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206 R. J. EVANS

Since XiX2X3<\> and %3§ are nontrivial, (19) now follows from (18) and (27).

Remark. We evaluated S (the left side of (4)) only under the assumption that

X1X2X3 and (X1X2X3)2 were nontrivial. We now indicate how S can be simply
evaluated in terms of Gauss sums when this assumption is dropped. If Xi, %2• or
xl is trivial, one can easily evaluate S directly from its definition. If x1X2X3 is

trivial, then one can evaluate S l (and hence S) from (20), by first replacing u by
u-1, then replacing v by vu'1, to obtain

Finally, suppose that Xi> X2> xi and X1X2X3 are nontrivial. Then can be

evaluated from (27).

Si £ x 1X2X3 (u) %3 (1 + u2 + V2 - 2u- 2v- luv)
U, V

7. Proof of (5)

Let E denote the left side of (5). Since X1X2 1S nontrivial,

y to
x + yf - 1

X1X2 (y-x).

1 + X
Set t

y

t + i

u so

u + 1

Z XlX3WX2X3(")XlX2(t-")XlX2(l-"t)-
U,tf- 1

Since X1X3 an(l X2X3 are nontrivial,

E= Z XiX3(t)X2X3(w)XiX2(t-")XiX2(l-wt)-
U,tf 0

Replace t by t/u to obtain

E= Z XiX3Wx?(")XiX2(f-"2)XiX2(l-0
U,tf 0

Z X1X3 W X1X2 (1 — £) Xi («) X1X2 (t-u) {1 + 4> (u)}
U,tf0
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Now replace u by tu to get

(28) E X X1X2X3WX1X2 (1-0 Xi(")XiX2 (!-"){1 + <t>("0}
u, t

J (X1X2X3, X1X2) J (Xi. X1X2R J (X1X2X34>, X1X2) ^ (Xi4>. X1X2).

where the Jacobi sums J are defined above (18). Since xi xi and X1X2 are

nontrivial, (5) now follows from (18).

Remark. If XiX2> XiX3> or X2X3 is trivial, we can easily evaluate E directly
from its definition. Otherwise, E can be evaluated simply from (28).

8. Character sum analogues of (1), (la) and (lb)

Let Xi, X2' X35 § be characters on GF (q), where <\> has order 2, p > 2. Set

r0 1. The discriminant of the polynomial

F(y)= ti 0

is a polynomial in tu tn which shall be denoted by Dn. Write

En t
i 0

We conjecture that the following analogues of (1), (la), (lb) hold for each n ^ 1 :

(29) v /c., "fr -G(xi+1)G(XiXi)G(x2XJ3)
X Xi U X2 Xs4> (D*) 11 ^ irrFTi '

n fnsGF (q) 0 G (x3)

provided that the n characters x 1X2X31 1) are all nontrivial;

(29a) X X! (O X34> (ö„) ÇT(1" n -G(X^1)G (Xa^
Il tne GF(q) j 0 (X3I

for all Xi, X3Î and

(29b) X x34* (d„) ^ n "4)(2)^(4,)G(xJ3+1)
tneGFW G(X3)

for all X3-

Formulas (29), (29a), and (29b) have been verified by computer for some small
primes q with n 3, 4. Of course the formulas are well known for n L For
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