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IDENTITIES FOR PRODUCTS OF GAUSS SUMS
OVER FINITE FIELDS

by Ronald J. EvVANS

1. INTRODUCTION

In this note, we prove the identities (2)-(5) below for Gauss sums over finite
fields of characteristic p. Also, we state conjectures related to (4).

Versions of (2) and (3) for p-adic Gauss sums are stated in [2, p. 368], where
they are attributed to Langlands and Dwork, respectively. We allow the case
- p = 2(notethatp > 2in[2],[6]). Also, while [ is prime in [ 2], we do not restrict
| to be prime in (2) and (3) (but [ is a prime power in (2)).

Identity (4), is a character sum analogue of the case n = 2 of the following
beautiful formula of Selberg [1, (1.1)]:

1 1
(1) Jj Aﬂr"‘ gy "ty .. dt,

0 0

o n AT (z4+2) T (x+jz2) T (v+)2)
=0 T(@ T (x+y+z(n+j—1)

where

and where
X, Y, 2 + l/n,Z + .\’/(n—l),z + y/(n—l)

have positive rea} parts. In §8, we present as conjectures certain formulas which
are n-dimensional character sum analogues of (1) and of the following important
limiting cases [1, (1.3), (1.2)] of (1): ‘

(1a) J j Az .]—[ t;7 et dr, L dt,

0 0
LT (z42) T (x+j2)

i
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and 1 ® ® 1 2 2
(1b) (2m)"2 e 21T Tl Az, . dt,

' n 1T (jz+2)
=n! —
=0 TI'(2)

Identities (4), (4a) and (4b) were discovered and proved by A. Selberg in the
early 1940’s (unpublished). Also, essentially all of the material in §8 was known to
Selberg. We are indebted to him for the ideas provided in [7].

Identity (5) was inspired by the case n = 2 of an integral formula of Andrews

[1, (4.3)] somewhat similar to (1). It would be interesting to find a higher
dimensional analogue.

2. NOTATION AND THE IDENTITIES

Let p be prime and let { = exp (2mi/p). Define the Gauss sum over GF (p") by

G =6 =~- » xxg™

_ xeGF (p")
(note the minus sign), where T is the trace map from GF (p") to GF (p), and ¥ is
any character on the multiplicative group of GF (p") (with ¥ (0) = 0). Fix a prime
powerq = p/, f > 1
It is proved in §4 that
1 ()G

e S

where | = w” for a prime w # p; n is the order of ¢ (mod w); e = (w—1)/n;
iy, .., I, are coset representatives for the cyclic subgroup (g) in the multiplicative
group of GF (w); y 1s a character on GF (q"); and Vs 1s a character of order [ on
GF(q").
It is proved in §5 that

: G, (%) = II_—II G, (@~ by
x> (1) sz (™) j=1
where ! | (§—1); ois an integer prime to [; B is the integer (1 4+ g +...+¢'~ !)/I; and
y is a character on GF (q') of order ¢' — 1. One comparing (3) with the last
identity in [2, p. 368] should note that the exponent / on the last line of that page
should be deleted; in fact, (Teich [y a(q—1) should be corrected to read
(Teich 1)*“~ 1. We remark that the product overj in (3) equals ¢“~ 12 U, where
U, equals 1 or {7~ D™+ (—1)/+ @~ D =28 3ccording as | is odd or even. This

(3) l =
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fact is easy to prove for odd ! (since G, ({) G, (¥) = Y (—1) g for a nontrivial
character \y on GF (q)); for even I, this follows from the classical evaluation of
~ quadratic Gauss sums over GF (p) (extended to GF (g) via (6) below).

It is proved in §6 that

(4) 2 X ) a2 (A=) (T=y) %3 (x—)

x, yeGF (q)

=R (X1, %2 X3) + R (X1 %25 X39)

where ¥, %, X3, ¢ are characters on GF (g); ¢ has order 2 (so p > 2); %1 X3 X3
and (x,x,X5)* are nontrivial ; and

G (13) G (1) G (1) G (12) G (o)
G (X3) G (X1X2%3) G (X1%2%3)

R (%1 X2> X3) =

(Cf. (1)). The special case of (4) where x; = x> = x3 = ¢ has been applied in
graph theory [4], [9].

