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Tm+s+1 (X: C) Tm+s+1 (Xa C') Sm+r+1 (Xa e)

where (c, ¢/, €) is a fixed (0, 1)-vector of 2s+r+3 elements. But any such
vector can be specified by a conjunction of 2s+r+3 Boolean literals.
Consider the disjunction of the r such conjunctions and let R (c,c', e
be the polynomial that simulates this Boolean formula at (0, 1) values.
Then clearly

0,x) = Y T(x,0T(x,c)S(x,¢e)R(cc'e),

. . +
where summation is over (c, ¢/, €) € {0, 1 }25*7*3,

Let A4 (C,d) be the upper bound over every homogeneous polynomial
having degree d and homogeneous program complexity C, of the minimal
size of formula needed to define it in Definition 4. Then the above recursive
expression ensures that

A(C,d) <3A(3C+d,Ldj2] +1) +0(C).

Clearly also 4 (C, 1) < 2C. Hence if d is p-bounded in m then so is the
solution to this recurrence. ]

APPENDIX 2

For completeness we describe here a direct proof of the p-definability
of HC in the sense of Definition 1. HC, ., (x; ;) will be the projection under

oy, ) =1 for 1<k,m<n
J» Ue,m ¢ defined by
ann (yi, j) ) ann (Zk, m) : R1 ... R"

with the association y; ; «» x; ; and z ,, <> i ,,. Here Q,, 1s the poly-
nomial that defines the permanent in §3. Its first occurrence with argument y
plays exactly the same role as in the permanent and ensures a cycle cover.
The intention of z, ,, is to denote whether the k" node in the circuit (starting
from node 1, say) is node m. Q,,(z; ) ensures that this intention is
realised. For each k R* captures the fact that if z, ,, and z,, , are both
1 then y,, . must be also. In Boolean notation we require

of the polynomial in { x;

ym, r \4 (Ek, mv Zk+ 1, r)‘ .

As is well known such Boolean formulae can be simulated by polynomials

at {0, 1} values (e.g. see Proposition 2 in [13]). To guarantee just one
monomial for each cycle we fix R! = z,,. ]

L’Enseignement mathém., t. XXVIII, fasc. 3-4. 18




	Appendix 2

