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implies that x; >1 since x; — x; > 0. Similarly if x, > 1. If x;, % <0
then x; + x, — x; >0 ensures that x; <O0. []

Claim 2. If val (v;)) = 0 then E; U { x; <0} has a solution. If val (v;)
= 1 then E; U { x; > 1} has a solution.

Proof. By induction on i it is easy to see that the point

1 if val (v;) = 1
T 0 ifval() =0

for 1 <j < iis a solution of E;. L

Claim 3. If for some i, (j <(i) E; u { x; > 1} has a solution in reals
then val (v;) = 1.

Proof. By Claim 1, if E; U { x; > 1 } has a solution then F; U { x; <0}
has no solution. Hence by Claim 2 val (v;) = 1. ]

Finally we observe that the given program of size C for P, translates
to 3C + 2m inequalities in E, of which the 2m of E, depend on the values
of y{, ..., ¥, While the remaining 3C are fixed. It remains to note that P,
is the projection under ¢ of LP,,, ) for n = 3C + 2m, where ¢ maps 3C
of the inequalities to those of E. — E,, and the remaining 2m values of i
as follows. If v; equals y; or j; then: o (ay) = o (by) = 0if j # k, 0 (d)
=0, 0(a;) = o(e) = v, 0(b;y) = ;. L]
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APPENDIX 1

We show here that in the concept of p-definability it is immaterial
whether the defining polynomials allowed are the p-computable ones or
merely those of p-bounded formula size. We shall suppose that the family P
is p-definable in the sense of Definition 3, i.e.

Py(xps X)) = Y Qu(X1y ey Xy By gy ens by

It will suffice to prove that any p-computable family, such as Q, is p-definable
in the sense of Definition 4. By Theorem 5 it then follows that P itself is
also p-definable in the sense of Definition 4.
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It is known that any p-computable family of homogeneous polynomials
has homogeneous program size at most polynomially larger than its un-
restricted program size [12]. The inductive proof to follow assumes the
former measure throughout and supports homogeneity. We shall assume
that Q,, is itself homogeneous. If it were not then we would consider each
of its homogeneous components separately in the same way.

Suppose that Q,, (x4, ..., Xx,,) has degree d and a minimal program p of
complexity C. Let U be the subset of the computed terms {v;} such that
(i) deg (v;) > d/2 and (ii) v; « v; X v, with deg (v;) <d/2 and deg (v;)
< d/2. Let W be the subset {v;} such that v; « v; X v, or v; « v, X v;
for some v; € U. For convenience rename the elements of U and W by
{uy, ..,u,} and { wy, ..., w, } respectively.

Claim 1. There is a polynomial S,,,,+1 (X1, «oes X €05 --os €,) Of degree

Ld/21 + 1 and homogeneous program complexity at most 2C + d
such that

Onm(x) = > val(u;) - compl;
i=1
where compl; = S,4,4+1 (X,€) when ¢, =¢; =1 and ¢; = 0 for 0 # j
# 1.

Proof. In p replace each occurrence of u; on the right hand side of an
assignment by an occurrence of e;e,® “d—r21—1 (Actyally this would
be simulated by a subprogram that raises e, to every power and multiplies
by e; as appropriate.) O

Claim 2. There is a polynomial T, . (x{, ..., X, Cos .-+, C5) Of degree
Ld/2 1 + 1 and homogeneous program complexity at most 3C + dsuch
that for each i (1 <<i <)

val (Wi) = Tm+s+1 (Xa C)

when ¢o = ¢; = land ¢; = O for 0 # j # i.

Proof. Delete from p every instruction with degree greater than d/2.
Add a subprogram equivalent to the set of instructions

fori = 1, ..., 5. Add further instructions to sum zy, ..., z,. ]

Now for each i val (u;) = val (w;) val (w,) for some j, k specified by p.
Hence each of the r additive contributions to Q,, is some product
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Tm+s+1 (X: C) Tm+s+1 (Xa C') Sm+r+1 (Xa e)

where (c, ¢/, €) is a fixed (0, 1)-vector of 2s+r+3 elements. But any such
vector can be specified by a conjunction of 2s+r+3 Boolean literals.
Consider the disjunction of the r such conjunctions and let R (c,c', e
be the polynomial that simulates this Boolean formula at (0, 1) values.
Then clearly

0,x) = Y T(x,0T(x,c)S(x,¢e)R(cc'e),

. . +
where summation is over (c, ¢/, €) € {0, 1 }25*7*3,

Let A4 (C,d) be the upper bound over every homogeneous polynomial
having degree d and homogeneous program complexity C, of the minimal
size of formula needed to define it in Definition 4. Then the above recursive
expression ensures that

A(C,d) <3A(3C+d,Ldj2] +1) +0(C).

Clearly also 4 (C, 1) < 2C. Hence if d is p-bounded in m then so is the
solution to this recurrence. ]

APPENDIX 2

For completeness we describe here a direct proof of the p-definability
of HC in the sense of Definition 1. HC, ., (x; ;) will be the projection under

oy, ) =1 for 1<k,m<n
J» Ue,m ¢ defined by
ann (yi, j) ) ann (Zk, m) : R1 ... R"

with the association y; ; «» x; ; and z ,, <> i ,,. Here Q,, 1s the poly-
nomial that defines the permanent in §3. Its first occurrence with argument y
plays exactly the same role as in the permanent and ensures a cycle cover.
The intention of z, ,, is to denote whether the k" node in the circuit (starting
from node 1, say) is node m. Q,,(z; ) ensures that this intention is
realised. For each k R* captures the fact that if z, ,, and z,, , are both
1 then y,, . must be also. In Boolean notation we require

of the polynomial in { x;

ym, r \4 (Ek, mv Zk+ 1, r)‘ .

As is well known such Boolean formulae can be simulated by polynomials

at {0, 1} values (e.g. see Proposition 2 in [13]). To guarantee just one
monomial for each cycle we fix R! = z,,. ]
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