Selberg has pointed out that if x, , and ¢ are characters on GF (g), where ¢
has order 2, then

S ) () T

x. yeGF (q)
) _ GGG OY) | GG ) G (e
G () G (x9)
and
T T N T
S GO, 66
G Gd)

These are character sum analogues of (1a) and (1b), respectively, for n = 2. We
omit the proofs, as they are similar to (and easier than) the proof of (4).
It is proved in §7 that

I+x I+y
Z X1X3<T>X2X3< X>X1X2(y X)

x, yeGF (q)

(5) x,y¥0
= D (X1 %2> X3) + D (%, 9, x,0, x3P)

where Xqu, X3, ¢ are characters on GF (q); ¢ has order 2 (so p > 2);
X3 X35 X3 1% X1X3» and X2 X3 are nontrivial ; and

x2 (= 1) G (x1%2%3)

D (%1, Yo, =
(X1> X25 X3) G (x1) G (%) G (13)
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3. THEOREMS OF STICKELBERGER AND DAVENPORT-HASSE

We will make use of the following three classical formulas. First [3, (0.8)],

am-1
(6) Gfmi(x_q—l )Z Gf(X)m,
where y is a character on GF (¢™). Next [3. (0.9)],

l l J
™) [ - X () Gy (xV)

Gf (X H Gf ‘L’J ’
where y,  are characters on GF (gq) and \ has order [. Finally [8], [5, p. 25]

o 1\ s (a)
8) 6,00 _ 1 _ &= (mod P)

C—=10  vy() o!
where aisaninteger,0 < o < ¢ — 1;s (o) denotes the sum of the p-adic digits of
o ; v (o) denotes the product of the factorials of the p-adic digits of o; P 1s a prime
ideal above p in the ring ¢ = Z [w], where @ = exp (27i/p(qg—1)); and y is the
character on O/P ~ GF (q) of order ¢ — 1 which maps the coset ® + P to @.

4. PROOF OF (2)

q" — 1

Let n denote the right side of (2). We must show thatn = 1. Letd = i
q e

0 = w*™ ! (ew+i)). Using (6), we have

; ln (l) an r whTk n ( swe)
TG U L

1 oc=1 an Gl ()

Consider a fixed pair J, k. For each ae {1,2, .., n}, G, V% = G, (\*"), so

wr k

H Gpn (V) = H G (Y (0 s

Similarly, -

wr—'k

wr—k 3 o
[T G W) =TI Gpo Py v i),
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() G (X) ﬁ Gy (xf’\l{") |
- an (Xal) ji=1 an (\I’J)

Since n = & (mod g—1), ¥ () = x* (). Therefore, by (7), the right side of (9)
equals 1, so

(10) "= 1.

By the definition of 1 and of Gauss sums,

12 _th ! e r wk _azlGn 51
T]I'EX (I)Xz()z s () H 1—[ H x> (D) G (X7) (mod w),

Gy (x) j=1 k=1 ¢=1 1

SO
X12~z—za d-1)/n (l) G‘}_ 1)/n (xsz)
n' = T (mod w) .
Gy " (X))

By (6), G, (x*) = G (x)); hence
(11) n' = 1 (mod w).

Thus w divides the norm N (n'—1). By (10), ' is an n-th root of unity. Thus if
n' — 1 # 0, then N (n'—1) divides n, which contradicts the fact that
w4 n. Therefore n' = 1 = n", sosince (,n) = 1, n = 1.

5. PRrROOF oOF (3)

Let 1 denote the right side of (3). We assume that0 < o < g — 1. Tosee that
this presents no loss of generality, we now show that n is unchanged when « is
replaced by o + (g—1)j, where j is an integer. Clearly G, (x*) and x*(]) are
unchanged, since the restriction ¥ |gf , has order ¢ — 1. Finally, G, (x*f) is also
unchanged, as

(12) G, (x*?) = G (2Pa) = G,y (yPEtia=y
where o; is defined by ;00 = j(mod ]), o; > 0.

