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THE RIEMANN-ROCH THEOREM
FOR COMPACT RIEMANN SURFACES

by R. R. SiMHA

§ 1. INTRODUCTION

The aim of this article is to present a sheaf-theoretic proof of the

B Ricmann-Roch theorem (including Serre duality) for vector bundles on

compact Riemann surfaces. The basic assumption will be the finite dimen-

B sionality of cohomology vector spaces; no further potential theory will be
B used. Thus the proof will work (with trivial modifications) in the algebraic

| case also (over an algebraically closed field of any characteristic). The
| possibly new contribution of the article is a simple direct proof of the fact
| that the degree of the canonical divisor is 29 — 2, whereg = dim H*' (X, 0).
": We now give an outline of the contents. The rather long Section 2 gives

B the necessary definitions and sheaf-theoretic results, and the consequences

| of the finite dimensionality theorem which are needed later. Section 3 gives

the preliminary form of the Riemann-Roch theorem. The identity
| deg K = 2g — 2 is proved in Section 4. Serre duality and the final form of
B the Riemann-Roch theorem are proved in Section 5.

| Our exposition borrows freely from those of Serre [5] and Mumford [4].

| We should also mention the proof of the Riemann-Roch theorem given in
| Grauert-Remmert [1] (Ch. VII).

': I thank the referee for his careful reading of the manuscript, which has

' eliminated many errors.

§ 2. LINE BUNDLES AND VECTOR BUNDLES.
SHEAF THEORETIC PRELIMINARIES

| In all that follows, X will denote a compact Riemann surface, i.e. a
| connected compact complex manifold of complex dimension 1; 0 = 0,

| will denote its structure sheaf, i.e. the sheaf of germs of holomorphic
t functions on X.




186 R. R. SIMHA

For any sheaf &% on X, and any P e X, %, denotes the stalk of & at
P; for U < X open, & (U) denotes the set of sections of & over U.

(2.1) Definition. A vector bundle of rank r on X is an Ox-Module (i.e. a
sheaf of Oy-modules) which is locally @y-isomorphic to Oy + ... + Oy
(r times). A line bundle is a vector bundle of rank one.

(2.2) Example—Definition. A divisor D = > n(P)P on X is just an

PeX
element of the free abelian group Div (X) on the set X. We write D >0

if n(P)>0 for all Pe X, and D > D’ for another D’e Div (X) if
D — D" > 0. For any such D e Div (X), we define a line bundle ¢ (D) as
follows. Let .# = ./ be the sheaf of germs of meromorphic functions
on X. Then, for any U< X open, 0 (D)(U) = {fed (U): ordp f
> — n(P) for all Pe U}. Then, for any Pe X, it is clear that 7;"® is a
local generator for @ (D) near P, where ¢, is a uniformising parameter at
P; thus O (D) is indeed a line bundle, which is an ¢-submodule of .#. It
is clear that D > 0 iff 0 (D) > 0.

(2.3) Example. The canonical line bundle Ky = K on X is just the sheaf
of holomorphic 1-forms on X. Thus, if (U, z) is a coordinate chart on X,
then K (U) is the set of differential 1-forms fdz on U with fe O (U), so
that K is clearly a line bundle.

(2.4) Example—Proposition. Let f: X — Y be a nonconstant holo-
morphic map of compact Riemann surfaces, and ¥~ a vector bundle on X.
Then the direct image sheaf f, (") of ¥~ by f'is a vector bundle on Y.

Proof : Recall that, for any U = Y open, f, (¥) (U) = ¥ (f~ ' (U))
and that g € 0y (U) acts as multiplication by g o f. Now note that f is a
proper map, and that £~ (Q) is a finite set for each Q € Y. Also, for any
P e X, there exist uniformising parameters z and w at P and f (P) respectively
such that w o f = z" for some integer » > 1. Thus it is easily seen that it
suffices to prove the following: for the map f:z — z" of the unit disc U
in C onto another copy W of it, f, (0p) is a free Oyp-Module (or rank #).
But this is clear; in fact the functions 1, z, ..., 2"~ ', regarded as sections
of f, (0,) over W, generate it over Oy and are independent everywhere

on W.

(2.5) Definition. A meromorphic section ¢ of a vector bundle ¥~ on X is
a holomorphic section ¢ of ¥~ over the complement of some finite set
S < X such that, for each P e S, there exists a connected neighbourhood




THE RIEMANN-ROCH THEOREM 187

Uof Pand an f % 0in 0 (U) so that fo extends to a holomorphic section
of V over U.

