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EINIGE UNENTSCHEIDBARE KORPERTHEORIEN *

von Martin ZIEGLER

Professor E. Specker zum sechzigsten Geburtstag

0) EINLEITUNG

Wir konstruieren in dieser Arbeit eine Reihe von Koérpern, in denen sich
der Ring der ganzen Zahlen interpretieren 148t. Als Folgerung ergibt sich:

Fine endlich axiomatisierte Theorie, die einen algebraisch ab-
geschlossenen Korper, R (den Korper der reellen Zahlen) oder einen
der p-adischen Korper Q, als Modell hat, ist erblich unentscheidbar.

Insbesondere haben wir: (Fall R)
Die Theorie der euklidischen Korper ist erblich unentscheidbar.
Die Theorie der pythagordischen Korper ist erblich unentscheidbar.

(Ein formal-reeller Korper ist euklidisch, wenn jedes Element Quadrat oder
Negatives eines Quadrates ist, und pythagordisch, wenn jede Quadratsumme
Quadrat ist.)

Die Frage nach der Entscheidbarkeit der euklidischen Korper wurde
1959 von Tarski gestellt ([T]). Der Fall R unseres oben angegebenen Satzes
wurde in [T] vermutet.

Tarskis Problem wurde bisher nur von K. Hauschild behandelt ([H 1],
[H 2]). Sein Beweis fiir die Unentscheidbarkeit der pythagordischen Korper
ist jedoch fehlerhaft und irreparabel (siche [C], [F]). Unsere Konstruktion
verwendet einige grundsitzliche Ideen Hauschilds: ,,q-te Wurzeln®, ,,Be-
wertungen®, ,,schrittweise Konstruktion®.

Ich danke A. Prestel und U. Henschel fiir ihre Unterstiitzung.

1) DISKUSSION DES RESULTATS

F, sei der Korper mit p Elementen. Lp der algebraische AbschluB des
rationalen Funktionenkorpers F, (1).

* This a.rticle has already been published in Logic and Algorithmic, an international
Symposium in honour of Ernst Specker, Ziirich, February 1980. Monographie de L’En-
seignement Mathématique N° 30, Geneve 1982,
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Wir zeigen in den Abschnitten 2)—5) den

SATZ. g sel eine Primzahl, 4 eine abzdhlbare Struktur, L sei einer der
Kérper L, (p#4), C, R, Q,
Dann gibt es einen Korper K = L mit

(1) A 148t sich in K interpretieren;

(2) Wenn der Zwischenkorper H < L endlich iber K ist, ist der Grad
[H : K] gleich 1 oder durch ¢ teilbar.

Wenn L die Charakteristik o hat und 4 = (Z, +, ), ist Z als Teilmenge
von K definierbar.

Wir zeigen den in o) angegebenen Satz:

FOLGERUNG. Jede endliche Teiltheorie der Theorie von L i1st erblich
unentscheidbar.

Beweis : T sei eine endliche Teiltheorie von T4 (L). P sei die Menge aller
von der Charakteristik von L verschiedenen Primzahlen. Zu jedem ge P
wiahlen wir einen Korper K, fiir den (2) gilt und in dem (Z, +, ) inter-
pretierbar ist. Wir wdhlen einen Nicht-Hauptultrafilter U auf P.

K= ][] K,JU
qeP
ist dann relativ algebraisch abgeschlossen in L?/,. Daraus folgt nun
K = L. (Die hier gebrauchte (Modell-) Theorie der algebraisch-, reell- und
p-adisch abgeschlossenen Korper findet man in [CK], [M], [K], [AK].)

K ist somit ein Modell von T, folglich ist auch einer der Korper K,
ein Modell von T (denn T ist endlich). 7" hat also ein Modell, in dem der
Ring der ganzen Zahlen interpretierbar ist. Damit folgt die Behauptung
aus [TMR].

Um weitergehende Folgerungen aus unserem Satz zu gewinnen, defi-
nieren wir eine Reihe von elementaren Theorien. Den Nachweis, dafl diese
Theorien wirklich ,,elementar sind iiberlassen wir dem Leser. (Man
beachte, daB die ,,p-Bewertung® in Modellen von T ﬁq elementar definierbar
ist.)