Let ¢ = xP@= 1 Using (6), we have

1 Gfl (XaBl) gt j
™ () Gy () jljl Gn (V).
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For each je {0, 1, ...,1 — 1}, we have, by (12),

G 11 (XQB) = G (XaB\Vj) .
Thus,

G aBly 1-1 J
(13) o= S GnW)
x* () j=o sz (X ")
Since x* () = x*P (I), the right side of (13) equals 1 by (7), so
(14) n'=1.
Let P be the prime ideal above pin (¢ = Z [w], where

® = exp (2mi/p (¢'—1),

with P chosen such that y is the character of order ¢ — 1 on O/P ~ GF (¢"
which maps the coset ® + P to ®. To show that n = 1, it suffices to show that
n = 1 (mod P). For, if 1 # 1, then by (14), the norm N (n—1) divides /; but if
also 1 = 1 (mod P), then p| N (n—1), which yields the contradiction p | L.

For any integer x, let L (x) denote the least nonnegative residue of x (mod ).
For integers i > 0, define

1, if 1< L(io) <L (o)
0, otherwise ,

and
¢ =g+ 1" a—L(x) + (g—1)L (—ix)).

Note that each c; is an integer with 0 < ¢; < g — 1. We have

—~

1
lap — 1> ¢;qg7 ' = Z la—Icy)
i=1

l

= 3 ¢ ' {—lg; + L(o) — L (1—i) o) + L(—ia)}.

The expressions in braces are easily seen to vanish. Thus we have the following
explicit expansion of aff in base g:

as =Y aqt

i=1

By (8), (14), and the definition of n,

(16) n = (uy (@) ' Py(@p)  (mod P),
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where

-1

u= []v({@=0/).

j=1

By (15) and (16),

n= @I v  (modP).
Thus by the second congruence in (8), there is an integer M such that
(17) un = a— I* (€ lj (mod P).

First suppose that 0 < a < I. Then by (17) and the definition of ¢;,

— ! (l—j))

1 -1 #
un = &-!l“ C—1M 1;11 (q—l—L(—za)> jl;ll (1 +

C—1M H (q—iL(—za)> (mod P).

i=1 /

By (14), n is a unit, so again applying the second congruence in (8), we find that

1
un = [] v (g—;—lL(—zoc)> (mod P).
i=1

Since o is prime to [, the numbers L (—io) run through a complete residue system
(mod [) asiruns from 1 to [. Thus, be the definition of u following (16), we obtain
the desired result 1 = 1 (mod P)in the case 0 < a < [

Finally, suppose that | < a < g — 1. We suppose as induction hypothesis
that ' = 1 (mod P), where 1’ is obtained from n by replacing o by o — [. Then
by (17) and the definition of ¢;, there is an integer N such that

1 1
n=nm=SE-D¥ =) l:"[1 ¢;

= — =1V (a—1])! [j {le; + o — L(a) + (g—1) L(—io)}  (mod P).

Since the numbers {le; — L(—ia) + o — L ()} run through the | numbers
% .., — [+ 1 asiruns from 1 to /, we see that N = 0 and n = 1 (mod P).
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6. PROOF OF (4)

For characters \,, ..., s, on GF (g), define the Jacobi sum
J (\lll’ 00y \llm) = (— 1)m+1 Z \I"l (xl) \pm (xm) .

X1, ..., xmeGF (q)
x1+...+txm=1

We will use the well-known fact that if y, \r, ... s, is nontrivial, then

(18) T W) = G )™ [T G (0.

Let S denote the left side of (4). If ,, x», or %3 is trivial, then it is easy to verify
(4) directly, with use of (18) and (26) below. Thus assume that y,, %, and x3 are
nontrivial. With the change of variables

u=xy, v=x+4+y,
we have

S= Y @y (I+u—0v)5; ©*—4u) {1 + ¢ (v2—4u)}.

u, veGF (q)

It} therefore remains to show that
(19) S =2 %1 (@, (L+u—0v) x3 (V¥ —4u) = R (X, X2 X3P) -

Replace v by u + 1 — v to get
(20) Sy =) %1 (W) %2 @) %3 (L+u?+0*—2u—2v—2uv) .

