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Note finally that, if is any line bundle on X and D Z nPP e Div X,

then ® 0 (D) can be identified with the sheaf of germs of meromorphic
sections a of such that ordP a > — nP.

We conclude this section with the following consequence of the Leray
covering theorem ([3], p. 189 or [2], p. 44).

(2.16) Proposition. Let f : X -> Y be a nonconstant holomorphic map

of compact Riemann surfaces, and y a vector bundle on X. Then the

natural maps LP (Y, f0 fX)) -» LP (X, y) are isomorphisms for all i > 0.

Proof: If H is a sufficiently fine open covering of Y, then it is clear

that, for each U e XL, f0 CO j U is 0V-free, and that / _1 (U) is a finite

disjoint union of coordinate open sets in X, restricted to each of which iP
is free. Since, for i > 0, LP (W, 0W) 0 for any open W a C, it follows
that U and XL' {/"1 (C/) : U e U} are Leray coverings for/0 (iT) and

respectively. Now the natural maps Hl (H,/0 (^)) Hl (Ur, f^) are

obviously bijective, q.e.d.

(2.17) Remark. Propositions (2.4) and (2.16) are valid (with the same

proofs) even if X is not compact, provided we assume that/ is proper.

(2.18) Remark. We know by (2.10) that any (compact) X admits a non-
constant meromorphic function, i.e. a nonconstant holomorphic map

/ : X -» P1. Since P1 is covered by two coordinate neighbourhoods which
(by (2.11) and (2.12)) constitute a Leray covering for any vector bundle
on P1, it follows by (2.16) that LP (X, y) 0 for i > 2 for any compact
Riemann surface X and any vector bundle y on it. This proof is valid in
the algebraic situation also. This is the reason for including the case i > 2

in (2.16) rather than appealing to (2.8). We also remark that the Leray
theorem is almost trivial for H1; the fact that for a Leray covering XL,

H2 {XL, #") H2 (X, y) is surjective (which is what was needed above)
is also trivial if we use resolutions.

§ 3. Riemann-Roch theorem (preliminary form)

We fix a compact Riemann surface X.

(3.1) Notation—Definition. For any vector bundle y on X, we set

hl (r) dimc LP {X, y), i 0,1 and x (*0 h° (y) - h1 (y).
The genus g of X is h1 (@x)
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(3.2) Remark. If 0 -> 1F' if -> if"-* 0 is an exact sequence of vector
bundles, then % (i^) % (ir') + % (X*"), as follows from the cohomology
exact sequence (since H2 0).

(3.3) Definition. The degree deg D of D 1 n (P) P e Div X is In (P).

(3.4) Proposition. For any D e Div (X),

x (a> (.D)) Xiß) +àeg D+ 1

Proof: (Serre [5], pp. 20-21). The assertion is a tautology for D 0;
hence we need only prove that it holds for D e Div (X) iff it holds for a

divisor of the form D' D + P, P e X. Now 0 (D) is a subsheaf of
(9 (D'), and the quotient sheaf «â $ (D')/0 (D) is concentrated at P with
stalk isomorphic to 0P/rrtP. Hence h° (Ê) 1, and h1 (J2) 0. Now the

exact sequence
0 (9 (D) -> (9 (DO -> J2 -+ 0

yields the exact sequence

0 -> H° (X, (9 (D)) -> H° (X, J) H1 (X, 0 (D))
->H1(X,0(DO) -0,

so that x ($ (DO) ~~ % (0 (D)) 1. Since deg D' — deg D
desired assertion follows,

(3.5) Corollary. h° (D) > deg D - g + 1.

(3.6) Corollary. For any P e X, exz.ste a nonconstant meromorphic

function on X, holomorphic in X — P, wzïA a pole of order < g + 1 at P.

Proof: For D (<? +1) P, A0 (D) > 2 by (3.4), i.e. H° (X, 0 (D))
contains a nonconstant element.

(3.7) Corollary. For any vector bundle X on X, a/zd any Pel,
if1 (X- {P} r) 0.

Proof: By (3.6), there exists a holomorphic map / : X-» P1 with
P /_1 (oo). Now use (2.11), (2.12), (2.16) and (2.17).

(3.8) Corollary, g — 0 iff X « P1.

Proof: g 0 for X P1 by Laurent's theorem. Conversely, if g 0,

then there exists by (3.6) a meromorphic function / on X with just one

1, the

q.e.d.
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simple pole and no other singularities. It is easy to see that f : X -> P1 is

then an isomorphism.

(3.9) Corollary. If D ~ D\ then deg D deg D'.

Proof: D ~ D' implies 0 (D) « 0 (D'), hence % {0 (Z))) x iP (£*'))•
Hence deg D deg D' by (3.4).

(3.10) Definition. The degree of a line bundle IP is the degree of any
D e Div X such that IP k, 0 (D), i.e. the degree of the divisor of any
meromorphic section of SP.

(3.11) Remark. The above definition is justified by (2.11) and (3.9). It
is clear that the map deg : Pic X Z is a group homomorphism.

(3.13) Definition. The degree of a vector bundle iP is that of the line
r

bundle det iP A QxiP,r rank iP.

(3.14) Remark. The stalk of (det iP)'1 Horn (det 0X) at any
Pel consists 0P-multilinear alternate maps iPP x x yp{r times)
—> Op.

(3.15) Proposition. If 0 - IP' iP -> IP" -> 0 is an exact sequence of
vector bundles, deg IP deg f ' + deg IP".

Proof: det IP » det IP' ® det IP ".

(3.16) Proposition. (Riemann-Roch theorem, preliminary form). For
any vector bundle IP on X,

X {IP) deg IP + rank IP x(&)

Proof : In view of (3.15), (3.2) and (2.11), the proposition follows
from (3.4) by induction on rank IP.

§ 4. The degree of the canonical line bundle

Recall that the canonical line bundle K on X is the sheaf of holomorphic
1-forms.

(4.1) Theorem. degK 2g - 2 -2 x(0).
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