T {,fq = die Theorie der Korper der Charakteristik p, in denen der Grad
jedes irreduziblen Polynoms = 1 oder durch ¢ teilbar ist. (p prim
oder = 0);

T® = die Theorie der formal reellen Korper, in denen der Grad jedes
irreduziblen Polynoms = 1 oder gerade ist;
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TR = die Theorie der formal reellen Korper mit:

a) der Grad jedes irreduziblen Polynoms, das in einer formal
reellen Erweiterung eine Nullstelle hat, ist = 1 oder durch ¢
teilbar;

b) der Korper liegt dicht in seinem reellen AbschluB. (g #2);

T" = die Theorie der formal p-adischen Koérper mit:

a) der Grad jedes irreduziblen Polynoms, das in einer formal
p-adischen Erweiterung eine Nullstelle hat, ist = 1 oder durch ¢
teilbar;

b) der Korper liegt dicht in seinem p-adischen AbschluB.

Man kann sich leicht iiberlegen, daB3 alle diese Theorien (wobei noch fiir
Tf,’q p # q gefordert sei), einen der im Satz angegebenen Korper K als
Modell haben. Also gilt die

FOLGERUNG. — Die Theorien T4 , (p#q), T, T, sind erblich unent-
scheidbar.

Ohne Beweis sei noch eine Reihe von Bemerkungen angefiigt:

Jede endliche Theorie, die einen der betrachteten Korper L als Modell
hat, ist fiir geniigend groBes ¢ Teiltheorie einer der Theorien T‘f,,q, T ’;,
TIZ. Die Theorie der euklidischen Korper ist fiir ¢ % 2 in T 1; enthalten.

Ein Korper K der Charakteristik p ist ein Modell von T"},,q gdw. jedes
Polynom aus K [X], dessen Grad nicht durch g teilbar ist, eine Nullstelle
in K hat gdw. der Grad jeder endlichen Erweiterung von K eine g-Potenz ist.

Ein formal reeller Korper ist ein Modell von 7% gdw. jedes Polynom
ungeraden Grades eine Nullstelle hat gdw. der Grad jeder endlichen formal
reellen Erweiterung eine 2-Potenz ist.

(R, <) sei dicht im reell abgeschlossenen Korper (L, <). Dann ist
R genau dann ein Modell von T{;, wenn der Grad jedes irreduziblen Poly-
noms, welches das Vorzeichen wechselt, = 1 oder durch ¢ teilbar ist.

Der bewertete Korper (H, w) sei dicht im p-adisch abgeschlossenen
Korper (L, v), w = v. Dann ist H genau dann ein Modell von T2 _, wenn

p,q?
der Grad jedes irreduziblen Polynoms, dass die Voraussetzung von Hensels

Lemma erfiillt, = 1 oder durch ¢ teilbar ist.

Offene Fragen :

T“;,q ist Untertheorie der (entscheidbaren) Theorie der separabel
abgeschlossenen Korper der Charakteristik g (siehe [E]). Ist T“;,q oder
T4.+ Vxdy p? = x entscheidbar?
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Fiir q; # q, ist T4, + T% ,, die Theorie der algebraisch abgeschlos-
senen Korper der Charakteristik p. Fiir ¢ # 2ist 75 + T ® die Theorie der
reell abgeschlossenen Korper. Sind fiir verschiedene ¢;, n > 1, die Theorien
T * o T T und (¢,#2) T% + ..+ T% entscheidbar?

K ist erblich quadratisch abgeschlossen, wenn jede algebraische Er-
weiterung von K quadratisch abgeschlossen ist. Die Theorie der erblich
quadratisch abgeschlossenen Ko6rper der Charakteristik p ist als Unter-
theorie von T“;;’q, q # 2, erblich unentscheidbar. Ist die Theorie der erblich
euklidischen Korper entscheidbar?

2) KONSTRUKTION VON M

Wir halten ab jetzt g, A und L wie in der Voraussetzung des Satzes fest.
F sei der relative algebraische Abschlufl des Primkorpers von L.