Replace u by u/t, and v by v/t, to get

(21) S, = —8,G (X1%2%3)
= > Y % W) %2 0w (2 +u?+ 0> —2ut — 20t —2uv) (T,

t¥0 u, v

Since ;% ,3 is nontrivial, the restriction t # 0 may be dropped. Then replace ¢
byt + u + v to get

Sy = 2 X1 (W) %2 (0) %3 (2 —4up) L7470

t,u, v

Replace u by ua and v by vb to get

(22) Sy = S,G (x,) G (1)
=Y Y % Wz (v) %3 (2 —4uvab) (T T DTEEZD)
t b,u,v#+0

a,
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Replace a by a/(4uvb) to get

a(u—1)

83 = z Z X1 (u)Xz(U)Xs(tz a) (Teree” DF Tqup ),

t a,bu,v¥0
Since y, is nontrivial, the restriction a # 0 may be dropped. Then replace a by
t* — ato get
(1—u)(a—1?)

S; = Z Z %1 (W) X2 (V) %3 (@) CT(Hb(v_ D+ 4uvb

a,t b,u,v¥0

4uvb 2w—-1)
= —G(%3) Z Z X1 (W) %2 (V) %3 (—u_P;) CT(b w= i) Z CT(H uvh )

u#0,1 b,vEO0 1

, uvb 4uvb
The inner sum on t equals —CT(l—u) ¢ < ) G ().

Hence
(23) Sy = S3(G(x3) G () x3 (=)
4uvb uvb
- Y Y @0 ( 2 )cT(“v D+75)
u#0,1 b,v0 u—
Therefore,
S4 = #201 ) ;0 X1X3d (1) x2x3¢ (v) X3¢ ( > Z X3 (b) CT(b o=yt 1
Since %, and ;¢ are nontrivial,
1—
Ss = —G(x39) Z X1X3P @) X2x3P (v) Xsd) ( - U) ,
SO B
(24) Ss = — %3 @) G(x30) J (X1 %3P X2X3P5 X 39) -

Combining (21)-(24), we get

25 ¢ _ (=G ) GG (a) I (ikads Xatad, Xad)
G (X1X2X§) G (x1) G(x2)

Applying (7) with | = 2, we find that for any character x5,
(26) %3 (—=4) G (x3) G (9) G (x39) = %3¢ (—1) 4G (x3).

Since 7y, and y, are nontrivial, it follows from (25) and (26) that

(27) S X3¢ (=1)G (x3) G (1) G (X2) J (X1 x3®s X2X39, X3¢)
1 q G (X1X2%3)
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Since y,%,%3$ and ;¢ are nontrivial, (19) now follows from (18) and (27).

Remark. Weevaluated S (the left side of (4)) only under the assumption that
x1X2x3 and (x,x,%3)? were nontrivial. We now indicate how S can be simply
evaluated in terms of Gauss sums when this assumption is dropped. If y;, x,. or
3 is trivial, one can easily evaluate S directly from its definition. If y,%,%3 is
trivial, then one can evaluate S, (and hence S) from (20), by first replacing u by
u~ !, then replacing v by vu~!, to obtain

S, = Z 7(17(25(% (u) %3 (1+u2+vz—2u—20—2uv) X2 (V).

Finally, suppose that ., X, X3, and x;X.x3 are nontrivial. Then S, can be
evaluated from (27).

7. PROOF OF (9)

Let E denote the left side of (5). Since y,, 1s nontrivial,

I+x I+y
E+ 1+ 2 (=1 = Z X1X3< >X2X3 (_—> X1X2 (y—x) .
x, y¥0 y X
xty¥F—1
1 1 +
Set t = +x, W= y, SO
y X
t+1 u+1
X = , =
w—1 T w1
Then
t—u
E+ 1+ (=1 = Z X1Xs () X2xs M) X1X2 (1 )
v utF—1 —ut
ut+1
= ; Ve (1) X2Xs () xax2 (E—10) H1X2 (1 —ut).
u,t+ —

Since ;%5 and x,x; are nontrivial,

E = Z X1X3 () X2x3 (W) x1x2 (E—u) X1X2 (1—ut).

