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We can attempt to generalise the definition of the above vacuous

hierarchy by allowing the number of "alternations" to increase with the number

of indeterminates.
Let t be any polynomial. Define t-D° to be the class of /-computable

families. For i > 0 let t-Dl be the class of families that are defined by

some family in t-D1-1 in the sense of Definition 3. Finally PD* is the

class of all families P such that for some t

P {Pt I P| Qi for some Q e t-D1 (l)}

Theorem 6. PD* PD1

Proof. Similar to previous theorem.

The above two results should be contrasted with the Boolean case

where they still hold formally, but are no longer natural. The above definition

of the successive levels PD1 is only natural if each level is a robust
closure class. In Boolean algebra, however, PD1 is not known to be closed
under complementation for any i > 1. Analogues of PD1 and PD* where

complementation is allowed at each level of alternation are not known to
collapse, and are merely finite versions of the Meyer-Stockmeyer hierarchy,
and PSPACE respectively [10].

A simple application of Theorem 5 is in recognising such polynomials
as # HG as being ^-definable. An intriguing open question is whether
HG itself is /»-definable for each F. If it is not then P ^ NP (see Proposition

4 in [13]). If it is then the Meyer-Stockmeyer hierarchy and PSPACE
can be simulated within ^-definable families of polynomials.

6. Universality of Linear Programming

Here we consider a Boolean function family LP that corresponds to a
linear programming problem and show that every /»-computable family is
the ^-projection of it. Thus for computing discrete functions in polynomial
time a package for LP for each input size is sufficient and no further
programming is required. If we fix certain of the arguments of LPt according
to the particular function and input size being computed, the package
becomes a program for the required function. That LP is itself^-computable
follows from the recent result of Khachian [8].

The reader should note that several tractable problems in combinatorial
optimisation are already known to have linear programming formula-
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tions [9]. Our result shows that this is a universal phenomenon. It is related
to the result in [3].

We define LP2nin + 1) to be the following Boolean function of arguments

l ^ij> ^ijb ^b J 1 ^ h j ^ ft } •

LP(aij,bij,ehdi) 1

if and only if the set of inequalities

Z (auxj - buxj)

has a solution in real numbers, where each number aij9 bij9 ei9 d{ is 1 or 0

according to whether the corresponding Boolean variable aij9 bij9 ei9 dt
is 1 or 0.

Theorem 7. Any p-computable family P of Boolean functions is the

p-projection of LP.

Proof Consider some Pm e P with indeterminates yl9 ym9 and a

minimal program for it. The latter consists of a sequence of instructions
of the form i\ <- Vj a vk and vt <- Vj v vk, where 1 < z < C and each

vn with n < 0 equals some yr or yr.
For any fixed assignment of truth values to yl9..., ym we can define

a set E0 of linear inequalities :

E0 {xr S 0 I r < 0 and^r has value 0}

U {xr > 1 I r < 0 &ndvr has value 1}

For each sequence vu v2, vt we define Et by induction from E0 :

u {xj — xt > 0, xk — xt > 0, xt 4- 1 — Xj — xk > 0 }

if vt «- Vj a vk
~~ '

i u {xy + xfc — xf > 0, xt — Xj > 0, xt — xk > 0 }

if vt4r- Vj V vk

Claim 1. For anyz,y (y < z) every solution of has xy < 0, or every
solution of Et has Xj>\.

Proof. The claim is true for E0 by definition. Assume inductively that

it is true for E^t.(a)If vt<-Vj a vk then x} < 0 implies that < 0 since

Xj-Xi > 0. Similarly if xk < 0. In the remaining case xk > 1 inequality

xt + 1 — Xj —xk>0 ensures that x; > 1. (b) If vt <- Vj v then *7 >1
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implies that xt>1 since xt— Xj > 0. Similarly if 5s 1. If Xj, < 0

then Xj+ xk - x; > 0 ensures that xt < 0.

Claim 2. If val (vt)0 then Et u { xt<0 } has a solution. If val (?»,•)

1 then Et u { > 1 } has a solution.

Proof. By induction on z it is easy to see that the point

f 1 if val (Vf 1

Xj [O if val (Vf 0

for 1 <y < z is a solution of Ef.

Claim 3. If for some i,j (j < i) Et vj { Xj > 1 } has a solution in reals

then val (Yy) 1.

Proo/. By Claim 1, if E{ u { xj > 1 } has a solution then u { ^ < 0 }

has no solution. Hence by Claim 2 val (vj) 1.

Finally we observe that the given program of size C for Pm translates

to 3C + 2m inequalities in Ec, of which the 2m of E0 depend on the values

of yl9 while the remaining 3C are fixed. It remains to note that Pm

is the projection under a of LP2n(<n+1) for n 3C + 2m, where a maps 3C

of the inequalities to those of Ec - Eoi and the remaining 2m values of i
as follows. If vt equals yj or yj then: a (aik) a (bih) — 0 if j # k, a (dt)

0,(7 (atj) a (et) vh <7 (Z?0-) v{.
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Appendix 1

We show here that in the concept of ^-definability it is immaterial
whether the defining polynomials allowed are the ^-computable ones or
merely those of ^-bounded formula size. We shall suppose that the family P
is ^-definable in the sense of Definition 3, i.e.

Pn (Xi, Xn) X m-n
Qm C*1 » •••> xn> ^n+ls •••j ^m)

be{ 0,1 }

It will suffice to prove that any /»-computable family, such as Q, is p-definable
in the sense of Definition 4. By Theorem 5 it then follows that P itself is
also /»-definable in the sense of Definition 4.
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