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204 R. J. EVANS

6. PROOF OF (4)

For characters \,, ..., s, on GF (g), define the Jacobi sum
J (\lll’ 00y \llm) = (— 1)m+1 Z \I"l (xl) \pm (xm) .

X1, ..., xmeGF (q)
x1+...+txm=1

We will use the well-known fact that if y, \r, ... s, is nontrivial, then

(18) T W) = G )™ [T G (0.

Let S denote the left side of (4). If ,, x», or %3 is trivial, then it is easy to verify
(4) directly, with use of (18) and (26) below. Thus assume that y,, %, and x3 are
nontrivial. With the change of variables

u=xy, v=x+4+y,
we have

S= Y @y (I+u—0v)5; ©*—4u) {1 + ¢ (v2—4u)}.

u, veGF (q)

It} therefore remains to show that
(19) S =2 %1 (@, (L+u—0v) x3 (V¥ —4u) = R (X, X2 X3P) -

Replace v by u + 1 — v to get
(20) Sy =) %1 (W) %2 @) %3 (L+u?+0*—2u—2v—2uv) .

Replace u by u/t, and v by v/t, to get

(21) S, = —8,G (X1%2%3)
= > Y % W) %2 0w (2 +u?+ 0> —2ut — 20t —2uv) (T,

t¥0 u, v

Since ;% ,3 is nontrivial, the restriction t # 0 may be dropped. Then replace ¢
byt + u + v to get

Sy = 2 X1 (W) %2 (0) %3 (2 —4up) L7470

t,u, v

Replace u by ua and v by vb to get

(22) Sy = S,G (x,) G (1)
=Y Y % Wz (v) %3 (2 —4uvab) (T T DTEEZD)
t b,u,v#+0

a,
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Replace a by a/(4uvb) to get

a(u—1)

83 = z Z X1 (u)Xz(U)Xs(tz a) (Teree” DF Tqup ),

t a,bu,v¥0
Since y, is nontrivial, the restriction a # 0 may be dropped. Then replace a by
t* — ato get
(1—u)(a—1?)

S; = Z Z %1 (W) X2 (V) %3 (@) CT(Hb(v_ D+ 4uvb

a,t b,u,v¥0

4uvb 2w—-1)
= —G(%3) Z Z X1 (W) %2 (V) %3 (—u_P;) CT(b w= i) Z CT(H uvh )

u#0,1 b,vEO0 1

, uvb 4uvb
The inner sum on t equals —CT(l—u) ¢ < ) G ().

Hence
(23) Sy = S3(G(x3) G () x3 (=)
4uvb uvb
- Y Y @0 ( 2 )cT(“v D+75)
u#0,1 b,v0 u—
Therefore,
S4 = #201 ) ;0 X1X3d (1) x2x3¢ (v) X3¢ ( > Z X3 (b) CT(b o=yt 1
Since %, and ;¢ are nontrivial,
1—
Ss = —G(x39) Z X1X3P @) X2x3P (v) Xsd) ( - U) ,
SO B
(24) Ss = — %3 @) G(x30) J (X1 %3P X2X3P5 X 39) -

Combining (21)-(24), we get

25 ¢ _ (=G ) GG (a) I (ikads Xatad, Xad)
G (X1X2X§) G (x1) G(x2)

Applying (7) with | = 2, we find that for any character x5,
(26) %3 (—=4) G (x3) G (9) G (x39) = %3¢ (—1) 4G (x3).

Since 7y, and y, are nontrivial, it follows from (25) and (26) that

(27) S X3¢ (=1)G (x3) G (1) G (X2) J (X1 x3®s X2X39, X3¢)
1 q G (X1X2%3)
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Since y,%,%3$ and ;¢ are nontrivial, (19) now follows from (18) and (27).

Remark. Weevaluated S (the left side of (4)) only under the assumption that
x1X2x3 and (x,x,%3)? were nontrivial. We now indicate how S can be simply
evaluated in terms of Gauss sums when this assumption is dropped. If y;, x,. or
3 is trivial, one can easily evaluate S directly from its definition. If y,%,%3 is
trivial, then one can evaluate S, (and hence S) from (20), by first replacing u by
u~ !, then replacing v by vu~!, to obtain

S, = Z 7(17(25(% (u) %3 (1+u2+vz—2u—20—2uv) X2 (V).

Finally, suppose that ., X, X3, and x;X.x3 are nontrivial. Then S, can be
evaluated from (27).

7. PROOF OF (9)

Let E denote the left side of (5). Since y,, 1s nontrivial,

I+x I+y
E+ 1+ 2 (=1 = Z X1X3< >X2X3 (_—> X1X2 (y—x) .
x, y¥0 y X
xty¥F—1
1 1 +
Set t = +x, W= y, SO
y X
t+1 u+1
X = , =
w—1 T w1
Then
t—u
E+ 1+ (=1 = Z X1Xs () X2xs M) X1X2 (1 )
v utF—1 —ut
ut+1
= ; Ve (1) X2Xs () xax2 (E—10) H1X2 (1 —ut).
u,t+ —

Since ;%5 and x,x; are nontrivial,

E = Z X1X3 () X2x3 (W) x1x2 (E—u) X1X2 (1—ut).

u, t¥0

Replace ¢ by t/u to obtain

E = Z 13 @) X3 @) xixz (E—u?) X% (1—1)

u,t¥0

X1Xs (O XXz (1—1) %y () xax2 E—w) {1 + ¢ (W)} .

u,t¥0
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