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262 L. G. VALIANT

complete when so operated on. A most convenient starting point is the

following family T which is of /»-bounded formula size :
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Clearly (i) the coefficient oî y 1 yn in Tn2+n,
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all equal Perm {xKi}.
In contrast, it is easy to see that all the other operations that we have

considered preserve /?-computability. This is immediate in the case of
substitution. It can be shown to be true for dP/dXi and \Pdxt by considering
a program for P, and decomposing it according to the powers of xt at each

instruction in the manner of [12].

5. A Non-existent Hierarchy

By analogies with recursion theory we can attempt to define the following
hierarchy :

Definition. PD° class of /^-computable polynomial families. For
i > 0 P e PDl iffP is defined by some Q e PD1-1 in the sense of Definition 3.

That this hierarchy collapses in this algebraic case is easy to see :

Theorem 5. For any F and any i > 0 PD1 — PDl+1.

Proof. It is clearly sufficient to prove PD1 PD2. If P ePD2 then for
each m

Pm (x) Z Q(x.b)b

where for some R ePD0 for each i

Qi (x, b) £ Rj (x, b, c)
c

Hence

Pn(x) Z Rj(x> b>c)
b, c

which shows that P e PD1.
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We can attempt to generalise the definition of the above vacuous

hierarchy by allowing the number of "alternations" to increase with the number

of indeterminates.
Let t be any polynomial. Define t-D° to be the class of /-computable

families. For i > 0 let t-Dl be the class of families that are defined by

some family in t-D1-1 in the sense of Definition 3. Finally PD* is the

class of all families P such that for some t

P {Pt I P| Qi for some Q e t-D1 (l)}

Theorem 6. PD* PD1

Proof. Similar to previous theorem.

The above two results should be contrasted with the Boolean case

where they still hold formally, but are no longer natural. The above definition

of the successive levels PD1 is only natural if each level is a robust
closure class. In Boolean algebra, however, PD1 is not known to be closed
under complementation for any i > 1. Analogues of PD1 and PD* where

complementation is allowed at each level of alternation are not known to
collapse, and are merely finite versions of the Meyer-Stockmeyer hierarchy,
and PSPACE respectively [10].

A simple application of Theorem 5 is in recognising such polynomials
as # HG as being ^-definable. An intriguing open question is whether
HG itself is /»-definable for each F. If it is not then P ^ NP (see Proposition

4 in [13]). If it is then the Meyer-Stockmeyer hierarchy and PSPACE
can be simulated within ^-definable families of polynomials.

6. Universality of Linear Programming

Here we consider a Boolean function family LP that corresponds to a
linear programming problem and show that every /»-computable family is
the ^-projection of it. Thus for computing discrete functions in polynomial
time a package for LP for each input size is sufficient and no further
programming is required. If we fix certain of the arguments of LPt according
to the particular function and input size being computed, the package
becomes a program for the required function. That LP is itself^-computable
follows from the recent result of Khachian [8].

The reader should note that several tractable problems in combinatorial
optimisation are already known to have linear programming formula-
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