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We can attempt to generalise the definition of the above vacuous hier-
archy by allowing the number of “alternations” to increase with the number
of indeterminates.

Let ¢ be any polynomial. Define #-D° to be the class of 7-computable
families. For i > 0 let -D' be the class of families that are defined by
some family in #-D*"! in the sense of Definition 3. Finally PD* is the
class of all families P such that for some ¢

P = {P,|P, = Q; forsome Qet-D'V}.

THEOREM 6. PD* = PD!

Proof. Similar to previous theorem. ]

The above two results should be contrasted with the Boolean case
where they still hold formally, but are no longer natural. The above defini-
tion of the successive levels PD® is only natural if each level is a robust
closure class. In Boolean algebra, however, PD' is not known to be closed
under complementation for any i > 1. Analogues of PD" and PD* where
complementation is allowed at each level of alternation are not known to
collapse, and are merely finite versions of the Meyer-Stockmeyer hierarchy,
and PSPACE respectively [10].

A simple application of Theorem 5 is in recognising such polynomials
as # HG as being p-definable. An intriguing open question is whether
HG itself is p-definable for each F. If it is not then P # NP (see Proposi-
tion 4 in [13]). If it is then the Meyer-Stockmeyer hierarchy and PSPACE
can be simulated within p-definable families of polynomials.

6. UNIVERSALITY OF LINEAR PROGRAMMING

Here we consider a Boolean function family LP that corresponds to a
linear programming problem and show that every p-computable family is
the p-projection of it. Thus for computing discrete functions in polynomial
time a package for LP for each input size is sufficient and no further pro-
gramming is required. If we fix certain of the arguments of LP, according
to the particular function and input size being computed, the package
becomes a program for the required function. That LP is itself p-computable
follows from the recent result of Khachian [8].

The reader should note that several tractable problems in combinatorial
optimisation are already known to have linear programming formula-
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tions [9]. Our result shows that this is a universal phenomenon. It is related
to the result in [3].

We define LP,,, . to be the following Boolean function of arguments
{a;b ei,dill <ij<n}:

LP (aij9 bij’ e, d;) =1

ij>

if and only if the set of inequalities

Z(ainj—“ bijxj-)>ei - di
has a solution in real numbers, where each number a;;, b;j, e;, d; is 1 or 0
according to whether the corresponding Boolean variable a;;, b;;, e;, d;
is 1 or O.

THEOREM 7. Any p-computable family P of Boolean functions is the
p-projection of LP.

Proof. Consider some P, € P with indeterminates y,,...,V,,, and a
minimal program for it. The latter consists of a sequence of instructions
of the form v; « v; A v, and v; « v; v v, where 1 <i < C and each
v, with n < 0 equals some y, or ¥,.

For any fixed assignment of truth values to y,, ..., ¥, we can define
a set E, of linear inequalities:

E, = {x, £ 0|r < 0 andwv, has value 0}

v {x,>1|r < 0 andv, has value 1}

For each sequence v,, v,, ..., v; we define E; by induction from E|,:

{ Ei iu{x; —x,20,% —x,2>0,x;, +1 —x; —x, >0}
Ei= 1 Ei_IU{Xj+xk—xi>0,xi"'x.i>0,xi—xk>0}

Cif v« v vy

Claim 1. Foranyi,j (j < i) every solution of E; has x; < 0, or every
solution of E; has x; > 1.

Proof. The claim is true for E, by definition. Assume inductively that
it is true for E;_;. (a) If v; « v; A v, then x; < 0 implies that x; <0 since
x;—x; > 0. Similarly if x; <0. In the remaining case x;, x;, > 1 inequality
x; + 1 — x; — x, >0 ensures that x; > 1. (b) If v; « v;v v, then x; > 1
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implies that x; >1 since x; — x; > 0. Similarly if x, > 1. If x;, % <0
then x; + x, — x; >0 ensures that x; <O0. []

Claim 2. If val (v;)) = 0 then E; U { x; <0} has a solution. If val (v;)
= 1 then E; U { x; > 1} has a solution.

Proof. By induction on i it is easy to see that the point

1 if val (v;) = 1
T 0 ifval() =0

for 1 <j < iis a solution of E;. L

Claim 3. If for some i, (j <(i) E; u { x; > 1} has a solution in reals
then val (v;) = 1.

Proof. By Claim 1, if E; U { x; > 1 } has a solution then F; U { x; <0}
has no solution. Hence by Claim 2 val (v;) = 1. ]

Finally we observe that the given program of size C for P, translates
to 3C + 2m inequalities in E, of which the 2m of E, depend on the values
of y{, ..., ¥, While the remaining 3C are fixed. It remains to note that P,
is the projection under ¢ of LP,,, ) for n = 3C + 2m, where ¢ maps 3C
of the inequalities to those of E. — E,, and the remaining 2m values of i
as follows. If v; equals y; or j; then: o (ay) = o (by) = 0if j # k, 0 (d)
=0, 0(a;) = o(e) = v, 0(b;y) = ;. L]
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APPENDIX 1

We show here that in the concept of p-definability it is immaterial
whether the defining polynomials allowed are the p-computable ones or
merely those of p-bounded formula size. We shall suppose that the family P
is p-definable in the sense of Definition 3, i.e.

Py(xps X)) = Y Qu(X1y ey Xy By gy ens by

It will suffice to prove that any p-computable family, such as Q, is p-definable
in the sense of Definition 4. By Theorem 5 it then follows that P itself is
also p-definable in the sense of Definition 4.
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