LeMMA. Es gibt eine Teilmenge M von F, so dal3 sich 4 in (F, M) inter-
pretieren 14Bt und

(3) oe M, der Index der von M erzeugten additiven Untergruppe von F
ist unendlich.

Beweis : Zunidchst bemerken wir dal F unendliche Erweiterung des
Primkorpers ist.

Im Fall (Z, +, ) = A, o = Charakteristik von L, setzen wir M = Z.

Sonst konnen wir annehmen, dal 4 = (4, R), R symmetrisch und
irreflexiv. Denn jede Struktur I4Bt sich in einem Graphen interpretieren.
A sei durch a,, ay, ... ohne Wiederholung aufgezdhlt. Wir fassen F als
Vektorraum iiber seinem Primkorper auf. B = {bo, by, } sei Basis eines
unendlichdimensionalen Untervektorraums von unendlicher Kodimension.
Wir ibertragen R auf B: S (b, b)) gdw. R (a;, a;), also (4, R) = (B, S).
¢y, C, seien linear unabhiingig iiber B.

Wir setzen jetzt

M = {0} UBU{c; + b;|ieN}
U {c, + b;|ieN}yu{b, + b;|S(b;, b))}
Dann kénnen wir B und S (mit Parametern c,, c,) definieren:

B ={beM|c; +beM, c, + be M}
S = {(b,c)|beB, ceB, b+ceM, b #c}
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3) KONSTRUKTION VON K

t € L sei transzendent iiber F.
Wir wollen K = L als algebraische Erweiterung von F (¢) so konstruieren,
daf} neben (2)

F ={aeK|VbeLi(1+beK?&a'+b"'eK?) — be K7}
und
M = {reF|Vry, ryeF(ry #r, &ry + 1, =71 = (1—reF*  K*
oder 12 —r,eF* - K%)}
(F* = F\{0})
K gewinnen wir als Vereinigung einer Folge

F(t)zEO CEI CE2C.-.CL

von endlichen Erweiterungen von F(z). Um die g-ten Potenzen zu kon-
trollieren, wihlen wir gleichzeitig eine Folge

¢ = SO CSI CSZ"'
von endlichen Teilmengen S; = E; n L? mit dem Ziel, daB

(KNnLY\K? =( v )
ieN
Um die gewiinschten Darstellungen von M und (K n L% \ K nicht schon
durch falsche Wahl von (E,, S;) unmoglich zu machen, fordern wir fiir
alle 1

(4)  Es gibt eine Familie (v,),s;, von Bewertungen v, : E; —» G,_, v, trivial
auf F, mit:
(4.1) (in G, ) ist v, (s) nicht durch g teilbar, (s € S))
(4.2) furallery, roeF,ry +r,eM, ri #r,:
VseS; qteilto, (t2—r))
oder
VsesS; gqteilto, (t2—r,)

Wir beginnen mit einer Aufzihlung a,, ay, ... aller a € L, die algebraisch
Uber F(¢) sind. Jedes Element der Folge soll unendlich oft vorkommen.
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Sei (E;, S;) schon konstruiert. Wir unterscheiden vier Fille:

i = 4n. Es gibt zwei Fille
a) q teilt [E; (a,): E;]. Wir setzen dann (E,,{, S;+,) = (E;, S))
b) ¢ teilt [E; (a,): E;] nicht. Dann setzen wir

(Eis1> Siv1) = (Ei (ay,), Si) .

Zum Nachweis von (4) verwenden wir

LemMA 1. H, sei eine endliche Erweiterung des Korpers Hy, ¢ ¥ [H,: H, ]
vy: Hy — G, sei eine diskrete Bewertung. Dann gibt es auf H, eine Fortset-
zung v, von vy mit g ¥ (G,,: G,,).

Beweis : Wir konnen annehmen, dal3 H, separabel oder rein inseparabel
iiber H, ist. Im separablen Fall gilt

[H23H1] = Z(szi: le)fi

wobei die v; alle Fortsetzungen von v, auf H, durchlaufen und f; der
Grad der jeweiligen Restklassenkorpererweiterung ist. ¢ kann also nicht
alle (G,,;: G,,) teilen.