" (2.6) Remark. A meromorphic section of Oy is just a meromorphic
function on X. It is clear that the set of meromorphic sections of a vector
bundle ¥ is a vector space over the field of meromorphic functions on X,
of dimension < 1 if rank ¥~ = 1.

(2.7) Definition. The divisor div o of a meromorphic section o % 0 of
a vector bundle ¥ on X is X n (P) P, where, for each P e X, n(P) is the
integer characterised by tp" ¥ 6 e ¥ p — mp ¥ p; here fp is a uniformi-
sing parameter at P, and m, is the maximal ideal of 0p; n (P) is the order
of o at P.

We shall now deduce from the finiteness theorem that every vector
bundle has plenty of meromorphic sections. We first state the finiteness
| theorem explicitly:

. (2.8) Finiteness Theorem. For every vector bundle v on X, H°(X,¥)
; and H' (X, ") are finite-dimensional vector spaces over C,

| H (X, 9) = 0.
(2.9) Remark. The finite dimensionality of H® and H' can be deduced

| i from Montel’s theorem and the fact that a locally compact Hilbert space is

| finite dimensional; see e.g. Gunning [2], p. 59 or [1], Ch. VI. The vanishing
B of H' for i >2 follows from the Dolbeault resolution for ¥, see e.g.
L Gunning-Rossi [3], pp. 184; another proof will be indicated in (2.17).

| (2.10) PROPOSITION. Every vector bundle ¥~ on X admits (infinitely
B many) meromorphic sections.

‘ Proof: Pick any P e X, and let (U, z) be a coordinate system centred
g at P (ie. z(P) = 0). Let U be the covering {U, X — P} of X. We may
f assume that there is an Oy-isomorphism ¢ : 0, — ¥ | U (r = rank ¥7). Then
B the set of r-tuples of polynomials in 1/z can be regarded (via ¢) as an

| infinite dimensional subspace W of Z'(QU,¥). Now H!(Q, %)
< H'(X,¥") is finite dimensional, hence the kernel W’ of the natural
| map W <, Z' (W, ¥") > H' (U, ¥") is infinite dimensional. It is clear that
| different ‘elements of W’ lead to different meromorphic sections of 77,
g.e.d.

(2.11) COROLLARY. Every vector bundle ¥~ on X is an extension of line
bundles of the form 0 (D), De Div X (i.e. there exists an exact sequence
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0->0(D)—>Y -9 >0 with ¥ a vector bundle) ; every line bundle
Z is isomorphic to O (div o) for any meromorphic section o of %.

Proof: Choose any meromorphic section o (£0) of ¥°, and let
D = div ¢. Then multiplication by ¢ makes @ (D) an @y-submodule of ¥,
and it is clear that ¥~ l O (D) is again a vector bundle, g.e.d.

(2.12) CoroLLARY. Let P' = Cu {0} be the Riemann sphere, and
% aline bundle on P'. Then & |C is trivial, i.e. & |C » 0.

Proof: Let ¢ be a meromorphic section of ¥ over P!, and dive
= Xn(P)P. If z denotes the coordinate function on C, then clearly
o' = ] (z—z(P))™"™. o is a nowhere-vanishing section of £ over C,

PeC
q.e.d.

In order to see when, for D, D' e Div (X), 0 (D) and O (D’) are iso-

morphic as line bundles, we begin with a definition:

(2.13) Definition. Let D, D'e Div X. Then D is equivalent to D’
(notation: D ~ D’) if there exists a meromorphic function f £ 0 such that
D' = D + div f.

Remark. An f as in (2.13), if it exists, is clearly unique upto a nonzero
constant factor (X compact!)

(2.14) PropoOSITION. Let D, D'eDiv(X). Then D ~ D' iff 0 (D)
and O (D') are isomorphic.

Proof: Note that any Oy-linear map #y — .#x is defined by multi-
plication by a unique meromorphic function, and that any @y-linear map
0 (D) - 0 (D) extends naturally to one of #y into itself. Now multi-
plication by the meromorphic function f maps O (D) into O (D') iff
—D +divf>—D', ie. D'+ divf > D, so the proposition follows.

