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3) Konstruktion von K

teLseitranszendent über F.

Wir wollen K<=Lalsalgebraische Erweiterung von (t) so konstruieren,

daß neben (2)

F {aeK\b e Lq(l+beKq&a"+ b-1eK")

und

M{r eE | V rj r2 sF(r1* r2&rt + r2r =>

oder tq—r2eF* • Kq))}

(F* F \{o})

K gewinnen wir als Vereinigung einer Folge

F (:t) E0 cz E± cz E2 cz c: L

von endlichen Erweiterungen von F(0- Um die #-ten Potenzen zu
kontrollieren, wählen wir gleichzeitig eine Folge

(j) Sq CZ Sl cz 2

von endlichen Teilmengen St a Et n Lq mit dem Ziel, daß

(.KnLq)\Kq u Sf)
leN

Um die gewünschten Darstellungen von M und (K n Lq)\Kq nicht schon

durch falsche Wahl von (Eb St) unmöglich zu machen, fordern wir für
alle i

(4) Es gibt eine Familie (vs)seS. von Bewertungen vs : Et -> GVg, vs trivial
auf F, mit:

(4.1) (in GVg) ist vs (s) nicht durch q teilbar, (s e St)

(4.2) für alle ru r2 e F, r± + r2 e M, ^ r2 :

\/se St q teilt vs(tq — r±)

oder

\/se St q teilt vs(tq — r2)

Wir beginnen mit einer Aufzählung a0, al9 aller a eL, die algebraisch
über F(t) sind. Jedes Element der Folge soll unendlich oft vorkommen.
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Sei (Eb St) schon konstruiert. Wir unterscheiden vier Fälle:

i 4n. Es gibt zwei Fälle

a) q teilt [Et (<?„):£)]. Wir setzen dann (Ei+1, Si+1) (Eh St)

b) q teilt [Et (<an) : Et] nicht. Dann setzen wir

(ßi+ifSi+1) (Ei(an),

Zum Nachweis von (4) verwenden wir

Lemma 1. H2 sei eine endliche Erweiterung des Körpers Huq X [H2 : H{\
v± : H1 -> GV1 sei eine diskrete Bewertung. Dann gibt es auf H2 eine Fortsetzung

v2 von vx mit q X (GV2: GV1).

Beweis : Wir können annehmen, daß H2 separabel oder rein inseparabel
über H1 ist. Im separablen Fall gilt

[H2:Hx] L(G,4: G„,)/(
i

wobei die vl2 alle Fortsetzungen von v1 auf H2 durchlaufen und ft der
Grad der jeweiligen Restklassenkörpererweiterung ist. q kann also nicht
alle (Gv* : GV1) teilen.
Wenn H2 rein inseparabel über H1 ist, gibt es genau eine Fortsetzung v2.
('GV2 : GVJ) ist eine /7-Potenz, p ^ q.

Wenn nun die vs: Et -> GVs, seSh (4.1) und (4.2) erfüllen, wählen wir
Fortsetzungen vs: Ei+1 -> G~s mit q X iß~s: GVs)- Die ^ s e Si erfüllen
wieder (4.1) und (4.2).

i An +1. Es gibt drei Fälle

a) an $Et oder an£Lq. Wir setzen dann (Ei+1, Si+1) (Eb Si).
Wenn aneEt n Lq, wählen wir vs: Et -> GVg, se St mit (4).

b) Es gibt ein s e Si9 für das q nicht vs (an) teilt. Setze in diesem Fall

(JBi +15 $i+ l) (ßi9 $i u {an}) •

(4) gilt, wenn wir vs für vttn nehmen.

c) q teilt alle vs (a„), s e St. Wir setzen

(Ei+U Si+1) {EtCVaT),St), wobei %/a„ e Eh falls a„ e E\

Daß (4) gilt, folgt aus
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Lemma 2. q sei verschieden von der Charakteristik des Restklassenkörpers

des bewerteten Körpers (.H, v); es sei ae H\ Hq und v (a) durch

q teilbar. Dann gibt es eine Fortsetzung w von v auf H (qs/ä) mit Gv Gw.

Beweis: Zunächst bemerken wir, daß q [H(qyja): H]. Es gibt ein

ce H mit v (cq) v (à). Wenn die Restklasse von cqa~1 im Restklassenkörper

keine q-Potenz ist, ist Gw Gv für alle Fortsetzungen w von v

(Gradungleichung). Sonst liegt die #-te Wurzel von cqa~1 in der henselschen

Hülle von (H}v). Wir gewinnen w durch Einbettung von H(q^/ä) in die
henselsche Hülle.

i 4n + 2. Es gibt zwei Fälle

a) an$Et oder an e F. Wir setzen (Ei+1, Si+1) (Eh St)

b) aneEt\F.

Es gibt dann eine auf F triviale Bewertung v von Eh für die v (an) negativ
ist. (4) möge von (vs)seS. erfüllt sein. Zuerst erweitern wir Et zu einem
Körper E, für den (4.2) für v, vs, (s e St) gilt:
Wenn (4.2) schon in Et für v, vs, (s e 5)) gilt, bleiben wir bei E Et. Sonst
muß es ein r e F geben mit

q teilt nicht v (tq~r)
V s e St q teilt vs (tq-r).

