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THE RIEMANN-ROCH THEOREM
FOR COMPACT RIEMANN SURFACES

by R. R. SiMHA

§ 1. INTRODUCTION

The aim of this article is to present a sheaf-theoretic proof of the

B Ricmann-Roch theorem (including Serre duality) for vector bundles on

compact Riemann surfaces. The basic assumption will be the finite dimen-

B sionality of cohomology vector spaces; no further potential theory will be
B used. Thus the proof will work (with trivial modifications) in the algebraic

| case also (over an algebraically closed field of any characteristic). The
| possibly new contribution of the article is a simple direct proof of the fact
| that the degree of the canonical divisor is 29 — 2, whereg = dim H*' (X, 0).
": We now give an outline of the contents. The rather long Section 2 gives

B the necessary definitions and sheaf-theoretic results, and the consequences

| of the finite dimensionality theorem which are needed later. Section 3 gives

the preliminary form of the Riemann-Roch theorem. The identity
| deg K = 2g — 2 is proved in Section 4. Serre duality and the final form of
B the Riemann-Roch theorem are proved in Section 5.

| Our exposition borrows freely from those of Serre [5] and Mumford [4].

| We should also mention the proof of the Riemann-Roch theorem given in
| Grauert-Remmert [1] (Ch. VII).

': I thank the referee for his careful reading of the manuscript, which has

' eliminated many errors.

§ 2. LINE BUNDLES AND VECTOR BUNDLES.
SHEAF THEORETIC PRELIMINARIES

| In all that follows, X will denote a compact Riemann surface, i.e. a
| connected compact complex manifold of complex dimension 1; 0 = 0,

| will denote its structure sheaf, i.e. the sheaf of germs of holomorphic
t functions on X.
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For any sheaf &% on X, and any P e X, %, denotes the stalk of & at
P; for U < X open, & (U) denotes the set of sections of & over U.

(2.1) Definition. A vector bundle of rank r on X is an Ox-Module (i.e. a
sheaf of Oy-modules) which is locally @y-isomorphic to Oy + ... + Oy
(r times). A line bundle is a vector bundle of rank one.

(2.2) Example—Definition. A divisor D = > n(P)P on X is just an

PeX
element of the free abelian group Div (X) on the set X. We write D >0

if n(P)>0 for all Pe X, and D > D’ for another D’e Div (X) if
D — D" > 0. For any such D e Div (X), we define a line bundle ¢ (D) as
follows. Let .# = ./ be the sheaf of germs of meromorphic functions
on X. Then, for any U< X open, 0 (D)(U) = {fed (U): ordp f
> — n(P) for all Pe U}. Then, for any Pe X, it is clear that 7;"® is a
local generator for @ (D) near P, where ¢, is a uniformising parameter at
P; thus O (D) is indeed a line bundle, which is an ¢-submodule of .#. It
is clear that D > 0 iff 0 (D) > 0.

(2.3) Example. The canonical line bundle Ky = K on X is just the sheaf
of holomorphic 1-forms on X. Thus, if (U, z) is a coordinate chart on X,
then K (U) is the set of differential 1-forms fdz on U with fe O (U), so
that K is clearly a line bundle.

(2.4) Example—Proposition. Let f: X — Y be a nonconstant holo-
morphic map of compact Riemann surfaces, and ¥~ a vector bundle on X.
Then the direct image sheaf f, (") of ¥~ by f'is a vector bundle on Y.

Proof : Recall that, for any U = Y open, f, (¥) (U) = ¥ (f~ ' (U))
and that g € 0y (U) acts as multiplication by g o f. Now note that f is a
proper map, and that £~ (Q) is a finite set for each Q € Y. Also, for any
P e X, there exist uniformising parameters z and w at P and f (P) respectively
such that w o f = z" for some integer » > 1. Thus it is easily seen that it
suffices to prove the following: for the map f:z — z" of the unit disc U
in C onto another copy W of it, f, (0p) is a free Oyp-Module (or rank #).
But this is clear; in fact the functions 1, z, ..., 2"~ ', regarded as sections
of f, (0,) over W, generate it over Oy and are independent everywhere

on W.

