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() G (X) ﬁ Gy (xf’\l{") |
- an (Xal) ji=1 an (\I’J)

Since n = & (mod g—1), ¥ () = x* (). Therefore, by (7), the right side of (9)
equals 1, so

(10) "= 1.

By the definition of 1 and of Gauss sums,

12 _th ! e r wk _azlGn 51
T]I'EX (I)Xz()z s () H 1—[ H x> (D) G (X7) (mod w),

Gy (x) j=1 k=1 ¢=1 1

SO
X12~z—za d-1)/n (l) G‘}_ 1)/n (xsz)
n' = T (mod w) .
Gy " (X))

By (6), G, (x*) = G (x)); hence
(11) n' = 1 (mod w).

Thus w divides the norm N (n'—1). By (10), ' is an n-th root of unity. Thus if
n' — 1 # 0, then N (n'—1) divides n, which contradicts the fact that
w4 n. Therefore n' = 1 = n", sosince (,n) = 1, n = 1.

5. PRrROOF oOF (3)

Let 1 denote the right side of (3). We assume that0 < o < g — 1. Tosee that
this presents no loss of generality, we now show that n is unchanged when « is
replaced by o + (g—1)j, where j is an integer. Clearly G, (x*) and x*(]) are
unchanged, since the restriction ¥ |gf , has order ¢ — 1. Finally, G, (x*f) is also
unchanged, as

(12) G, (x*?) = G (2Pa) = G,y (yPEtia=y
where o; is defined by ;00 = j(mod ]), o; > 0.

Let ¢ = xP@= 1 Using (6), we have

1 Gfl (XaBl) gt j
™ () Gy () jljl Gn (V).
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For each je {0, 1, ...,1 — 1}, we have, by (12),

G 11 (XQB) = G (XaB\Vj) .
Thus,

G aBly 1-1 J
(13) o= S GnW)
x* () j=o sz (X ")
Since x* () = x*P (I), the right side of (13) equals 1 by (7), so
(14) n'=1.
Let P be the prime ideal above pin (¢ = Z [w], where

® = exp (2mi/p (¢'—1),

with P chosen such that y is the character of order ¢ — 1 on O/P ~ GF (¢"
which maps the coset ® + P to ®. To show that n = 1, it suffices to show that
n = 1 (mod P). For, if 1 # 1, then by (14), the norm N (n—1) divides /; but if
also 1 = 1 (mod P), then p| N (n—1), which yields the contradiction p | L.

For any integer x, let L (x) denote the least nonnegative residue of x (mod ).
For integers i > 0, define

1, if 1< L(io) <L (o)
0, otherwise ,

and
¢ =g+ 1" a—L(x) + (g—1)L (—ix)).

Note that each c; is an integer with 0 < ¢; < g — 1. We have

—~

1
lap — 1> ¢;qg7 ' = Z la—Icy)
i=1

l

= 3 ¢ ' {—lg; + L(o) — L (1—i) o) + L(—ia)}.

The expressions in braces are easily seen to vanish. Thus we have the following
explicit expansion of aff in base g:

as =Y aqt

i=1

By (8), (14), and the definition of n,

(16) n = (uy (@) ' Py(@p)  (mod P),
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where

-1

u= []v({@=0/).

j=1

By (15) and (16),

n= @I v  (modP).
Thus by the second congruence in (8), there is an integer M such that
(17) un = a— I* (€ lj (mod P).

First suppose that 0 < a < I. Then by (17) and the definition of ¢;,

— ! (l—j))

1 -1 #
un = &-!l“ C—1M 1;11 (q—l—L(—za)> jl;ll (1 +

C—1M H (q—iL(—za)> (mod P).

i=1 /

By (14), n is a unit, so again applying the second congruence in (8), we find that

1
un = [] v (g—;—lL(—zoc)> (mod P).
i=1

Since o is prime to [, the numbers L (—io) run through a complete residue system
(mod [) asiruns from 1 to [. Thus, be the definition of u following (16), we obtain
the desired result 1 = 1 (mod P)in the case 0 < a < [

Finally, suppose that | < a < g — 1. We suppose as induction hypothesis
that ' = 1 (mod P), where 1’ is obtained from n by replacing o by o — [. Then
by (17) and the definition of ¢;, there is an integer N such that

1 1
n=nm=SE-D¥ =) l:"[1 ¢;

= — =1V (a—1])! [j {le; + o — L(a) + (g—1) L(—io)}  (mod P).

Since the numbers {le; — L(—ia) + o — L ()} run through the | numbers
% .., — [+ 1 asiruns from 1 to /, we see that N = 0 and n = 1 (mod P).
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