

Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de l'Enseignement Mathématique
Band: 28 (1982)
Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: REDUCIBILITY BY ALGEBRAIC PROJECTIONS
Autor: Valiant, L. G.
Kapitel: 6. Universality of Linear Programming
DOI: <https://doi.org/10.5169/seals-52240>

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. [Mehr erfahren](#)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. [En savoir plus](#)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. [Find out more](#)

Download PDF: 12.01.2026

ETH-Bibliothek Zürich, E-Periodica, <https://www.e-periodica.ch>

We can attempt to generalise the definition of the above vacuous hierarchy by allowing the number of “alternations” to increase with the number of indeterminates.

Let t be any polynomial. Define $t\text{-}D^0$ to be the class of t -computable families. For $i > 0$ let $t\text{-}D^i$ be the class of families that are defined by some family in $t\text{-}D^{i-1}$ in the sense of Definition 3. Finally PD^* is the class of all families P such that for some t

$$P = \{P_i \mid P_i = Q_i \text{ for some } Q \in t\text{-}D^{t(i)}\}.$$

THEOREM 6. $PD^* = PD^1$

Proof. Similar to previous theorem. □

The above two results should be contrasted with the Boolean case where they still hold formally, but are no longer natural. The above definition of the successive levels PD^i is only natural if each level is a robust closure class. In Boolean algebra, however, PD^i is not known to be closed under complementation for any $i \geq 1$. Analogues of PD^i and PD^* where complementation is allowed at each level of alternation are not known to collapse, and are merely finite versions of the Meyer-Stockmeyer hierarchy, and PSPACE respectively [10].

A simple application of Theorem 5 is in recognising such polynomials as $\# HG$ as being p -definable. An intriguing open question is whether HG itself is p -definable for each F . If it is not then $P \neq NP$ (see Proposition 4 in [13]). If it is then the Meyer-Stockmeyer hierarchy and PSPACE can be simulated within p -definable families of polynomials.

6. UNIVERSALITY OF LINEAR PROGRAMMING

Here we consider a Boolean function family LP that corresponds to a linear programming problem and show that every p -computable family is the p -projection of it. Thus for computing discrete functions in polynomial time a package for LP for each input size is sufficient and no further programming is required. If we fix certain of the arguments of LP_i according to the particular function and input size being computed, the package becomes a program for the required function. That LP is itself p -computable follows from the recent result of Khachian [8].

The reader should note that several tractable problems in combinatorial optimisation are already known to have linear programming formula-

tions [9]. Our result shows that this is a universal phenomenon. It is related to the result in [3].

We define $LP_{2n(n+1)}$ to be the following Boolean function of arguments $\{a_{ij}, b_{ij}, e_i, d_i \mid 1 \leq i, j \leq n\}$:

$$LP(a_{ij}, b_{ij}, e_i, d_i) = 1$$

if and only if the set of inequalities

$$\sum (\tilde{a}_{ij}x_j - \tilde{b}_{ij}x_j) \geq \tilde{e}_i - \tilde{d}_i$$

has a solution in real numbers, where each number $\tilde{a}_{ij}, \tilde{b}_{ij}, \tilde{e}_i, \tilde{d}_i$ is 1 or 0 according to whether the corresponding Boolean variable a_{ij}, b_{ij}, e_i, d_i is 1 or 0.

THEOREM 7. *Any p -computable family P of Boolean functions is the p -projection of LP .*

Proof. Consider some $P_m \in P$ with indeterminates y_1, \dots, y_m , and a minimal program for it. The latter consists of a sequence of instructions of the form $v_i \leftarrow v_j \wedge v_k$ and $v_i \leftarrow v_j \vee v_k$, where $1 \leq i \leq C$ and each v_n with $n \leq 0$ equals some y_r or \bar{y}_r .

