Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 28 (1982)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: RFDUCIBILITY BY ALGEBRAIC PROJECTIONS

Autor: Valiant, L. G.

Kapitel: 5. A NON-EXISTENT HIERARCHY **DOI:** https://doi.org/10.5169/seals-52240

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

complete when so operated on. A most convenient starting point is the following family T which is of p-bounded formula size:

$$T_{n^2+n} = \prod_{k=1}^n \sum_{i=1}^n x_{k,i} y_i$$
.

Clearly (i) the coefficient of $y_1 \dots y_n$ in T_{n^2+n} ,

(ii)
$$\frac{\partial}{\partial y_1} \frac{\partial}{\partial y_2} \dots \frac{\partial}{\partial y_n} T_{n^2+n} , \text{ and }$$

(iii)
$$\left(\frac{3}{2}\right)^n \int_{-1}^1 \dots \int_{-1}^1 \left[y_1 \dots y_n T_{n^2+n}\right] dy_1 \dots dy_n$$

all equal Perm $\{x_{k,i}\}$.

In contrast, it is easy to see that all the other operations that we have considered preserve p-computability. This is immediate in the case of substitution. It can be shown to be true for $\partial P/\partial x_i$ and $\int Pdx_i$ by considering a program for P, and decomposing it according to the powers of x_i at each instruction in the manner of [12].

5. A Non-existent Hierarchy

By analogies with recursion theory we can attempt to define the following hierarchy:

Definition. $PD^0 = \text{class of } p\text{-computable polynomial families.}$ For i > 0 $P \in PD^i$ iff P is defined by some $Q \in PD^{i-1}$ in the sense of Definition 3. That this hierarchy collapses in this algebraic case is easy to see:

THEOREM 5. For any F and any i > 0 $PD^{i} = PD^{i+1}$.

Proof. It is clearly sufficient to prove $PD^1 = PD^2$. If $P \in PD^2$ then for each m

$$P_m(\mathbf{x}) = \sum_{\mathbf{b}} Q_i(\mathbf{x}, \mathbf{b})$$

where for some $R \in PD^0$ for each i

$$Q_i(\mathbf{x}, \mathbf{b}) = \sum_{\mathbf{c}} R_j(\mathbf{x}, \mathbf{b}, \mathbf{c})$$
.

Hence

$$P_m(x) = \sum_{\mathbf{b}, \mathbf{c}} R_j(\mathbf{x}, \mathbf{b}, \mathbf{c})$$

which shows that $P \in PD^1$.

We can attempt to generalise the definition of the above vacuous hierarchy by allowing the number of "alternations" to increase with the number of indeterminates.

Let t be any polynomial. Define t- D^0 to be the class of t-computable families. For i > 0 let t- D^i be the class of families that are defined by some family in t- D^{i-1} in the sense of Definition 3. Finally PD^* is the class of all families P such that for some t

$$P = \{P_i \mid P_i = Q_i \text{ for some } Q \in t\text{-}D^{t(i)}\}$$
.

THEOREM 6. $PD^* = PD^1$

Proof. Similar to previous theorem.

The above two results should be contrasted with the Boolean case where they still hold formally, but are no longer natural. The above definition of the successive levels PD^i is only natural if each level is a robust closure class. In Boolean algebra, however, PD^i is not known to be closed under complementation for any $i \ge 1$. Analogues of PD^i and PD^* where complementation is allowed at each level of alternation are not known to collapse, and are merely finite versions of the Meyer-Stockmeyer hierarchy, and PSPACE respectively [10].

A simple application of Theorem 5 is in recognising such polynomials as # HG as being p-definable. An intriguing open question is whether HG itself is p-definable for each F. If it is not then $P \neq NP$ (see Proposition 4 in [13]). If it is then the Meyer-Stockmeyer hierarchy and PSPACE can be simulated within p-definable families of polynomials.

6. Universality of Linear Programming

Here we consider a Boolean function family LP that corresponds to a linear programming problem and show that every p-computable family is the p-projection of it. Thus for computing discrete functions in polynomial time a package for LP for each input size is sufficient and no further programming is required. If we fix certain of the arguments of LP_i according to the particular function and input size being computed, the package becomes a program for the required function. That LP is itself p-computable follows from the recent result of Khachian [8].

The reader should note that several tractable problems in combinatorial optimisation are already known to have linear programming formula-