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ON THE GENUS OF GENERALIZED FLAG MANIFOLDS

by Henry H. GLover and Guido MISLIN

INTRODUCTION

Let X be a nilpotent space of finite type. We denote by G (X) the genus of X,
i.e. the set of all homotopy types Y (nilpotent, of finite type) with p-localizations
Y, ~ X forall primes p, (cf. [HMR]). The set G (X) has been studied extensively
in case of X an H-space. In particular it is known that for the special unitary
group SU (n) one has
[GSUM) = ] (mh2)

1<m<n

where ¢ is the Euler function [Z, p. 152]. We are interested in this note in finding
non-trivial examples X with G (X) = {[X]} and we call such spaces generically
rigid. A large family of such generically rigid spaces is provided by certain
generalized flag manifolds. Let

G=Um+n,+ .. +ny
and
H=U(y) x Uy x .. x U(ny,
embedded in G in the obvious way. Then
M = M(ny,n,, ..n) = G/H

is a generalized flag manifold (generalizing the standard complex flag manifold

U (n)/T" which corresponds to M (1, 1, .., 1)). We will show essentially that

whenever the homotopy rigidity result for linear actions holds for M (cf. [L1],

[L2], [EL]), then M is also generically rigid. These two seemingly unrelated

rigidity results are tied up by certain results on E (X) and E (X ), the groups of

homotopy classes of self equivalences of X and X, X, the rationalization of X.
To make our result more precise, we need some further notation. For

M=MMmn,.,n) = G/H
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as above, we write N (H) for the normalizer of H in G. The finite group N (H)/H
acts on M in an obvious way and it is well known that through that action,
N (H)/H is faithfully represented in H* (M ; Q). We can therefore consider
N (H)/H as a subgroup of E (M) or E (My). By Theorem 1.1 of [GH2] the

canonical map
E (MO) —* Autalg H* (Ma Q)
1s a group isomorphism. In particular, the grading automorphisms

g(q): H* (M; Q) - H* (M ; Q)

defined by g(q) x = ¢'x for xe H* (M; Q) and g e Q*, lift to unique self
equivalences of M, (which we denote also by g (q)), and thus

Gr(My) = {g (Q)IQEQ*} < E (M)

is a central subgroup isomorphic to Q*.
In all cases of generalized flag manifolds for which E (M,) has been
computed, the subgroup generated by Gr (M,) and N (H)/H,

(Gr (M), N (H)/H) < E (M)

is all of E (M,). The following conjecture is thus plausible.

Conjecture C. Let M = M (ny, n,, .., n,) be a generalized flag manifold.

Then
E(M,) = {Gr(M,), N (H)/H) .

A similar conjecture appears in [L1, Conjecture C] but the relationship
between the two conjectures is not entirely clear.
The Conjecture C has been verified in the following cases:

1) n; = n, = ... = n, = 1 (compare the proof of Thm. 1 in [EL])
2) ny =n, =..=m_ = 1,n =k — 1(compare the proof of Theorem 9 in
[L1])

3) n, = 2and k = 2 (follows from [O])
4) n, > n; and k = 2 ([GH1], [Br])
5 ny =1,n,>1,n32 2n3 — 1 and k = 3 ([GH2))

The Conjecture C holds therefore for instance for all complex Grassmann
manifolds G, (C**%) = M (p, q) with p # g (since M (p, ) ~ M (g, p)), and for
the classical flag manifolds U (n)/T™.

Our main theorem may be stated as follows.
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THEOREM. Let M = M (ny,...n,) be a generalized flag manifold for
which the Conjecture C holds. Then

G (M) = {[M]}.

In particular the Grassmann manifolds G,(C?*%) for p # g and the flag
manifolds U (n)/T" are all generically rigid.

§1. GENUS AND SELF MAPS

Let P denote a fixed set of primes. Two P-sequences
S1: 821 P = E(X)
are called equivalent, if there exist maps h (0) € E (X,) and

h(p)eim (E (X,) = E (X,))
such that for all p € P one has
h(0)S,(p) = S2(p) h(p).

Definition 1.1. We denote by P-Seq (E (X)) the set of equivalence classes of
P-sequences in E (X ).

If P is a finite set of primes and X a nilpotent space of finite type, then there is
a canonical map

0: G (X) —» P-Seq (E (X,)).

It is defined as follows. Let Y € G (X)and P = {py, .., p,}- Then the localization
Yp is a pull-back of maps X, het X, 1e. Yp ~ hoinvlim {X e o}- The
maps A; induce equivalences A, € E (X,) and we put

) (Y) = {[Xla XZ, res Xn]} :

If Y, may also be represented by hoinvlim {X 5x o), then there exist maps
h(0)e E(X,) and A (p) € E (X,), i € {1, ..., n} rendering the diagrams
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h (p.

X, (p:) L X,
Aq H;
X - X

0 h (0) 0

homotopy commutative and thus inducing hoinvlim {A;} ~ hoinvlim {p,}.
Hence

{[)—\'1’ veny Xn]} = {D—lla o0 Fln]} € P'Seq (E (XO))

and therefore 0 is well defined.

LEMMA 1.2. Let X be anilpotent space of finite type and let P denote a finite
set of primes. Then

0: G (X) - P-Seq (E (X,))
is surjective with fibers of the form

0-1(0(Y) = {ZeG(X)|Zp~ Y,).