For any fixed assignment of truth values to y_1, \dots, y_m we can define a set E_0 of linear inequalities:

$$\begin{aligned} E_0 = & \{x_r \leq 0 \mid r < 0 \text{ and } v_r \text{ has value 0}\} \\ & \cup \{x_r \geq 1 \mid r < 0 \text{ and } v_r \text{ has value 1}\} \end{aligned}$$

For each sequence v_1, v_2, \dots, v_i we define E_i by induction from E_0 :

$$E_i = \begin{cases} E_{i-1} \cup \{x_j - x_i \geq 0, x_k - x_i \geq 0, x_i + 1 - x_j - x_k \geq 0\} \\ \quad \text{if } v_i \leftarrow v_j \wedge v_k, \\ E_{i-1} \cup \{x_j + x_k - x_i \geq 0, x_i - x_j \geq 0, x_i - x_k \geq 0\} \\ \quad \text{if } v_i \leftarrow v_j \vee v_k \end{cases}$$

Claim 1. For any i, j ($j < i$) every solution of E_i has $x_j \leq 0$, or every solution of E_i has $x_j \geq 1$.

Proof. The claim is true for E_0 by definition. Assume inductively that it is true for E_{i-1} . (a) If $v_i \leftarrow v_j \wedge v_k$ then $x_j \leq 0$ implies that $x_i \leq 0$ since $x_j - x_i \geq 0$. Similarly if $x_k \leq 0$. In the remaining case $x_j, x_k \geq 1$ inequality $x_i + 1 - x_j - x_k \geq 0$ ensures that $x_i \geq 1$. (b) If $v_i \leftarrow v_j \vee v_k$ then $x_j \geq 1$

implies that $x_i \geq 1$ since $x_i - x_j \geq 0$. Similarly if $x_k \geq 1$. If $x_j, x_k \leq 0$ then $x_j + x_k - x_i \geq 0$ ensures that $x_i \leq 0$. \square

Claim 2. If $\text{val}(v_i) = 0$ then $E_i \cup \{x_i \leq 0\}$ has a solution. If $\text{val}(v_i) = 1$ then $E_i \cup \{x_i \geq 1\}$ has a solution.

Proof. By induction on i it is easy to see that the point

$$x_j = \begin{cases} 1 & \text{if } \text{val}(v_j) = 1 \\ 0 & \text{if } \text{val}(v_j) = 0 \end{cases}$$

for $1 \leq j \leq i$ is a solution of E_i . \square

Claim 3. If for some $i, j (j \leq i)$ $E_i \cup \{x_j \geq 1\}$ has a solution in reals then $\text{val}(v_j) = 1$.

Proof. By Claim 1, if $E_i \cup \{x_j \geq 1\}$ has a solution then $E_i \cup \{x_j \leq 0\}$ has no solution. Hence by Claim 2 $\text{val}(v_j) = 1$. \square

Finally we observe that the given program of size C for P_m translates to $3C + 2m$ inequalities in E_C , of which the $2m$ of E_o depend on the values of y_1, \dots, y_m , while the remaining $3C$ are fixed. It remains to note that P_m is the projection under σ of $LP_{2n(n+1)}$ for $n = 3C + 2m$, where σ maps $3C$ of the inequalities to those of $E_C - E_o$, and the remaining $2m$ values of i as follows. If v_i equals y_j or \bar{y}_j then: $\sigma(a_{ik}) = \sigma(b_{ik}) = 0$ if $j \neq k$, $\sigma(d_i) = 0$, $\sigma(a_{ij}) = \sigma(e_i) = v_i$, $\sigma(b_{ij}) = \bar{v}_i$. \square

ACKNOWLEDGEMENTS. It is a pleasure to thank Volker Strassen and Mark Jerrum for suggesting corrections and simplifications on a first draft of this paper.

APPENDIX 1

We show here that in the concept of p -definability it is immaterial whether the defining polynomials allowed are the p -computable ones or merely those of p -bounded formula size. We shall suppose that the family P is p -definable in the sense of Definition 3, i.e.

$$P_n(x_1, \dots, x_n) = \sum_{b \in \{0,1\}^{m-n}} Q_m(x_1, \dots, x_n, b_{n+1}, \dots, b_m)$$

It will suffice to prove that any p -computable family, such as Q , is p -definable in the sense of Definition 4. By Theorem 5 it then follows that P itself is also p -definable in the sense of Definition 4.