Wenn H, rein inseparabel iiber H; ist, gibt es genau eine Fortsetzung v,.
(G,,: G,,) ist eine p-Potenz, p # q.

Wenn nun die v E; —» G,,, s€S;, (4.1) und (4.2) erfiillen, wéhlen wir
Fortsetzungen o;: E;; — G;, mit q ¥ (G;,: G,). Die o, se§; erfiillen
wieder (4.1) und (4.2).

[ = 4n+ 1. Es gibt drei Fille

a) a,¢E,; oder a, ¢ L% Wir setzen dann (E;, 4, S;11) = (E;, S))-
Wenn a, € E; n L% wihlen wir v;: E; - G, , s€ S; mit (4).

b) Es gibt ein s € S,, fiir das g nicht v, (a,) teilt. Setze in diesem Fall
(Ei+1, Siv1) = (Ei> S; v {a,,}) .
(4) gilt, wenn wir v, fiir v, nehmen.

c) ¢ teilt alle v, (a,), s € S;. Wir setzen

(Eiv1, Siv1) = (E; (A an), Si)) wobei q\/&ze E;, falls a, € Ef
Dal (4) gilt, folgt aus
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LEMMA 2. g sei verschieden von der Charakteristik des Restklassen-
korpers des bewerteten Korpers (H, v); es sei ae H\ H? und v (a) durch

g teilbar. Dann gibt es eine Fortsetzung w von v auf H (‘1\/ a_) mit G, = G,,.
Beweis : Zunidchst bemerken wir, daBl g = [H (q\/ a): H]. Es gibt ein
ce H mit v (c?) = v (a). Wenn die Restklasse von c%a~' im Restklassen-

korper keine g-Potenz ist, ist G,, = G, fiur alle Fortsetzungen w von v
(Gradungleichung). Sonst liegt die g-te Wurzel von c?a~ ! in der henselschen

Hiille von (H, v). Wir gewinnen w durch Einbettung von H (‘1\/ ;) in die
henselsche Hiille.

i = 4n+2. Es gibt zwei Fille
a) a,¢ E; oder a, e F. Wir setzen (E;,{, S;+{) = (E;, S))
b) a,eE;\F.

Es gibt dann eine auf F triviale Bewertung v von E;, fiir die v (a,) negativ
ist. (4) moge von (vy)s, etfiillt sein. Zuerst erweitern wir E; zu einem
 Korper E, fiir den (4.2) fiir v, v, (s € S;) gilt:

Wenn (4.2) schon in E; fiir v, v, (s € S;) gilt, bleiben wir bei E = E,. Sonst
mulB} es ein r € F geben mit

q teilt nicht v (r7—r)
VseS; qteilt v, (¢9—1).

(Man beachte: Es gibt hochstens ein re F, fiir das ¢ »(z9—r) nicht teilt.)
Wir brauchen noch

LEMMA 3. L = 19 F

Beweis: Sei ae L. Wir suchen ein be F* mit ab~'eL?. Wenn L
algebraisch- oder reell abgeschlossen ist, finden wir b e {1, —1 } Im Fall
L = Q, bemerken wir, daB3 ¢ in Q, eine g-te Potenz ist, wenn w (c—d¥9)
> w(c) + 3 (Hensels Lemma, w ist die p-adische Bewertung von Q,).
Wir wihlen also b € F so, daB w (a—b) > w (a) + 3. Dann ist w (ab=1—1)
>w(ab™1) + 3. |

Das Lemma liefert nun ein de F* mit d(t%—r)eLi Wir setzen E

= E, (‘1\/22’ (1=r)). ¥ sei irgendeine Fortsetzung von v auf E, die Fort-
setzungen o der v seien nach Lemma 2 gewihlt. (E, S;) erfiillt also (4) und
(4.2) gilt sogar fiir o, b, (s € S)). “

L’Enseignement mathém., t. XXVIII, fasc. 3-4. 19
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SchlieBlich bestimmen wir ein b € E mit

b,1 +b,al +b telt
cteilt 5(1+b), 5(al+b~ 1), 5,(1+b), 5, (ak+b"1), (s€8S))

