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200 R. J. EVANS

3. Theorems of Stickelberger and Davenport-Hasse

We will make use of the following three classical formulas. First [3, (0.8)],

(6) C/Mj(^)- G.Cxr.

where x is a character on GF (qm). Next [\3, (0.9)],

,7l _
X* (0 'fl Gf (xV)

Gj i-ôlX Gfm '

where x, v(/ are characters on GF (q) and v|/ has order /. Finally [8], [5, p. 25]

GfW) 1 (C—I)-"'4*»
(8) ,r 1 v»w s s 1— (mod P) -

(Ç — \fw y (a) a!

where a is an integer, 0 ^ a < q — 1 ;s (a) denotes the sum of the p-adic digits of
a ; y (a) denotes the product of the factorials of the p-adic digits of a ; P is a prime
ideal above p in the ring 0 Z [co], where co exp (2ni/p(q— 1)); and x is the

character on (9/P ä GF (q) of order q — 1 which maps the coset co + P to co.

4. Proof of (2)

an _ iLet T| denote the right side of (2). We must show that rj l.LetÔ
q - 1

0 wk 1
(cxv + ij). Using (6), we have

X'"(0G/„(X8) A "ft" G%(XV)

Gf„(x5')M*=1 M (vj/e)
•

Consider a fixed pair j, k. For each a e {1, 2,..., «}, G/n (i|/e) G/n (\l/e^a), so

wr ~ k wr~k

n gy„ (\|/e) n c/n (\j/wfc
_ 1

<cw+'j«"»).
c=1 c= 1

Similarly,

n G/n(xV) wn G/n(x5xi/M"t~1<cM,+o,a))-
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Thus

X»(DGfAx*)>fiGfMi)
(9) ^ ~ Gfn(x5')M Gfn m
Since n S (mod q-1), x'n(0 X5! (0-Therefore,by (7), the right side of (9)

equals 1, so

(10) if 1

By the definition of r| and of Gauss sums,

x""'x'U'Gy'x'' ß [=[ -f1* »«WC/.»")
Gf(x) J=i*=1 *=i 1

1)/" (/)

Gf~1 (x1)

SO

V T/n (mod w).

By (6), G/n(xôi) G} (xz); hence

(11) iV l(modw).

Thus w divides the norm N (riz— 1). By (10), r\l is an n-th root of unity. Thus if
r\l — 1 # 0, then iV (ri1— 1) divides n, which contradicts the fact that
w-f- n. Therefore r\l 1 r|", so since (/, n) 1, rj 1.

5. Proof of (3)

Let rj denote the right side of (3). We assume that 0 < a < q — 1. To see that
this presents no loss of generality, we now show that r| is unchanged when a is

replaced by a + (q— l)j, where j is an integer. Clearly Gf(%a) and x" (D are

unchanged, since the restriction % |GF {q) has order q — 1. Finally, GfX (xaß) is also

unchanged, as

(12) Gfl (Xaß) « Gfl (xaß^) Gfl

where oq is defined by oqa j (mod /), aj ^ 0.

Let \|/ xp0?_1)- Using (6), we have

^ Gji (fß') 'f/ ^ „^ X"'(l)G'fl(x^)R f
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