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PROBLEMS AND RESULTS ON FINITE
AND INFINITE COMBINATORIAL ANALYSIS II ')

by Paul ERDOS

During my long life I have published many papers of similar title, at

§ the end of the introduction I give a partial list of my papers on related

| subjects.

»_ Hajnal and I published two survey papers on problems in set theory.

¥ Sufficient progress has been made to make a new paper necessary, but I

B did not follow all the independence proofs sufficiently to undertake this

| task alone. Thus I will almost entirely deal with problems and results where

I was personally involved and in which I am currently interested.

B 1 hope that the survey paper in question will eventually (soon?) be

f written and perhaps (if I live) I will be one of the coauthors.

I In this paper infinite problems will be discussed much more thoroughly

8 than finite ones.

{ P. ErDGs, Problems and results on finite and infinite combinatorial
| analysis, Coll. Math. Soc. J. Bolyai, Infinite and finite sets, Keszthely

B Hungary 1973, 403-424. T will refer to this paper as 1.

P. ErDOs and A. HaiNaAL, Unsolved problems in set theory, Proc.
| Symp. Pure Math. Vol. 13, Part 1, Amer. Math. Soc., 1971, 17-48 and

8 Unsolved and solved problems in set theory, Vol. 25, Tarski Symposium

| 269-287.

f  P. ErDOs, Problems and results in combinatorial analysis, Proc. Symp.

® Pure Math. XIX Amer. Math. Soc., 77-89.

P. ERDOS and D. KLEITMAN, Extremal problems among subsets of a set,

| Combinatorial Math and Applications, Proc. Chapel Hill Conference 1970,
146-170, see also Discrete Math. 8 (1979), 287-294.

| P. ErDOS, Some old and new problems in various branches of combi-

natorics, Southeastern Conference in Combinatorics, Graph Theory, and

| Computing Vol. 10. This paper contains a fairly complete list of references

to my older problem papers.

'1) Presented at the Symposium iiber Logik und Algorithmik in honour of Ernst SPECKER,
f Zirich, February 1980.
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P. ErRDOS, On the combinatorial problems which I would most like
to see solved, Combinatorica 1 (1981), 25-42.

1. First of all I discuss a problem where E. Specker had a very important
role to play.

First 1 define a special case of the arrow symbol of Rado and myself.
Let o, B4, ..., B, be ordinal numbers. Then « — (84, ..., §,), means that if
we divide the r-tuples of a set of order type « into n classes then for some i
there is a set of type f3; all whose r-tuples are in the i-th class. Rado and I
wondered whether w* — (0% n)5 holds for every « < w, and n < w. We
could not even prove w? — (w?, 3)3. In November 1954 I was on the way
from the Amsterdam International Congress to Israel and stopped off for
two weeks in Switzerland for a few lectures. I told Specker our problem
w? - (w?, 3)} and offered 20 dollars if he decides this question. Not long
after I arrived in Israel, a letter of Specker arrived which contained the

proof of w? — (w2, n);. I thought that I could prove by his methods
o* - (0¥, n)5 but when I tried to tell the proof to Specker in the summer |

of 1955 I realized that I can only prove a much weaker result. Soon after-
wards Specker disproved w* — (w¥, 3); for every 3 < k < w. Specker very
soon realized that neither the proof nor the counterexample works for
o® = (0, 3)5. A few years later I offered 250 dollars for a proof or dis-
proof of this conjecture. In 1970 finally Chang proved w® — (w®, 3); and
a few months later E. Milner proved w® — (w®, n)5. Jean Larson obtained
a much simpler proof and also various generalizations for higher cardinals.

To help study these partition relations Specker introduced the notion
of pinning. Let 4 and B be well ordered sets. A mapping II of 4 into B is
called a pinning map if for every set X < A which is order isomorphic
to A, IT (A) is order isomorphic to B. If « and f are ordinals, we say o can
be pinned to S, in symbols a — f, if there is a pinning map from « into f.
(As far as I know the name pinning is due to J. Larson, the symbol « — f
to Rotman).

The problem now is to decide which ordinals o« and f satisfy « — f.
Specker observed that if « — f and « — (a, )5, then f — (B, n)5. Specker
proved w3+ (w3, 3); and o™ w? for every 3 <m < . Thus he showed
o™+ (o™ 3); for every 3 <m < . F. Galvin and J. Larson (answering
a question of Specker) characterized all countable ordinals « for which
o — > as those ordinals « of the form w? where y is a decomposable
ordinal with y >3, if « = @ + ... + @', 7o >... >7,, then a —» >
iff "% — @3 for some i. Thus for ordinals o of this form « + («, 3)5. The

T b AT o 05 SR S RN BT P P, F



COMBINATORIAL ANALYSIS 165

negative partition result for w> and its corollaries through pinning are the
only known negative results for the relation a -b (o, 3); where « is an
infinite countable indecomposable ordinal.