(2.15) Remark. The map D — O (D) thus sets up a bijection between the
set of equivalence classes of divisors and the set Pic X of isomorphism
classes of line bundles on X. Now the group structure on Div X clearly
induces one on the set of divisor classes, hence by the above map on Pic X.
It is easy to see that the induced group operation on Pic X corresponds to
the tensor product (over Oy) of line bundles: multiplication of functions
induces a canonical map 0 (D) ® O (D) » O (D+ D’) which is clearly
an isomorphism. It is also easy to verify that the inverse of the line bundle
Z is represented by Hom 4, (&, 0x) (cf. the proof of (2.14)).
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Note finally that, if % is any line bundle on X and D = X np P € Div X,
then % ® O (D) can be identified with the sheaf of germs of meromorphic
sections ¢ of . such that ord, ¢ > —np.
' We conclude this section with the following consequence of the Leray
covering theorem ([3], p. 189 or [2], p. 44).

(2.16) PROPOSITION. Let f: X — Y be a nonconstant holomorphic map
| of compact Riemann surfaces, and ¥~ a vector bundle on X. Then the
¥ natural maps H' (Y, fo (V) > H “(X, V") are isomorphisms for all i > 0.

_} Proof : If U is a sufficiently fine open covering of Y, then it is clear
| that, for each Uel, f, (¥) | U is Op-free, and that £~ ! (U) is a finite
disjoint union of coordinate open sets in X, restricted to each of which ¥~
is free. Since, for i > 0, H* (W, Oy) = 0 for any open W < C, it follows
that i and U’ = { YU :Ue II} are Leray coverings for f, (#7) and ¥~
§ respectively. Now the natural maps H'(U, f, () - H' (W, ¥") are
§ obviously bijective, q.e.d.

(2.17) Remark. Propositions (2.4) and (2.16) are valid (with the same
proofs) even if X is not compact, provided we assume that f is proper.

i (2.18) Remark. We know by (2.10) that any (compact) X admits a non-
constant meromorphic function, i.e. a nonconstant holomorphic map
E /2 X > P! Since P! is covered by two coordinate neighbourhoods which
E (by (2.11) and (2.12)) constitute a Leray covering for any vector bundle
| on P, it follows by (2.16) that H' (X, ¥") = 0 for i > 2 for any compact
Riemann surface X and any vector bundle ¥~ on it. This proof is valid in
| the algebraic situation also. This is the reason for including the case i > 2
f in (2.16) rather than appealing to (2.8). We also remark that the Leray
| theorem is almost trivial for H'; the fact that for a Leray covering I,
| H>* (M, #) > H* (X, #) is surjective (which is what was needed above)

® is also trivial if we use resolutions.

§ 3. RIEMANN-ROCH THEOREM (PRELIMINARY FORM)

We fix a compact Riemann surface X.
(3.1) Notation—Definition. For any vector bundle ¥" on X, we set

B (¥) = dimg H'(X, ), = 0,1and x(¥) = k(%) — ht (¥) .
§ The genus g of X is h' (0y) .
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(3.2) Remark. If 0 - ¥ — ¥ — ¥"— 0 is an exact sequence of vector
bundles, then y (¥") = x (¥") + x (¥"), as follows from the cohomology
exact sequence (since H? = 0).

(3.3) Definition. The degree deg D of D = Zn(P)PeDiv X is 2 n(P).

(3.4) ProPOSITION. For any D e Div (X),
2(0(D)) = x(0) + deg D =deg D —g + 1.

Proof : (Serre [5], pp. 20-21). The assertion is a tautology for D = 0;
hence we need only prove that it holds for D e Div (X) iff it holds for a
divisor of the form D' = D + P,Pe X. Now 0 (D) is a subsheaf of
O (D’), and the quotient sheaf 2 = @0 (D")/0 (D) is concentrated at P with
stalk isomorphic to Op/mp. Hence 4% (2) = 1, and A' (2) = 0. Now the
exact sequence

0-0(D)->0(D)—>2-0

yields the exact sequence

0—-H°(X,0(D))—...»H°(X,2) —» H' (X, 0 (D))
- H'(X,0(D")) -0,

so that x (0 (D)) — x(0(D)) = 1. Since deg D' — deg D =1, the

desired assertion follows, g.e.d.

(3.5) COROLLARY. h° (D) >deg D — g + 1.

(3.6) COROLLARY. For any P € X, there exists a nonconstant meromorphic

function on X, holomorphicin X — P, with a pole of order < g + 1 at P.
Proof: For D = (g+1)P,h° (D) >2 by (3.4), ie. H°(X,0 (D))

contains a nonconstant element.