U (b) ist das kleinste positive Element von G5,

und setzen

(Ei+17 Sit1) = (E (q\/l +b,q\/a%+b_1), S; v {b}) .
Wenn wir 9, 9, nach Lemma 2 fortsetzen, sehen wir, dall (4) gilt. ((4.2) ist
wegen der Wahl von E erfiilit.)
Es bleibt noch b zu finden.
Die Bewertungen o, 0, sind unabhidngig. Der Approximationssatz
liefert uns also ein b € £ mit
q teilt 5,(b) , 0,(b) < 0, —0,(ay); (s€S;, D #Dy)
v (b) = kleinstes positives Element von G .
Man rechnet jetzt leicht nach, daB alle Werte & (1+5), 5 (al+b™ 1),
0, (1+b), b, (al+b~ ") durch g teilbar sind. Wenn L = L,, C oder g # 2
und L = R ist auch klar, daB3 b, 1+b, a?+b~ ' € L% In den anderen Fillen
miissen wir b noch genauer bestimmen:

L = R, g = 2: Wir wihlen b so, daB zusétzlich b > 0.
L = Q,: w sei die p-adische Bewertung von L, de Q? mit w(d) >3
und w (ald) > 3. Mit dem Approximationssatz wihlen wir nun
- b so, daB zusdtzlich w (d—5b) > w(d) + 3. Dann ist.
wb—d) > w(b) +3=bell,
w({(1+b)—1) = w(d) >3 =14+bell,
w((@+b™H=b") > wb ) +3 =w(@i+b™ ") +3
=al + b lell,

i = 4n+ 3. Wir unterscheiden zwei Fille

a) a,e€ M oder a, ¢ F. Hier setzen wir (E;.(, S;+1) = (E;, S)
b) a,eF\M. |

(4) sei durch (vy),s, erfiillt. Wir beachten, dafl

B={reF|dseS; qteiltnichtv, (t7—r)}
endlich ist. :
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Fiir r € F* hat t9—r keine mehrfachen Faktoren (in F[t]). Es gibt also
eine auf F triviale Bewertung o, von F(¢), fur die 7, (#7—r) das kleinste
positive Element von G;, ist. Wir wihlen fiir jedes r eine Fortsetzung w,
von 7, auf E;. Dann ist G; = G,,_fiir fast alle r. Die Menge

C = {reF*|q teilt w,(t?—r)}

ist also endlich. Wir bemerken noch, dal w, (¢9—r’) = 0, wenn r # r’.
Wir wihlen jetzt r, € F so, daB3 r; # 0, a,, 2r; # a, und r; in keiner der
Mengen

C,a,—C, M — B, a, — (M-—B)

liegt. Es sei ¥, = a, — r;. Lemma 3 liefert uns s;€ F* mit s; (¢*—r;) e L.
Wir setzen
(Eit1,Si41) = (Eia S; v {51 (11 —ry), s, (¢ —7”2)}) .

Es muB noch (4) gezeigt werden.

Weil ¢ w,, (¢7—r;) und w,, (¢7—r,) nicht teilt, gilt zundchst (4.1) fir die
Bewertungen w,,;, w,,, v, (s€S§;). Um (4.2) zu zeigen, seien r; # F, € F,
ry + ¥, € M gegeben. Es ist dann z.B. fiir alle s€ S; v, (1?7 —7,) durch g
teilbar. Wenn auch w,, (¢2—7;) und w,, (t?—7;) durch g teilbar sind, sind
wir fertig. Sei also z.B. w, (¢?—7;) nicht g-teilbar. Dann ist ry. = 7y,
ri # Fyund 7, € M — ry. Folglich ist w, . (¢t9—7,) = 0, und alle v, (17— F,),
(s € S)), sind durch g teilbar.

Damit ist die Konstruktion von K abgeschlossen.

4) DIE EIGENSCHAFTEN VON K

Wir zeigen in diesem Abschnitt (2) und
(5) (KnLH\K? =( U S;)

: ieN

(5). K\F*-K* =F*-( U §)

ieN -

(6) F ={aeK|Vbels (1+beK?&a?+b™'eK?) = be K9}

(6) F ={aeK|VbeK (1+beK?&a'+b 'eK) = beF*- K%

(1) M ={reF|Vr,r,eF (ri#r,&r +r,=r) = (t!—r,eF* - K¢
oder #?—r,eF* - K9)}
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Beweis von (2): Sei K « H < L und H endlich iiber K. Wir wollen

#*
zeigen, dall ¢ den Grad [H: K] teilt. Wir konnen H = K (a) annehmen.

