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THE RIEMANN-ROCH THEOREM 189

Note finally that, if % is any line bundle on X and D = X np P € Div X,
then % ® O (D) can be identified with the sheaf of germs of meromorphic
sections ¢ of . such that ord, ¢ > —np.
' We conclude this section with the following consequence of the Leray
covering theorem ([3], p. 189 or [2], p. 44).

(2.16) PROPOSITION. Let f: X — Y be a nonconstant holomorphic map
| of compact Riemann surfaces, and ¥~ a vector bundle on X. Then the
¥ natural maps H' (Y, fo (V) > H “(X, V") are isomorphisms for all i > 0.

_} Proof : If U is a sufficiently fine open covering of Y, then it is clear
| that, for each Uel, f, (¥) | U is Op-free, and that £~ ! (U) is a finite
disjoint union of coordinate open sets in X, restricted to each of which ¥~
is free. Since, for i > 0, H* (W, Oy) = 0 for any open W < C, it follows
that i and U’ = { YU :Ue II} are Leray coverings for f, (#7) and ¥~
§ respectively. Now the natural maps H'(U, f, () - H' (W, ¥") are
§ obviously bijective, q.e.d.

(2.17) Remark. Propositions (2.4) and (2.16) are valid (with the same
proofs) even if X is not compact, provided we assume that f is proper.

i (2.18) Remark. We know by (2.10) that any (compact) X admits a non-
constant meromorphic function, i.e. a nonconstant holomorphic map
E /2 X > P! Since P! is covered by two coordinate neighbourhoods which
E (by (2.11) and (2.12)) constitute a Leray covering for any vector bundle
| on P, it follows by (2.16) that H' (X, ¥") = 0 for i > 2 for any compact
Riemann surface X and any vector bundle ¥~ on it. This proof is valid in
| the algebraic situation also. This is the reason for including the case i > 2
f in (2.16) rather than appealing to (2.8). We also remark that the Leray
| theorem is almost trivial for H'; the fact that for a Leray covering I,
| H>* (M, #) > H* (X, #) is surjective (which is what was needed above)

® is also trivial if we use resolutions.

§ 3. RIEMANN-ROCH THEOREM (PRELIMINARY FORM)

We fix a compact Riemann surface X.
(3.1) Notation—Definition. For any vector bundle ¥" on X, we set

B (¥) = dimg H'(X, ), = 0,1and x(¥) = k(%) — ht (¥) .
§ The genus g of X is h' (0y) .
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(3.2) Remark. If 0 - ¥ — ¥ — ¥"— 0 is an exact sequence of vector
bundles, then y (¥") = x (¥") + x (¥"), as follows from the cohomology
exact sequence (since H? = 0).

(3.3) Definition. The degree deg D of D = Zn(P)PeDiv X is 2 n(P).

(3.4) ProPOSITION. For any D e Div (X),
2(0(D)) = x(0) + deg D =deg D —g + 1.

Proof : (Serre [5], pp. 20-21). The assertion is a tautology for D = 0;
hence we need only prove that it holds for D e Div (X) iff it holds for a
divisor of the form D' = D + P,Pe X. Now 0 (D) is a subsheaf of
O (D’), and the quotient sheaf 2 = @0 (D")/0 (D) is concentrated at P with
stalk isomorphic to Op/mp. Hence 4% (2) = 1, and A' (2) = 0. Now the
exact sequence

0-0(D)->0(D)—>2-0

yields the exact sequence

0—-H°(X,0(D))—...»H°(X,2) —» H' (X, 0 (D))
- H'(X,0(D")) -0,

so that x (0 (D)) — x(0(D)) = 1. Since deg D' — deg D =1, the

desired assertion follows, g.e.d.

(3.5) COROLLARY. h° (D) >deg D — g + 1.

(3.6) COROLLARY. For any P € X, there exists a nonconstant meromorphic

function on X, holomorphicin X — P, with a pole of order < g + 1 at P.
Proof: For D = (g+1)P,h° (D) >2 by (3.4), ie. H°(X,0 (D))

contains a nonconstant element.

(3.7) COROLLARY. For any vector bundle ¥~ on X, and any Pe X,
H'(Xx—{P},¥) = 0.

Proof: By (3.6), there exists a holomorphic map f: X — P! with
P = £~ 1 (00). Now use (2.11), (2.12), (2.16) and (2.17).
(3.8) COROLLARY. g = 0 iff X ~ P

Proof: g = 0 for X = P! by Laurent’s theorem. Conversely, if g = 0,
then there exists by (3.6) a meromorphic function f on X with just one
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simple pole and no other singularities. It is easy to see that /: X — Pl is
then an isomorphism.
'(3.9) COROLLARY. If D ~ D', then deg D = deg D'.

Proof: D ~ D' implies 0 (D) ~ 0 (D"), hence x (0 (D)) = x (¢ (D).
Hence deg D = deg D’ by (3.4).

(3.10) Definition. The degree of a line bundle ¥ is the degree of any
D e Div X such that & =~ 0 (D), i.e. the degree of the divisor of any
meromorphic section of Z.

(3.11) Remark. The above definition is justified by (2.11) and (3.9). It
is clear that the map deg : Pic X — Z is a group homomorphism.

(3.13) Definition. The degree of a vector bundle ¥ is that of the line
bundle det ¥ = A , ¥, r = rank ¥ .

| (3.14) Remark. The stalk of (det¥")™' = Hom (det ¥7, Ox) at any
Pe X consists Op-multilinear alternate maps ¥ p X ... X ¥ p (r times)
- 0p.

(3.15) PROPOSITION. If 0 > ¥ —» ¥ —» ¥ — 0 is an exact sequence of
vector bundles, then deg v~ = deg v + deg v"".

Proof: det v ~ det v~ ® det v .

(3.16) ProposITION. (Riemann-Roch theorem, preliminary form). For
any vector bundle ¥~ on X,

x (¥) = deg ¥ + rank ¥ . x (0)

Proof : In view of (3.15), (3.2) and (2.11), the proposition follows
from (3.4) by induction on rank 7.

§4. THE DEGREE OF THE CANONICAL LINE BUNDLE

Recall that the canonical line bundle K on X is the sheaf of holomorphic
1-forms.

(4.1) THEOREM. deg K = 2g — 2 = —2 4 (0).
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