Proof. Let P = {p,,.., p,} and
{[71’ ees .—fn]} € P'Seq (E (XO)) .

Let e;: X, —» X, denote the canonical maps and put

fi= fioei3Xp,~"’X0-

Define W = hoinvlim {f,}; W comes equiplf)ed with a canonical map f: W
— X,. Let Z be the homotopy pull back of W.5 X, ‘€ X5, where P denotes the

set of primes complementary to P. Then Z € G (X) and

9 (Z) = {[71: e fn]}a

thus 8 is surjective. It is clear from the definition of @ that for Y, Z € G (X) one has
0(Y) = 6(Z)ifand only if Y, ~ Z,.

The next lemma provides a sufficient condition for 6 to be monic “at the
basepoint”.
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LemMMma 1.3. Let X be a nilpotent space of finite type. Suppose that there
exists a finite set of primes P with complement P such that
a) YeG(X)implies Yp ~ X5

can

b) every f € E (X,) can be written as f, o f, with f, € im (E (Xp) = E (X))
and f, eim (E (Xp) — E (X))

| Then for 8: G (X) — P-Seq (E (X)) as above, one has 6~ 6 (X)) = {X}.

Proof. LetY e G (X)with8(Y) = 0 (X). Then Y, ~ X, by the definition
of 6,and Y ~ X byassumption. Hence Y may be obtained as a homotopy pull
back of the form

1

If o induces & € E (X,) and ify = &~ o B, then Y is also a pull back of the form

/ can

Let 7 € E (X,) be the map induced by y and write ¥ = f, f, with
fi€im (E (Xp) = E(Xo))a freim (E (Xp) — E(Xo))-

Choose a lift f7'eE(X;) of f7* and a lift f, € E (Xp) of f,. Then f{!y
= cano f, and one can form a commutative diagram,
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fit

\ /
/ \

2

v_vhich shows that ¥ ~ X.

§2. THE CASE OF GENERALIZED FLAG MANIFOLDS

The following result is an easy consequence of [F].

LEMMA 2.1. Let M be a generalized flag manifold. Then the following
holds.

a) If g (A) € Gr(M,) is a grading map with A € Z} for some (not necessarily
finite) set of primes Q, then g (A) lifts to a homotopy equivalence g (A): M,
— M,

b) Let P be an arbitrary set of primes with complement P. Then every
f €<Gr (M), N (H)/H)
may be written in the form f = f, o f, with
f1eim (E (Mp) - E (M,))
and
foeim (E (Mp) » E (My)).

Proof. LetA = k/lwith k and I relatively prime integers. Then g (k) and g ()
lift to equivalences

gk),g): My > M,
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since necessarily k, [ € Z (compare [F]). Thus g (k) g ()~ Yisalift of g (A). For b)
we note that f = g (p) - o for some p'e Q* and
ce N (H)/H .
If we write p = p, - p, with p, € Z§ and p, € Z%, then
f=9g(p) (9 (p) o)
and we may choose

fi=9p) f2=9(p)o0.

Since o lifts even to E (M), we infer by using a) that f, and f, lift as desired.

A final step towards proving the Theorem formulated in the introduction
consists in the following.

LEMMA 2.2. Let M be a generalized flag manifold for which Conjecture C
holds. Then for every finite set of primes P,

P-Seq (E (My)) = {[1, 1,.., 1]} .
Proof. Let {[uy, ..., u,1} € P-Seq (E (M,)), where P = {p,, .., p,} and
weim (E(M,) - E (My))
for all i. Then y; = g (A,) o o; with A; € Q* and
c;e N(H)H <« E(M,).

Defined € Q*by A = IIp™, where m; € Zissuch that p™ A; € Z¥. Then g (M)
= g (M) o; withA); € Z* By Lemma 2.1 a) we know that g (AL,) lifts to M b

and since o; lifts even to M we conclude that
h(p) = g(M\) o, eim (E(M,) > E (M,))
for all i. The equation
| gMw = h(p)ie{l,.,n}
show that {[py, .., .1} = {[1, .., 11} € P-Seq (E (M,)) .

The proof of the main Theorem :

Let M be a generalized flag manifold for which the Conjecture C holds. Since
M is a formal space we can find for every N € G (M) a rational equivalence
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f(N): N - M. Let P (M) denote the set of primes which appear in any of the
orders of

ker (f (N),:H,(N;Z) > H,(M; Z))

or coker f (N),, N ranging over G (M). The set P (M) is finite, since each
ker f (N), and coker f (N), is finite and since G (M) is a finite set by [W].
Consider now the map

0: G (M) - P-Seq E (M,)
with respect to this finite set of primes P (M) = P. Since P is finite,
P-Seq (E (M,))
consists of only one element (Lemma 2.2). It remains to show that

=1 (0 (M) = (M) .

For this we apply Lemma 1.3. Note that N € G (M) implies Ny ~ M5 since
f (N): N - Misa P-equivalence. Moreover, the condition b) of 1.3 is satisfied in
view of Lemma 2.1 b). Therefore we conclude that G (M) = {[M]} and the
proof is completed.

Note added in proof. Since this paper went to press, we have been informed
that Conjecture C has been proved for thecasek = 2,n, = n,, by M. Hoffman:
“Cohomology endomorphisms of complex flag manifolds”, Ph.D. dissertation,
MIT 1981. As a consequence, it follows that all complex Grassmann manifolds
are generically rigid.
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