Fir beliebig grofBe n ist a = a,. Wir wihlen »n so groB3, daf3

[Esn(a): Ey] = [K(a): K].

In der Konstruktion tritt bei i = 4n der Fall a) ein. Also teilt g

[E4n (a): E4n] .

Beweis von (5) und (5') :

(13

, 2 SeiaeF*- K9 Fir alle geniigend groBlen 7 ist dann a € F* - E%
und v (a) fiir alle auf F trivialen v durch ¢ teilbar. Nach (4.1) liegt a nicht
in F*-§,.

,C“ Sei aeK\F*-K% Nach Lemma 3 wihlen wir fe F* mit
a = afe L. Wir haben jetzt a e (K n LY\ K

Es sei @, = a und n so groB, daB a € E,,, ;. In der Konstruktion tritt
beii = 4n+1 der Fall b) ein. Also ist a € S;, ;. Daraus folgt ae F* - §;, ;.

Beweis von (6) und (6') :

,c“ SeiaeF. FiureinbeKseil + beK?und a? + b~ e K% i sei
so groB daB 1 + beEf und a? -+ b~ ' € E4. v sei eine auf F triviale Be-
wertung von E;. Wenn v (b) > 0, istv (b)) = —v (a?+b~ ") durch ¢ teilbar.
Wenn v (b) < 0, ist v (b) = v (1+b) durch g teilbar. Weil also v (b) immer
durch ¢ teilbar ist, ist nach (4) b¢ F* - S,. (5') ergibt be F* - K% Wenn
b e L1, folgt aus (5), dall b € K.

,2 SeiaeK\F. nsei so groB, dall ae E,,.,, und es sei a = a,.
In der Konstruktion tritt bei i = 4n+2 der Fall b) ein. In S, ; gibt es dann

ein b mit 1 + b, a? + b~ e E%,,. Wir haben also

beli, 1 +beK% a?+b K b¢F*- K.

Beweis von (7) :

,c“ Seir, +r,eM,r # r,. Wenn die t?—r, beide nicht in F* - K*
sind, ist nach (5) ¢t — ry, t® — r, e F* . S, fir geniigend groBes i. Das
widerspricht aber (4).

,2“ Sei r = a,e F\ M. In der Konstruktion tritt bei i = 4n + 3
der Fall b) ein. Es gibt dann ry # r, e F, ry + r, = r und s; € F*, fir die
s (t9—ry), s, (t1—r,) € S;44. Also nach (§') t7 —ry, t* — ry, ¢ F* - K%
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5) BEWEIS DES SATZES

Wir haben noch zu zeigen, daB 4 in K interpretierbar ist. Wegen (7),
geniigt es zu zeigen, daB F in K definierbar ist. Wir unterscheiden drei

Fille:
L =1L, Coderq+#2undL =

Dann ist K = L? und wir haben nach (6)

= {acK|VbeK(1+beK&a,+b 'eK?) = be K’}
L=R,q=2.
Dann ist F* - K = K9 —K?. Und wir haben mit (6")
F={aeK|VbeK(+beK'&a’+b 'eK?) = beK!uU —KI}
L=Q,.

Wir erhalten aus (6) eine Definition von F, wenn wir K n L? in K
definieren konnen. Weil aber Q dicht in Q, ist, ist nach Hensels Lemma

ce L% gdw. es gibt de K (oder: Q) mit w (c—d?) >w(c) + 3.

Es geniigt also die p-adische Bewertung w in K elementar zu beschreiben:
Wenn r relativ prim zu p ist, ist fir alle ce L

w() >0 gdw. 1 + pc"elL".

Wenn r eine von g und p verschiedene Primzahl ist, gewinnen wir daraus
mit (2) fiir alle ce K

w(c) > 0 gdw. 1 4+ pc"e K".
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