
Wir wihlen also b € F so, daB w (a—b) > w (a) + 3. Dann ist w (ab=1—1)
>w(ab™1) + 3. |

Das Lemma liefert nun ein de F* mit d(t%—r)eLi Wir setzen E

= E, (‘1\/22’ (1=r)). ¥ sei irgendeine Fortsetzung von v auf E, die Fort-
setzungen o der v seien nach Lemma 2 gewihlt. (E, S;) erfiillt also (4) und
(4.2) gilt sogar fiir o, b, (s € S)). “

L’Enseignement mathém., t. XXVIII, fasc. 3-4. 19
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SchlieBlich bestimmen wir ein b € E mit

b,1 +b,al +b telt
cteilt 5(1+b), 5(al+b~ 1), 5,(1+b), 5, (ak+b"1), (s€8S))

U (b) ist das kleinste positive Element von G5,

und setzen

(Ei+17 Sit1) = (E (q\/l +b,q\/a%+b_1), S; v {b}) .
Wenn wir 9, 9, nach Lemma 2 fortsetzen, sehen wir, dall (4) gilt. ((4.2) ist
wegen der Wahl von E erfiilit.)
Es bleibt noch b zu finden.
Die Bewertungen o, 0, sind unabhidngig. Der Approximationssatz
liefert uns also ein b € £ mit
q teilt 5,(b) , 0,(b) < 0, —0,(ay); (s€S;, D #Dy)
v (b) = kleinstes positives Element von G .
Man rechnet jetzt leicht nach, daB alle Werte & (1+5), 5 (al+b™ 1),
0, (1+b), b, (al+b~ ") durch g teilbar sind. Wenn L = L,, C oder g # 2
und L = R ist auch klar, daB3 b, 1+b, a?+b~ ' € L% In den anderen Fillen
miissen wir b noch genauer bestimmen:

L = R, g = 2: Wir wihlen b so, daB zusétzlich b > 0.
L = Q,: w sei die p-adische Bewertung von L, de Q? mit w(d) >3
und w (ald) > 3. Mit dem Approximationssatz wihlen wir nun
- b so, daB zusdtzlich w (d—5b) > w(d) + 3. Dann ist.
wb—d) > w(b) +3=bell,
w({(1+b)—1) = w(d) >3 =14+bell,
w((@+b™H=b") > wb ) +3 =w(@i+b™ ") +3
=al + b lell,

i = 4n+ 3. Wir unterscheiden zwei Fille

a) a,e€ M oder a, ¢ F. Hier setzen wir (E;.(, S;+1) = (E;, S)
b) a,eF\M. |

(4) sei durch (vy),s, erfiillt. Wir beachten, dafl

B={reF|dseS; qteiltnichtv, (t7—r)}
endlich ist. :




UNENTSCHEIDBARE KORPERTHEORIEN 277

Fiir r € F* hat t9—r keine mehrfachen Faktoren (in F[t]). Es gibt also
eine auf F triviale Bewertung o, von F(¢), fur die 7, (#7—r) das kleinste
positive Element von G;, ist. Wir wihlen fiir jedes r eine Fortsetzung w,
von 7, auf E;. Dann ist G; = G,,_fiir fast alle r. Die Menge

C = {reF*|q teilt w,(t?—r)}

ist also endlich. Wir bemerken noch, dal w, (¢9—r’) = 0, wenn r # r’.
Wir wihlen jetzt r, € F so, daB3 r; # 0, a,, 2r; # a, und r; in keiner der
Mengen

C,a,—C, M — B, a, — (M-—B)

liegt. Es sei ¥, = a, — r;. Lemma 3 liefert uns s;€ F* mit s; (¢*—r;) e L.
Wir setzen
(Eit1,Si41) = (Eia S; v {51 (11 —ry), s, (¢ —7”2)}) .

Es muB noch (4) gezeigt werden.

Weil ¢ w,, (¢7—r;) und w,, (¢7—r,) nicht teilt, gilt zundchst (4.1) fir die
Bewertungen w,,;, w,,, v, (s€S§;). Um (4.2) zu zeigen, seien r; # F, € F,
ry + ¥, € M gegeben. Es ist dann z.B. fiir alle s€ S; v, (1?7 —7,) durch g
teilbar. Wenn auch w,, (¢2—7;) und w,, (t?—7;) durch g teilbar sind, sind
wir fertig. Sei also z.B. w, (¢?—7;) nicht g-teilbar. Dann ist ry. = 7y,
ri # Fyund 7, € M — ry. Folglich ist w, . (¢t9—7,) = 0, und alle v, (17— F,),
(s € S)), sind durch g teilbar.

Damit ist die Konstruktion von K abgeschlossen.

4) DIE EIGENSCHAFTEN VON K

Wir zeigen in diesem Abschnitt (2) und
(5) (KnLH\K? =( U S;)

: ieN

(5). K\F*-K* =F*-( U §)

ieN -

(6) F ={aeK|Vbels (1+beK?&a?+b™'eK?) = be K9}

(6) F ={aeK|VbeK (1+beK?&a'+b 'eK) = beF*- K%

(1) M ={reF|Vr,r,eF (ri#r,&r +r,=r) = (t!—r,eF* - K¢
oder #?—r,eF* - K9)}
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