(3.7) COROLLARY. For any vector bundle ¥~ on X, and any Pe X,
H'(Xx—{P},¥) = 0.

Proof: By (3.6), there exists a holomorphic map f: X — P! with
P = £~ 1 (00). Now use (2.11), (2.12), (2.16) and (2.17).
(3.8) COROLLARY. g = 0 iff X ~ P

Proof: g = 0 for X = P! by Laurent’s theorem. Conversely, if g = 0,
then there exists by (3.6) a meromorphic function f on X with just one
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simple pole and no other singularities. It is easy to see that /: X — Pl is
then an isomorphism.
'(3.9) COROLLARY. If D ~ D', then deg D = deg D'.

Proof: D ~ D' implies 0 (D) ~ 0 (D"), hence x (0 (D)) = x (¢ (D).
Hence deg D = deg D’ by (3.4).

(3.10) Definition. The degree of a line bundle ¥ is the degree of any
D e Div X such that & =~ 0 (D), i.e. the degree of the divisor of any
meromorphic section of Z.

(3.11) Remark. The above definition is justified by (2.11) and (3.9). It
is clear that the map deg : Pic X — Z is a group homomorphism.

(3.13) Definition. The degree of a vector bundle ¥ is that of the line
bundle det ¥ = A , ¥, r = rank ¥ .

| (3.14) Remark. The stalk of (det¥")™' = Hom (det ¥7, Ox) at any
Pe X consists Op-multilinear alternate maps ¥ p X ... X ¥ p (r times)
- 0p.

(3.15) PROPOSITION. If 0 > ¥ —» ¥ —» ¥ — 0 is an exact sequence of
vector bundles, then deg v~ = deg v + deg v"".

Proof: det v ~ det v~ ® det v .

(3.16) ProposITION. (Riemann-Roch theorem, preliminary form). For
any vector bundle ¥~ on X,

x (¥) = deg ¥ + rank ¥ . x (0)

Proof : In view of (3.15), (3.2) and (2.11), the proposition follows
from (3.4) by induction on rank 7.

§4. THE DEGREE OF THE CANONICAL LINE BUNDLE

Recall that the canonical line bundle K on X is the sheaf of holomorphic
1-forms.

(4.1) THEOREM. deg K = 2g — 2 = —2 4 (0).
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Proof :. Choose any nonconstant meromorphic function for X, and
consider the holomorphic map f: X - P! = Y. Then the ramification
divisor R = X e(P) P of fis defined as follows: for suitable uniformising
parameters z and w at P and f(P) respectively, w (f(z)) = z¢®* 1. After
composing f with a fractional linear transformation if necessary, we may
assume that f is unramified over oo, i.e. e(P) = 0if f(P) = oo. Note that

r= > (e(@)+ 1) is independent of Q € Y, being clearly the rank of

Pef~1(Q)
the vector bundle £, (O) on Y (cf. (2.4)). Now df is a meromorphic 1-form

on X (i.e. a meromorphic section of Ky), with zeros of orders e (P) at the P
with f(P) # oo, and poles of order two at each of the r poles of f. Thus
we have:

(4.2) (Riemann-Hurwitz formula). deg K = deg R — 2r.
On the other hand, by (2.16) and (3.16), we have

(4.3) 21(0x) = x(fo (0y) = deg fo (Ox) + 1 x(Oy)
= deg fo (Oy) + 1.

Thus, to finish the proof of (4.1), we must prove:
1
(4.4) deg fo (Ox) = — 5 deg R .

To prove (4.4), let & = det f, (0x). Then we shall show that there is a
canonical Oy-linear map ¢ : & ® £ — 0y which, at any Q € Y, looks like
multiplication by t‘gQ), where 6(Q) = ), e(P) (t, a uniformising

Pef—1(Q
parameter at Q). Since ) d (Q) = deg R, this will prove (4.4).
Q

The map ¢ is the classical discriminant map. To define it, we first define
the “trace” map t : f, (Ox) = Oy : for U = Y open and he Oy (f~* (),

t(©@) = Y (e@P)+1)h(P) for all QeU. Then clearly

Pef—1(0)
7 (h) € Oy (U), and 7 is Oy-linear. Now for any U < Y open and any two

r-tuples A = (Ag, oo 4), 8 = (U, - ) Of elements of Oy (f~1 (U))
(recall that r = rank f; (Oy)), we set & (4, ) = det (v (4, u;). Clearly 6
is Oy-multilinear and alternating in each of A4 and u, hence defines an O-

linear map
0. QR L — 0y

This is the desired map. To compute the effect of 6 at any Q € 7, let
us assume first that £~ (Q) is a single point P. In suitable coordinate
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systems at P and Q, fis the map Z — Z°?* ' = wof the unit disc U = C
onto another copy W of it. Since 1, Z, ..., Z°¢ provide an Op-basis for
- £, (Qy), the value of § on a local generator of & ® £ is given by

det (1(Z'77)),0<i,j<e =¢,.