(2.5) Definition. A meromorphic section ¢ of a vector bundle ¥~ on X is
a holomorphic section ¢ of ¥~ over the complement of some finite set
S < X such that, for each P e S, there exists a connected neighbourhood
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Uof Pand an f % 0in 0 (U) so that fo extends to a holomorphic section
of V over U.

" (2.6) Remark. A meromorphic section of Oy is just a meromorphic
function on X. It is clear that the set of meromorphic sections of a vector
bundle ¥ is a vector space over the field of meromorphic functions on X,
of dimension < 1 if rank ¥~ = 1.

(2.7) Definition. The divisor div o of a meromorphic section o % 0 of
a vector bundle ¥ on X is X n (P) P, where, for each P e X, n(P) is the
integer characterised by tp" ¥ 6 e ¥ p — mp ¥ p; here fp is a uniformi-
sing parameter at P, and m, is the maximal ideal of 0p; n (P) is the order
of o at P.

We shall now deduce from the finiteness theorem that every vector
bundle has plenty of meromorphic sections. We first state the finiteness
| theorem explicitly:

. (2.8) Finiteness Theorem. For every vector bundle v on X, H°(X,¥)
; and H' (X, ") are finite-dimensional vector spaces over C,

| H (X, 9) = 0.
(2.9) Remark. The finite dimensionality of H® and H' can be deduced

| i from Montel’s theorem and the fact that a locally compact Hilbert space is

| finite dimensional; see e.g. Gunning [2], p. 59 or [1], Ch. VI. The vanishing
B of H' for i >2 follows from the Dolbeault resolution for ¥, see e.g.
L Gunning-Rossi [3], pp. 184; another proof will be indicated in (2.17).

| (2.10) PROPOSITION. Every vector bundle ¥~ on X admits (infinitely
B many) meromorphic sections.

‘ Proof: Pick any P e X, and let (U, z) be a coordinate system centred
g at P (ie. z(P) = 0). Let U be the covering {U, X — P} of X. We may
f assume that there is an Oy-isomorphism ¢ : 0, — ¥ | U (r = rank ¥7). Then
B the set of r-tuples of polynomials in 1/z can be regarded (via ¢) as an

| infinite dimensional subspace W of Z'(QU,¥). Now H!(Q, %)
< H'(X,¥") is finite dimensional, hence the kernel W’ of the natural
| map W <, Z' (W, ¥") > H' (U, ¥") is infinite dimensional. It is clear that
| different ‘elements of W’ lead to different meromorphic sections of 77,
g.e.d.

(2.11) COROLLARY. Every vector bundle ¥~ on X is an extension of line
bundles of the form 0 (D), De Div X (i.e. there exists an exact sequence
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0->0(D)—>Y -9 >0 with ¥ a vector bundle) ; every line bundle
Z is isomorphic to O (div o) for any meromorphic section o of %.

Proof: Choose any meromorphic section o (£0) of ¥°, and let
D = div ¢. Then multiplication by ¢ makes @ (D) an @y-submodule of ¥,
and it is clear that ¥~ l O (D) is again a vector bundle, g.e.d.

(2.12) CoroLLARY. Let P' = Cu {0} be the Riemann sphere, and
% aline bundle on P'. Then & |C is trivial, i.e. & |C » 0.

Proof: Let ¢ be a meromorphic section of ¥ over P!, and dive
= Xn(P)P. If z denotes the coordinate function on C, then clearly
o' = ] (z—z(P))™"™. o is a nowhere-vanishing section of £ over C,

PeC
q.e.d.