Thus w®” is the first indecomposable ordinal which can not be pinned
to w3 and for which °* — (0% 3)2 is open.

Specker proved that for every countable a > 2, o* — w?” and J. Larson
characterized all pairs of countable ordinals «, f which satisfy « — f.

She observed that there infinitely many countable ordinals w* which
can be pinned only to 1, w, w?* and themselves. For such an ordinal
B, B — (B, 3)5; may be particularly hard to settle. And w®® is the smallest

such ordinal.
| Perhaps the most attractive and interesting unsolved problem in the
theory of pinning is due to Rotman: Can one ever pin an ordinal « to a
| larger one? He showed that such an ordinal «, if it exists must be non-
| denumerable.
J. Larson started a systematic study of « — f for uncountable ordinals.
B There are no surprises for o < w9*?, but she showed that w$*? - w? if
B c = N, and it is consistent that %2 b w?.
E. Nosal almost completely determined the truth value of " — (0™, k)3.
8 In fact she proved that if f(m,n) is the smallest integer for which
o" b (0™, f(m, n))% then for 5 <m <nf(m,n) =20 1/m=11 4 1 and
| (3, n) = 2"~ 2 + 1. She conjectures that f (4, n) = 20"~ 1/31 4 1,
) Haddad and Sabbagh, and independently Galvin and Hajnal, reduced
previously the truth value of w" — (0™, k)7 to a finite combinatorial
B problem.
" I offer 2000 Swiss Francs for a characterization of the countable ordinals
o which satisfy «*— (0% 3); and 500 for a proof or disproof of

w®? > (a)“’z, 3)3.

As far as I know, for every o« > w, & — («, 3)5 implies a — (a, n)? for
| every n < o. It certainly would be interesting to decide if this really holds,
| and I offer 500 Swiss Francs for a proof or disproof of this conjecture.

P. ErDOs and R. RADO. A partition calculus in set theory. Bull. Amer. Math. Soc. 62
(1956), 427-489.

E. Specker. Teilmengen van Mengen mit Relationen. Comment. Math. Helv. 31 (1957),
302-214.

C. C. CHANG. A partition theorem for the complete graph on »®. J. Comb. Theory (A)
12 (1972), 396-452.

J. LARSON. A short proof of a partition theorem for the ordinal w®, Ann. Math. Logic 6
(1973), 129-145.

f F. GALVIN and J. LaArsoN. Pinning countable ordinals. Fund. Math. 82 (1975), 357-361.
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J. LarsoN. An independence result for pinning for ordinals. J. London Math. Soc. (2) 19
(1979), 1-6.

J. Larson. For pairs of countable ordinals. Fund. Math., to appear.

E. NosaL. Partition relations for denumerable ordinals. Journal Comb. Theory, 27 (B),
(1979), 190-198. The paper has extensive references to earlier papers on this
subject.

2. Let me now state in an unsystematic way some other problems and
results on the partition calculus of ordinal numbers and order types.
Baumgartner and Hajnal proved an old conjecture of Rado and myself:
For every ordinal & < w; and integer n

(1) Wy — (oc)ﬁ

The proof used Martin’s axiom. Later Galvin obtained a generalization
of (1) by complicated but purely combinatorial arguments.

Very recently Galvin and Prikry proved the following surprising result:
Color the edges of a complete graph K (w;) by n colors. Then there is a
color i and a closed cofinal set S so that for every ordinal « € S there is a
set of ordinals . < o of type « so that all the edges joining two of the f’s
are of the i-th color.

Hajnal and I proved that (C. H. is assumed)

w3 > (w0, 3); for every o < w; and o, o P (0,0, 3); .

We could not decide
CO% - (C()lCO, 4)% .

Also we could not decide
w0 — (0, 3);.

One of the most striking unsolved problems is the following question
of Hajnal, Milner and myself: Let « be a limit ordinal, G a graph whose
vertices are the elements of «. Is it true that G either contains an infinite
path or an independent set of type «? We proved this for every o < m{* 2.
Our proof breaks down at w$*?, but perhaps the theorem holds for all
ordinal numbers «. I remind the reader that in chapter 1, J. Larson also
had difficulty with ¢ ™ 2. It is not clear to me at the moment if there is any
connection between these results and difficulties.