(Man beachte: Es gibt höchstens ein reF, für das q v(tq~r) nicht teilt.)
Wir brauchen noch

Lemma 3. L Lq • F

Beweis : Sei aeL. Wir suchen ein b e F* mit ab~1eL(p. Wenn L
algebraisch- oder reell abgeschlossen ist, finden wir b e {1, -1}. Im Fall
L Qp bemerken wir, daß c in Qp eine q-te Potenz ist, wenn w(c~dq)
> w (c) + 3 (Hensels Lemma, w ist die j^-adische Bewertung von Q
Wir wählen also b e F so, daß w (a-b) > w (a) + 3. Dann ist w (aè"1 - 1)

> w (ab~x) + 3.

Das Lemma liefert nun ein deF* mit d(tq-r)eLq. Wir setzen E
£;(Vd(tq-r)). v sei irgendeine Fortsetzung von v auf E, die

Fortsetzungen vs der vs seien nach Lemma 2 gewählt. (F, St) erfüllt also (4) und
(4.2) gilt sogar für v, vs, (s e St).

L'Enseignement mathém., t. XXVIII, fasc. 3-4. 10
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Schließlich bestimmen wir ein b eE mit

6, 1 + b, aqn + b~1eLq

c teilt v (1 +b), v (aq + b_1), ys(l + b), (a*-f-fr-1), (se^)
ü (b) ist das kleinste positive Element von G~,

und setzen

(Ei+l, Si+1)(EÇjï+bSjal + b-1), S, u {b}).

Wenn wir v, vs nach Lemma 2 fortsetzen, sehen wir, daß (4) gilt. ((4.2) ist

wegen der Wahl von E erfüllt.)
Es bleibt noch b zu finden.
Die Bewertungen v, vs sind unabhängig. Der Approximationssatz

liefert uns also ein b e E mit

q teilt vs(b)vs(b) < o,

v (b) kleinstes positives Element von G~

Man rechnet jetzt leicht nach, daß alle Werte v (1 +b), v (aqn + b~*),
vs(l+b), vs(aqn + b~1) durch q teilbar sind. Wenn L Lp, C oder q ^ 2

und L R ist auch klar, daß b, \+b, al + b~l eLq. In den anderen Fällen
müssen wir b noch genauer bestimmen:

L R, q 2: Wir wählen b so, daß zusätzlich b > 0.

L Qp : w sei die />-adische Bewertung von L, de Qq mit w (d) >3
und w (<aqd) > 3. Mit dem Approximationssatz wählen wir nun
b so, daß zusätzlich w (d—b) > w (d) + 3. Dann ist.

w(b —d) > w(b) + 3 => b e Lq,

w((l+b)-l) w(d) > 3 => 1 + beLq,
w((an + b~x) — b^1) > w(i>_1) + 3 w(a^ + ü_1) + 3

=>aqn + b~1eLq.

/ 4n + 3. Wir unterscheiden zwei Fälle

a) ane M oder an $ F. Hier setzen wir (Ei+15 5i+1) (£), Sf)

b) aneF \ M

(4) sei durch (^S)S6S£ erfüllt. Wir beachten, daß

B= {reF\3seSt q teilt nicht vs (tq-r)}
endlich ist.
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Für re F* hat tq-r keine mehrfachen Faktoren (in F[F]). Es gibt also

eine auf F triviale Bewertung vr von F (t), für die vr(tq~r) das kleinste

positive Element von G~r ist. Wir wählen für jedes r eine Fortsetzung wr

von vr auf Et. Dann ist G~r — GWr für fast alle r. Die Menge

C {reF*\q teilt wr(tq — r)}

ist also endlich. Wir bemerken noch, daß wr (tq — r ') 0, wenn r # r'.
Wir wählen jetzt e F so, daß rt ^ 0, an, 2r1 ^ an und ri in keiner der

Mengen

C,an- C, M - B, an - (M —B)

liegt. Es sei r2 — an — U- Lemma 3 liefert uns ste F* mit st {tq — r^ eLq.
Wir setzen

CEi+1,Si+1) (Ei,Siu{s1(f-ri
Es muß noch (4) gezeigt werden.

Weil q wrl (tq — r1) und wr2(tq — r2) nicht teilt, gilt zunächst (4.1) für die

Bewertungen wn, wr2, vs, (s g St). Um (4.2) zu zeigen, seien r1 =£ f2 e F,

r1 + r2 g M gegeben. Es ist dann z.B. für alle s e St vs(tq — rt) durch q
teilbar. Wenn auch wn (tq-f1) und wr2 (tq-rt) durch q teilbar sind, sind
wir fertig. Sei also z.B. wn(tq — r1) nicht ^-teilbar. Dann ist r1,= ru

^ r2 und r2e M - rv Folglich ist wr. (tq — r2) 0, und alle vs (tq-f2),
(s g Si), sind durch q teilbar.
Damit ist die Konstruktion von K abgeschlossen.

4) Die Eigenschaften von K

Wir zeigen in diesem Abschnitt (2) und

(5) (Kr,Lq)\Kq=(U St)
isN

(5'). K\F* KqF*•(U St)
isN

(6) F {a e K \ \/ b eLq(1 + beK=>

(6') F {aeK\VbeK(1 +beKq&=>

(7) M {reF|V rur2 eF (rt #r2&f1+r2=r) => (tq — r^eF* Kq

oder tq-r2eF* Kq)}


	3) KONSTRUKTION VON K