But
T (Zi+j) — Zi+j (1 +Ci+j + (Ci—{-j)z 4+ (é'i+j)e) ,
(¢ denoting a primitive (e+1) — st root of unity), hence

1(Z) = (e+1)Z" if i4+j=0 or e+1,
= 0 otherwise.

Hence det (7 (Z'*7)) is a (nonzero) constant multiple of Z©* ¢ = w* as
asserted.

If £~ (Q) consists of several points, the situation is a direct sum of
those considered above, and § is indeed as asserted. This proves Theorem

(4.1).

(4.5) Remark. Let the notation be as above, and let £ (X) denote the
topological Euler-Poincaré characteristic of X. Then, using the formula
E (X) = number of vertices — number of edges + number of faces in any
triangulation of X, it is easy to see that £ (X) = r E(Y) — deg R (Y=P").
Indeed, choose any triangulation of Y which contains all the images of the
ramification points of f as vertices, and lift it to a triangulation of X. Then,
while r edges or faces lie over each edge or face of Y, the ramification points
reduce the number of vertices over certain vertices of Y, and one gets the
formula asserted. Since E(Y) = 2, (4.2) yields:

(4.6) CoROLLARY. deg Ky = —E(X) =29 — 2, ie. g 1is also the
topological genus (1/2) b, (X) of the compact oriented surface X.

§ 5. RIEMANN-ROCH THEOREM (FINAL FORM). SERRE DUALITY

(5.1) (RIEMANN-ROCH THEOREM). For any line bundle % on X,
(L) - (KQF ™) =deg & —g + 1.

Proof : It is enough to prove
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(5.2) for all &, A° (L) — °(KQRFL ) >deg ¥ —g + 1. For then,
replacing % by K ® £~ ! changes only the sign of the left side, and the
same is true of the right side by (4.1) (cf. [4], p. 147).

Now (5.2) is true if deg ¥ > deg K, for then A1° (K®¥ ') = 0, and
we can use (3.5). Thus, to prove (5.2), we may assume that & = @ (D) for
some D e Div X, and that (5.2) holds for ¥’ = 0 (D+P,), P, € X. Now
it is clear that A° (%) < h°(¥) + 1, and similarly A° (K@% 1)
< WP (K®F') + 1 (cf. the proof of (3.4)). So (5.2) fails for & if and only
it (&)Y =& +1, and W EKRL H =KL+ 1.
But if (*) holds, there exist

ceH? (X, %) — H° (X, %)
and
weH (X, KQ¥ Y - H°(X,KQZL' ™1,
and then
cw =0 @weH° (X, K®O0 (Py)) — H° (X, K),

i.e. ow 1s a meromorphic form with precisely one simple pole at P,. But this
is impossible: if D is a disc around P, in some coordinate system centred

at Py, then | ow= — [ ow =0 by Stokes theorem, while
oD 0 (X—D)

[ ow # 0 by the Residue theorem. Thus (*) cannot hold, and (5.2) is
oD

proved, ‘ g.e.d.

(5.3) COROLLARY. For any line bundle ¥ on X, h* (¥) = h° (K@%~ h).
Proof: Compare (5.1) and (3.4).

(5.4) COROLLARY. h° (K) = g and h' (K) = 1.

Before proceeding to Serre duality, we examine the notion of residue in
greater detail. Thus let U < X be open, and @ a meromorphic 1-form on
U with a pole at P € U. Then, in terms of a uniformising parameter ¢ at P,
w = fdt near P, with f a meromorphic function at P. The residue of w

1 . : :
at P is 5 times the coefficient of 1/¢ in the Laurent expansion of f in powers
i -
of t. The independence of Resp ( ) on the choice of ¢ can be proved either
by direct computation or by identifying it with 1/2ni j @, where vy 1is a
k4

suitable curve around P. By the argument already used above (Stokes’
theorem), one gets
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(5.5) (RESIDUE THEOREM). The sum of the residues of any meromorphic
I-form on X is zero.