Hajnal, Milner and I proved that if « is a limit ordinal and G a graph
whose vertices are the elements of a then either G contains a C, (i.e. a
circuit of length 4) (or more generally a K (r, r) for every r < w) or an

independent set of type a. Our proof has not been published since it was
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superseded by the following deep result of R. Laver: (for the definition
see the paper of Laver). Let ¢ be of scattered limit type then ¢ — (¢,
K (%o, 1))

Assume that ¢ = §,. Hajnal proved o’ b (w3, 3);, more generally he
showed that if K is regular and 2% = K* then (K*)? b ((K*)?, 3)3. Baum-
gartner showed the above result remains true without assuming the regu-
larity of K. Baumgartner further proved that if ¥ = L then K* — (K2, 3)?

holds if and only if K is weakly compact. For further problems and results
| see a forthcoming paper of J. Larson, A counterexample in the partition
calculus for an uncountable ordinal, which will appear in the Israel Journal
of Math.

Hajnal and I proved w? — (0%, C5)5 without much difficulty, but we

f could not decide w$™! - (w?*?, Cs)5 (in other words: let G be a graph
whose vertices form a well-ordered set of type w$**'; if G does not contain

o+ 1

B 2 pentagon, then there is a set of vertices of type wq™ * no two vertices of
§ which are joined in G).

Let A be the order type of the set of reals. Rado and I proved that for

B cveryinteger n < w

(1) Lo (0+n, )3 .

B We could not prove w; — (w+n, 4);. As far as we know (1) could be
| strengthened to
A= (a,n); and w; > (x, n)3

| for every ordinal @ < w,, and integer n < w. It is surprising that no pro-

B gress has been made on these question. As far as I know the only non-

trivial positive result for splitting the r-tuples (r >4) of reals is 1 — (w + 1),
| for all r, n<w. This was proved by Galvin.

J. BAUMGARTNER and A. HAINAL. A proof (involving Martin’s axiom) of a partition
relation. Fund. Math. 78 (1973), 193-203.

| F. GALVIN. On a partition theorem of Baumgartner and Hajnal. Coll. Math. Soc. J.
Bdlyai, Infinite and finite sets, Keszthely Hungary 1973, 711-729.

P. ErpGs and A. HAINAL. Ordinary partition relations for ordinal numbers. Periodica
Math. Hung. I (1971), 171-185.

A, HAINAL. A negative partition relation. Proc. Nat. Acad. Sci. USA 68 (1971), 142-144.

J. BAUMGARTNER. Partition relations for uncountable ordinals. Israel J. Math. 21 (4)
(1975), 296-307.

P. ErDGs, A. HAINAL and E. MILNER. Set mappings and polarized partition relations.
Coll. Math. Soc. J. Bdlyai 4, Combinatorial theory and its applications 1969,
327-365.

R. Laver. An order type decomposition theorem. Annals of Math. 98 (1973), 96-119.

P. ErpOs and R. Rapo. A partition calculus in set theory. Bull. Amer. Math. Soc. 62
(1965), 427-489.
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3. Now I discuss problems on chromatic numbers of graphs and set
systems. A graph G is said to have chromatic number m, in symbols
x (G) = m, if its vertices can be coloured by m colors so that two vertices |

of the same color are not joined but that this can not be done by fewer

than m colors. The famous four color theorem is equivalent to the state- |

ment that every planar graph has chromatic number not exceeding four,

but soon it was realised that chromatic graphs have a great deal of interest “1

of their own. Tutte, Ungar and Zykov were the first to realise that there
are graphs of arbitrarily large (finite) chromatic number which contain no
triangles. Rado, Hajnal and I proved that for every infinite cardinal m and
every integer k there is a graph of m vertices which has chromatic number
m and which contains no odd circuit of length less than 2k + 1.

By probabilistic methods I proved that for every k < w, n < w there
is a finite graph which contains no C; for / < k (C, is a circuit of size /)
and whose chromatic number is > #n. Lovasz later gave an ingenious con-
struction for such graphs. Hajnal and I proved that every graph of chro-
matic number y (G) > k > w has to contain a complete bipartite graph
K (m, k™) for every m < w; thus in particular it must contain all C,,. Also
we proved that it must contain an infinite path. Hajnal and I showed that
if ¢ = N, there is a graph G with y (G) = N, which does not contain a
K (w, w) and Hajnal further proved that there is such a graph which does
not contain a K (w, w) and a triangle. We could not decide if a G with
¥ (G) > N must contain either a C5 and a K (w, w).