u, t¥0

Replace ¢ by t/u to obtain

E = Z 13 @) X3 @) xixz (E—u?) X% (1—1)

u,t¥0

X1Xs (O XXz (1—1) %y () xax2 E—w) {1 + ¢ (W)} .

u,t¥0
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Now replace u by tu to get
- (28) E =) x1XaXs () Xa¥o (1—1) X1 (W) x1X2 (1 —1) {1 + ¢ (u);

= J (01X2X3 X1¥2) J Lo Xax2)+ J (X1X2X3Ps X1X2) J (X1, x1X2) 5

where the Jacobi sums J are defined above (18). Since %2, %3, x3, and ¥, are
nontrivial, (5) now follows from (18).

Remark. 1f x1%2, X1X3» OF X2X3 is trivial, we can easily evaluate E directly
from its definition. Otherwise, E can be evaluated simply from (28).

8. CHARACTER SUM ANALOGUES OF (1), (1a) AND (1b)

Let x,, %2> X3, ® be characters on GF (g), where ¢ has order 2, p > 2. Set
= 1. The discriminant of the polynomial

— Z t y -
i=0
is a polynomial in t, ..., t, which shall be denoted by D,. Write
=Y (-
i=0
We conjecture that the following analogues of (1), (1a), (1b) hold foreachn > 1

029 "G (1Y) G ) G ()
o or g T P X2 (B X0 (D -Uo G ) G )

provided that the n characters x,x,x5 " "' (0<j<n—1) are all nontrivial;

—G (4™ G (uxd)

(292) X1 () X3 (D) GT = T
t1, ...,géGF (q) ' 3 - U G (x3)
for all ¥,, x5; and
1 1 —$(2)G(9) G(E)
(29b D 2 T3~ 212) =
) x ...,g;sGF (9) X3¢ (Dn) C H G (x3)
for all .

Formulas (29), (29a), and (29b) have been verified by computer for some small
primes g with n = 3, 4. Of course the formulas are well known for n = 1. For
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n = 2,(29a) and (29b) are not hard to prove, and (29) follows from the proof of
(4). (For example, if x5 in (29) is trivial, one makes use of (19) and (21)-(23).)
Forn = 3, we can prove (29b), but not (29) or (29a). The ad hoc proof given
below appears to shed little light on the general case.
THEOREM. For n = 3, (29b) holds.

Proof. Allrational fractions below are to be interpreted as integers (mod p);

1
for example, > equals (p+ 1)/2. We must show that

_ (2 . QG (D)GH)G )
60 A= T 26D (74 = _ o

for any character x on GF (g), where
Dy = u*v® — 4u® — 4t — 27t* + 18tuv .

First suppose that p = 3. Then

A=) xbWv*—u—1? CT(%Z‘“)

t,u, v

v¥(Q0 u t

=0 — q‘G (dx’) = —qG(xd),

= TG T o @i —wt - + T o (— T

since G (V) = G () for any character {. Now (30) follows with the aid of (26).
Next, suppose that p > 3. Completing the square in ¢, one has

203 wv\?
D27 —c—[t+ 2%
o/ ¢ (+27 3)’

4 [v? 3 :
= —[— — . T
where ¢ 27(3 u) hus

WRNA= ) xd)(c—-tz)gT(v?—")

t,u,v -

= u};gT(v?—“);xq) c=8) {1 + ¢ ()}
- ) (7 (3 -4) Y10 =06 0
kY (79 4y > x(C)CT(UZ‘Z_“)a

céO




PRODUCTS OF GAUSS SUMS 209

where K = xd (—=1) Y x () and J = Y 3o (1—1) ¢ (1).
rThus

u, v

oena =Ky (s x<2i_/,>JZX3<%—u>§T(UT“).

2
v .
Replace u by u + 3 to obtain

1RNA = —Ko(6)G (@) + x(%)l Y 2 (—wer(s )

u, v

4
- 4O G@) (K + x(ii) JG ()}

d 1f s trivial, then K = & (—1)(g—1),J = —b (—1),and G (%) = 1, and the
desired result (30) follows. If y is nontrivial, then K = 0 and

| J = —G(x9) G(9)/G (x)
E by (18), and (30) follows with the aid of (26).
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