(5.6) COROLLARY. Given distinct P, Q€ X, there exists a meromorphic
I-form on X, holomorphic outside P and Q, and with simple poles at
P, O of residue 1 and —1 respectively.

Proof: Let ¥ =K® O0(P+Q). Then degK® £ ' <0, hence
h°(#) =g + 1 by (5.1), ie. there exists we H° (X, &) — H® (X, K).
Then it is clear that the residues of w at P and Q must be non-zero, while
their sum is zero (by (5.5)), hence a suitable constant multiple of w will
have the desired properties.

(5.7) PROPOSITION. There is a canonical isomorphism res : H* (X, K) — C.

Proof: Pick any P € X, and a coordinate neighbourhood U of P. Let
U be the covering {U, X — P} of X. Then, by taking residues at P, we get
a map resp : Z* (U, K) - C. This map is not zero, and induces a map
H' (U, K) — C (by the residue theorem). Since 4 (K) = 1,resp : H* (U, K)
— H' (X, K) — Cisin fact an isomorphism. That the map res, : H' (X, K)
— C 1s independent of the choice of Pe X is precisely the meaning of
(5.6), and we get the asserted canonical isomorphism res.

(5.8) SERRE DuALITY. For any line bundle ¥ on X, the natural bilinear
form

res

(H(X, %) x HH(X,K® % 1) » H' (X, K) > C

is nondegenerate.

(5.9) Remark. For any covering U of X, the natural map % x (K ® £~ 1)
— K defines an obvious pairing

H°(X, %) x Z' WKL 1) - Z* (U, K)
which is easily seen to induce the pairing

H° (X, %) x H" (X, K®% ') » H' (X, K)
figuring in (5.8).

Proof of (5.8). Since we already know that
WP (X, &) = h' (X, K@%,
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we need only show that, if 0 € H® (X, %) is such that { (c®y) = 0 for
all ye H' (X, K £~ 1), then ¢ = 0. Now choose any Pe X, and a co-
ordinate neighbourhood (U, z) of P centred at P such that % | U ~ Oy.
Then the covering i = {U, X — P} is a Leray covering for %, K and
K® %' ((3.7). The z"dz,neZ, can all be regarded as elements of
Z'(UW, KL 1); let 9, denote their images in H* (X, K® %~ '). Then
clearly p (6 ®y,) = O for all n implies that all the coefficients of the Taylor
expansion of ¢ at P with respect to vanish, hence ¢ = 0, g.e.d.

(5.9) SERRE DUALITY FOR VECTOR BUNDLES. For any vector bundle V"
on X, let v'* = Hom Oy (v, Oy). Then the natural pairing

res

(:H(X,)*x HH(X,KQv*) - H' (X,K) 5 C
is non-degenerate.

Proof : Arguing as in the proof of (5.8) we see that the map H° (X, ¥")
— (H' (X, K®7™*)* induced by ({ is injective, hence h°(X,?")
< h' (X, KQV'*). Replacing ¥ by K@ ¥*, we also get h°(KQ¥ %)
< At (¥). But, by induction on rank ¥", we easily deduce from (5.3) that
Y (KQV*) = —y(¥), hence h°(X,¥) = h' (X, KQ¥*). Thus { is
non-degenerate as before.

REFERENCES

[1] Grauert, H. and R. REMMERT. Theory of Stein Spaces. Springer-Verlag, 1979.

[2] GUNNING, R. C. Lectures on Riemann surfaces. Princeton University Press.

[3] Gunning, R. C. and H. Rosst. Arnalytic Functions of Several Complex Variables.
Prentice Hall, 1965.

[4] MuMFORD, D. Algebraic Geometry I: Complex Projective Varieties. Springer-Verlag,
1976.

[51 SERRE, J.-P. Groupes Algébriques et Corps de Classes. Hermann, 1959.

( Regu le 10 juillet 1980)

R. R. Simha

School of Mathematics

Tata Institute of Fundamental Research
Bombay 400 005

India




	THE RIEMANN-ROCH THEOREM FOR COMPACT RIEMANN SURFACES
	§1. Introduction
	§2. Line bundles and vector bundles. Sheaf theoretic preliminaries
	§3. RIEMANN-ROCH THEOREM (PRELIMINARY FORM)
	§4. The degree of the canonical line bundle
	§5. RIEMANN-ROCH THEOREM (FINAL FORM). SERRE DUALITY
	...


