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systems at P and Q, fis the map Z — Z°?* ' = wof the unit disc U = C
onto another copy W of it. Since 1, Z, ..., Z°¢ provide an Op-basis for
- £, (Qy), the value of § on a local generator of & ® £ is given by

det (1(Z'77)),0<i,j<e =¢,.

But
T (Zi+j) — Zi+j (1 +Ci+j + (Ci—{-j)z 4+ (é'i+j)e) ,
(¢ denoting a primitive (e+1) — st root of unity), hence

1(Z) = (e+1)Z" if i4+j=0 or e+1,
= 0 otherwise.

Hence det (7 (Z'*7)) is a (nonzero) constant multiple of Z©* ¢ = w* as
asserted.

If £~ (Q) consists of several points, the situation is a direct sum of
those considered above, and § is indeed as asserted. This proves Theorem

(4.1).

(4.5) Remark. Let the notation be as above, and let £ (X) denote the
topological Euler-Poincaré characteristic of X. Then, using the formula
E (X) = number of vertices — number of edges + number of faces in any
triangulation of X, it is easy to see that £ (X) = r E(Y) — deg R (Y=P").
Indeed, choose any triangulation of Y which contains all the images of the
ramification points of f as vertices, and lift it to a triangulation of X. Then,
while r edges or faces lie over each edge or face of Y, the ramification points
reduce the number of vertices over certain vertices of Y, and one gets the
formula asserted. Since E(Y) = 2, (4.2) yields:

(4.6) CoROLLARY. deg Ky = —E(X) =29 — 2, ie. g 1is also the
topological genus (1/2) b, (X) of the compact oriented surface X.
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(5.1) (RIEMANN-ROCH THEOREM). For any line bundle % on X,
(L) - (KQF ™) =deg & —g + 1.

Proof : It is enough to prove
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(5.2) for all &, A° (L) — °(KQRFL ) >deg ¥ —g + 1. For then,
replacing % by K ® £~ ! changes only the sign of the left side, and the
same is true of the right side by (4.1) (cf. [4], p. 147).

Now (5.2) is true if deg ¥ > deg K, for then A1° (K®¥ ') = 0, and
we can use (3.5). Thus, to prove (5.2), we may assume that & = @ (D) for
some D e Div X, and that (5.2) holds for ¥’ = 0 (D+P,), P, € X. Now
it is clear that A° (%) < h°(¥) + 1, and similarly A° (K@% 1)
< WP (K®F') + 1 (cf. the proof of (3.4)). So (5.2) fails for & if and only
it (&)Y =& +1, and W EKRL H =KL+ 1.
But if (*) holds, there exist

ceH? (X, %) — H° (X, %)
and
weH (X, KQ¥ Y - H°(X,KQZL' ™1,
and then
cw =0 @weH° (X, K®O0 (Py)) — H° (X, K),

i.e. ow 1s a meromorphic form with precisely one simple pole at P,. But this
is impossible: if D is a disc around P, in some coordinate system centred

at Py, then | ow= — [ ow =0 by Stokes theorem, while
oD 0 (X—D)

[ ow # 0 by the Residue theorem. Thus (*) cannot hold, and (5.2) is
oD

proved, ‘ g.e.d.

(5.3) COROLLARY. For any line bundle ¥ on X, h* (¥) = h° (K@%~ h).
Proof: Compare (5.1) and (3.4).

(5.4) COROLLARY. h° (K) = g and h' (K) = 1.

Before proceeding to Serre duality, we examine the notion of residue in
greater detail. Thus let U < X be open, and @ a meromorphic 1-form on
U with a pole at P € U. Then, in terms of a uniformising parameter ¢ at P,
w = fdt near P, with f a meromorphic function at P. The residue of w

1 . : :
at P is 5 times the coefficient of 1/¢ in the Laurent expansion of f in powers
i -
of t. The independence of Resp ( ) on the choice of ¢ can be proved either
by direct computation or by identifying it with 1/2ni j @, where vy 1is a
k4

suitable curve around P. By the argument already used above (Stokes’
theorem), one gets
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(5.5) (RESIDUE THEOREM). The sum of the residues of any meromorphic
I-form on X is zero.

(5.6) COROLLARY. Given distinct P, Q€ X, there exists a meromorphic
I-form on X, holomorphic outside P and Q, and with simple poles at
P, O of residue 1 and —1 respectively.

Proof: Let ¥ =K® O0(P+Q). Then degK® £ ' <0, hence
h°(#) =g + 1 by (5.1), ie. there exists we H° (X, &) — H® (X, K).
Then it is clear that the residues of w at P and Q must be non-zero, while
their sum is zero (by (5.5)), hence a suitable constant multiple of w will
have the desired properties.

(5.7) PROPOSITION. There is a canonical isomorphism res : H* (X, K) — C.

Proof: Pick any P € X, and a coordinate neighbourhood U of P. Let
U be the covering {U, X — P} of X. Then, by taking residues at P, we get
a map resp : Z* (U, K) - C. This map is not zero, and induces a map
H' (U, K) — C (by the residue theorem). Since 4 (K) = 1,resp : H* (U, K)
— H' (X, K) — Cisin fact an isomorphism. That the map res, : H' (X, K)
— C 1s independent of the choice of Pe X is precisely the meaning of
(5.6), and we get the asserted canonical isomorphism res.

(5.8) SERRE DuALITY. For any line bundle ¥ on X, the natural bilinear
form

res

(H(X, %) x HH(X,K® % 1) » H' (X, K) > C

is nondegenerate.

(5.9) Remark. For any covering U of X, the natural map % x (K ® £~ 1)
— K defines an obvious pairing

H°(X, %) x Z' WKL 1) - Z* (U, K)
which is easily seen to induce the pairing

H° (X, %) x H" (X, K®% ') » H' (X, K)
figuring in (5.8).

Proof of (5.8). Since we already know that
WP (X, &) = h' (X, K@%,
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we need only show that, if 0 € H® (X, %) is such that { (c®y) = 0 for
all ye H' (X, K £~ 1), then ¢ = 0. Now choose any Pe X, and a co-
ordinate neighbourhood (U, z) of P centred at P such that % | U ~ Oy.
Then the covering i = {U, X — P} is a Leray covering for %, K and
K® %' ((3.7). The z"dz,neZ, can all be regarded as elements of
Z'(UW, KL 1); let 9, denote their images in H* (X, K® %~ '). Then
clearly p (6 ®y,) = O for all n implies that all the coefficients of the Taylor
expansion of ¢ at P with respect to vanish, hence ¢ = 0, g.e.d.

(5.9) SERRE DUALITY FOR VECTOR BUNDLES. For any vector bundle V"
on X, let v'* = Hom Oy (v, Oy). Then the natural pairing

res

(:H(X,)*x HH(X,KQv*) - H' (X,K) 5 C
is non-degenerate.

Proof : Arguing as in the proof of (5.8) we see that the map H° (X, ¥")
— (H' (X, K®7™*)* induced by ({ is injective, hence h°(X,?")
< h' (X, KQV'*). Replacing ¥ by K@ ¥*, we also get h°(KQ¥ %)
< At (¥). But, by induction on rank ¥", we easily deduce from (5.3) that
Y (KQV*) = —y(¥), hence h°(X,¥) = h' (X, KQ¥*). Thus { is
non-degenerate as before.
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