In order to see when, for D, D' e Div (X), 0 (D) and O (D’) are iso-

morphic as line bundles, we begin with a definition:

(2.13) Definition. Let D, D'e Div X. Then D is equivalent to D’
(notation: D ~ D’) if there exists a meromorphic function f £ 0 such that
D' = D + div f.

Remark. An f as in (2.13), if it exists, is clearly unique upto a nonzero
constant factor (X compact!)

(2.14) PropoOSITION. Let D, D'eDiv(X). Then D ~ D' iff 0 (D)
and O (D') are isomorphic.

Proof: Note that any Oy-linear map #y — .#x is defined by multi-
plication by a unique meromorphic function, and that any @y-linear map
0 (D) - 0 (D) extends naturally to one of #y into itself. Now multi-
plication by the meromorphic function f maps O (D) into O (D') iff
—D +divf>—D', ie. D'+ divf > D, so the proposition follows.

(2.15) Remark. The map D — O (D) thus sets up a bijection between the
set of equivalence classes of divisors and the set Pic X of isomorphism
classes of line bundles on X. Now the group structure on Div X clearly
induces one on the set of divisor classes, hence by the above map on Pic X.
It is easy to see that the induced group operation on Pic X corresponds to
the tensor product (over Oy) of line bundles: multiplication of functions
induces a canonical map 0 (D) ® O (D) » O (D+ D’) which is clearly
an isomorphism. It is also easy to verify that the inverse of the line bundle
Z is represented by Hom 4, (&, 0x) (cf. the proof of (2.14)).
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Note finally that, if % is any line bundle on X and D = X np P € Div X,
then % ® O (D) can be identified with the sheaf of germs of meromorphic
sections ¢ of . such that ord, ¢ > —np.
' We conclude this section with the following consequence of the Leray
covering theorem ([3], p. 189 or [2], p. 44).

(2.16) PROPOSITION. Let f: X — Y be a nonconstant holomorphic map
| of compact Riemann surfaces, and ¥~ a vector bundle on X. Then the
¥ natural maps H' (Y, fo (V) > H “(X, V") are isomorphisms for all i > 0.

_} Proof : If U is a sufficiently fine open covering of Y, then it is clear
| that, for each Uel, f, (¥) | U is Op-free, and that £~ ! (U) is a finite
disjoint union of coordinate open sets in X, restricted to each of which ¥~
is free. Since, for i > 0, H* (W, Oy) = 0 for any open W < C, it follows
that i and U’ = { YU :Ue II} are Leray coverings for f, (#7) and ¥~
§ respectively. Now the natural maps H'(U, f, () - H' (W, ¥") are
§ obviously bijective, q.e.d.

(2.17) Remark. Propositions (2.4) and (2.16) are valid (with the same
proofs) even if X is not compact, provided we assume that f is proper.

i (2.18) Remark. We know by (2.10) that any (compact) X admits a non-
constant meromorphic function, i.e. a nonconstant holomorphic map
E /2 X > P! Since P! is covered by two coordinate neighbourhoods which
E (by (2.11) and (2.12)) constitute a Leray covering for any vector bundle
| on P, it follows by (2.16) that H' (X, ¥") = 0 for i > 2 for any compact
Riemann surface X and any vector bundle ¥~ on it. This proof is valid in
| the algebraic situation also. This is the reason for including the case i > 2
f in (2.16) rather than appealing to (2.8). We also remark that the Leray
| theorem is almost trivial for H'; the fact that for a Leray covering I,
| H>* (M, #) > H* (X, #) is surjective (which is what was needed above)

® is also trivial if we use resolutions.

§ 3. RIEMANN-ROCH THEOREM (PRELIMINARY FORM)

We fix a compact Riemann surface X.
(3.1) Notation—Definition. For any vector bundle ¥" on X, we set

B (¥) = dimg H'(X, ), = 0,1and x(¥) = k(%) — ht (¥) .
§ The genus g of X is h' (0y) .
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