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Identities (4), (4a) and (4b) were discovered and proved by A. Selberg in the
early 1940’s (unpublished). Also, essentially all of the material in §8 was known to
Selberg. We are indebted to him for the ideas provided in [7].

Identity (5) was inspired by the case n = 2 of an integral formula of Andrews

[1, (4.3)] somewhat similar to (1). It would be interesting to find a higher
dimensional analogue.

2. NOTATION AND THE IDENTITIES

Let p be prime and let { = exp (2mi/p). Define the Gauss sum over GF (p") by

G =6 =~- » xxg™

_ xeGF (p")
(note the minus sign), where T is the trace map from GF (p") to GF (p), and ¥ is
any character on the multiplicative group of GF (p") (with ¥ (0) = 0). Fix a prime
powerq = p/, f > 1
It is proved in §4 that
1 ()G
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where | = w” for a prime w # p; n is the order of ¢ (mod w); e = (w—1)/n;
iy, .., I, are coset representatives for the cyclic subgroup (g) in the multiplicative
group of GF (w); y 1s a character on GF (q"); and Vs 1s a character of order [ on
GF(q").
It is proved in §5 that

: G, (%) = II_—II G, (@~ by
x> (1) sz (™) j=1
where ! | (§—1); ois an integer prime to [; B is the integer (1 4+ g +...+¢'~ !)/I; and
y is a character on GF (q') of order ¢' — 1. One comparing (3) with the last
identity in [2, p. 368] should note that the exponent / on the last line of that page
should be deleted; in fact, (Teich [y a(q—1) should be corrected to read
(Teich 1)*“~ 1. We remark that the product overj in (3) equals ¢“~ 12 U, where
U, equals 1 or {7~ D™+ (—1)/+ @~ D =28 3ccording as | is odd or even. This

(3) l =
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fact is easy to prove for odd ! (since G, ({) G, (¥) = Y (—1) g for a nontrivial
character \y on GF (q)); for even I, this follows from the classical evaluation of
~ quadratic Gauss sums over GF (p) (extended to GF (g) via (6) below).

It is proved in §6 that

(4) 2 X ) a2 (A=) (T=y) %3 (x—)

x, yeGF (q)
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where ¥, %, X3, ¢ are characters on GF (g); ¢ has order 2 (so p > 2); %1 X3 X3
and (x,x,X5)* are nontrivial ; and
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(Cf. (1)). The special case of (4) where x; = x> = x3 = ¢ has been applied in
graph theory [4], [9].

Selberg has pointed out that if x, , and ¢ are characters on GF (g), where ¢
has order 2, then
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These are character sum analogues of (1a) and (1b), respectively, for n = 2. We
omit the proofs, as they are similar to (and easier than) the proof of (4).
It is proved in §7 that

I+x I+y
Z X1X3<T>X2X3< X>X1X2(y X)

x, yeGF (q)

(5) x,y¥0
= D (X1 %2> X3) + D (%, 9, x,0, x3P)

where Xqu, X3, ¢ are characters on GF (q); ¢ has order 2 (so p > 2);
X3 X35 X3 1% X1X3» and X2 X3 are nontrivial ; and

x2 (= 1) G (x1%2%3)

D (%1, Yo, =
(X1> X25 X3) G (x1) G (%) G (13)
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