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Thus

X»(DGfAx*)>fiGfMi)
(9) ^ ~ Gfn(x5')M Gfn m
Since n S (mod q-1), x'n(0 X5! (0-Therefore,by (7), the right side of (9)

equals 1, so

(10) if 1

By the definition of r| and of Gauss sums,

x""'x'U'Gy'x'' ß [=[ -f1* »«WC/.»")
Gf(x) J=i*=1 *=i 1

1)/" (/)

Gf~1 (x1)

SO

V T/n (mod w).

By (6), G/n(xôi) G} (xz); hence

(11) iV l(modw).

Thus w divides the norm N (riz— 1). By (10), r\l is an n-th root of unity. Thus if
r\l — 1 # 0, then iV (ri1— 1) divides n, which contradicts the fact that
w-f- n. Therefore r\l 1 r|", so since (/, n) 1, rj 1.

5. Proof of (3)

Let rj denote the right side of (3). We assume that 0 < a < q — 1. To see that
this presents no loss of generality, we now show that r| is unchanged when a is

replaced by a + (q— l)j, where j is an integer. Clearly Gf(%a) and x" (D are

unchanged, since the restriction % |GF {q) has order q — 1. Finally, GfX (xaß) is also

unchanged, as

(12) Gfl (Xaß) « Gfl (xaß^) Gfl

where oq is defined by oqa j (mod /), aj ^ 0.

Let \|/ xp0?_1)- Using (6), we have

^ Gji (fß') 'f/ ^ „^ X"'(l)G'fl(x^)R f
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For each j e {0, 1,I — 1}, we have, by (12),

G/,(Xaß) G/i (X""^

Thus,

{ _ Gfl (Xaß!) 'fr1 <V/(V)
(13) 11

X"'(')A (xaßV)
'

Since %al (I) xaß/ (/)> the right side of (13) equals 1 by (7), so

(14) if 1

Let P be the prime ideal above p in (9 Z [cd], where

co exp (2ni/p (ql— 1),

with P chosen such that % is the character of order ql — 1 on (9/P « GF (ql)

which maps the coset co + P to co. To show that r| 1, it suffices to show that
T| 1 (mod P). For, if r| # 1, then by (14), the norm N (v[ — 1) divides I ; but if
also r| 1 (mod P), then p | AT (r| — 1), which yields the contradiction p | /.

For any integer x, let L (x) denote the least nonnegative residue of x (mod I).

For integers i ^ 0, define

1, if 1 ^ L (ia) ^ L (a)

0, otherwise,

and

ct 8i + I'1 (a — L(a) + (q—l)L (—ia)).

Note that each ct is an integer with 0 ^ ct ^ q — l.We have

'aß - IE ci1i~1X
i 1 i 1

I {-tef + L (a) - L ((1-0 a) + L(-ia)}.
i 1

The expressions in braces are easily seen to vanish. Thus we have the following
explicit expansion of aß in base q :

(15) aß=£ci<r1.
i — 1

By (8), (14), and the definition of rj,

(16) T| (try (a)) ~1 lay (aß) (mod P),
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where

« n y(/(3-;)/0-
j=i

By (15) and (16),

i

rj (uy (a))~1 P ]~] y (<:,) (mod P).
i 1

Thus by the second congruence in (8), there is an integer M such that

(17) UT] lf(Ç-l)M n u (mod
a! i= i

First suppose that 0 < a < /. Then by (17) and the definition of ch

n (' + SlL('-'1)

k - i)M n (~r~L " ,ot(j! (mod p) •

By (14), r| is a unit, so again applying the second congruence in (8), we find that

uri J! yjL~ia)^) (mod p) •

Since a is prime to /, the numbers L — ia) run through a complete residue system

(mod I as i runs from 1 to I. Thus, be the definition of u following (16), we obtain
the desired result r\ 1 (mod P) in the case 0 < a < /.

Finally, suppose that I < a < q — l.We suppose as induction hypothesis
that if 1 (mod P), where rj' is obtained from r| by replacing a by a — I. Then
by (17) and the definition of ch there is an integer N such that

r| T|/r|' —y (Ç —1)N (oc — /) ü ci
a : i i

T(Ç-l)N(a-/)! P {fe; + a - L(a) + (q-1) L(-ia)} (mod
a i i

Since the numbers {/ef — L( — ia) + a — L (a)} run through the I numbers
a,..., a — / + 1 as i runs from 1 to /, we see that AT 0 and rj 1 (mod P).
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