About 10 years ago Galvin asked whether the chromatic numbers have
the Darboux property. More precisely, let y (G) = m > N,. Is it true that
for every m < m, G has a subgraph G’ satisfying x (G') = n? Galvin
showed that if ¢ > N, then there is such a G with ¥ (G) = N,, so that G
has no induced subgraph G’ with y (G') = ¥;. Galvin’s problem is open
if we assume the generalized continuum hypothesis or if we make no
such assumptions but do not insist that the subgraphs should be indu-
ced.

The most striking unsolved problem is due to W. Taylor. Let G be a
graph of chromatic number N;. Is it true that for every cardinal n > N,
there is a G, with y (G,) = n so that all finite subraphs of G, are also sub-
graphs of G? Hajnal, Shelah and I proved that if y (G) > N, then there
is a k, so that G contains all C, with k > k. Our simplest unsolved problem
states: Is there an edge e of G so that for every k > k,, G contains a cir-
cuit C, one edge of which is e? Hajnal recently observed that there are
infinitely many k for which G has a C containing e.
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We call a family F of finite graphs full if for every infinite cardinal m,
there is a graph G™ of chromatic number m every finite subgraph of which
can be imbedded in some graph of the family F. We tried to characterize F
J and stated some conjectures which we do not really believe but could not
| disprove.

In a forthcoming paper (on almost bipartite large chromatic graphs)
Hajnal, Szemerédi and I prove that for every n > w and & > 0 there isa
G with y (G) > n so that every finite subgraph of G is “almost bipartite”
in the following sense: Let x;, ..., X, be any finite set of vertices of G and
G (x4, ..., x;) is the induced subgraph of G having the vertices xq, ..., Xy.
| Then we can always omit ¢k of these vertices so that the remaining graph
i should be bipartite. It is not known if our result remains true if we assume
l |G| = 1 (G) = n (where | G | denotes the cardinal number of the vertices
| of G). The following somewhat weaker statement is also open: Is there a G
| satisfying G| = ¥ (G) = N, so that for every k < w and every set of k
8 vertices Xy, ..., X; there is a subset of ck x,’s no two of which are joined in G
ie., G (x4, ..., x) has an independent set of size >ck.

The following problem discussed in our paper seems very interesting:
Let y (G) > . Denote by f¢ (k) the largest integer for which G has a sub-
graph G (k) of k vertices satisfying y (G k) = f o (k). Clearly fg (k) tends
§ to infinity with &, but if y (G) = o then it is known that it can tend to
infinity as slowly as we please. Our problem now states: for which functions
| f (k) is it true that there is a G satisfying y (G) > N and for all sufficiently
| large k, f > (k) < f(k)? We show that log, # (the r-times iterated logarithm)
is such a function. Is there such an f (k) which tends to infinity slower than
| log, n for every r? Can f (k) tend to infinity as slowly as we please? I offer
| 500 Swiss Francs for clearing up these problems.

We define £\® (k) as the smallest integer for which every induced sub-
| graph G (k) of G can be made bipartite by the omission of at most 5> (k)
| edges. We prove that for every cardinal p > o there is a G with ¥ (G) > p
| and f$* (k) < 2k*/2. By one of the theorems of Hajnal, Shelah and my-
self there is an n, so that G contains N; vertex disjoint an0+1 s. Thus
2n*/? can certainly not be replaced by o (1), but perhaps it can be replaced
by cn for some ¢ = ¢ (G). This conjecture might be too optimistic, but we
hope that 2n°/? can be replaced by n' *¢ for every ¢ > 0.

An example of Gallai-Lovasz gives a finite graph G satisfying
2(G) >r + 2 and £¢¥ () = 0 (n'~*/"). Is this best possible? For all we
know, f§* (n) could tend to infinity as slowly as we please. More precisely:
| Let x (G) = w. Can f{¥ (n) tend to infinity very slowly? (As slowly as we
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please)? Can it be o (log n) or o (log, (n))? I offer 500 Swiss Francs for
clearing up this question. (Added in proof) Tuza proved that there is for
every k and arbitrarily large n a k chromatic graph which can be made

L - k—1 k—1Y\. :
bipartite by the omission of 5 edges. ) ) is best possible.

Many problems and results on chromatic numbers of hypergraphs are
contained in our joint paper with Galvin and Hajnal.

1. P. ErpOs and R. Rapo. A construction of graphs without triangles having pre-
assigned order and chromatic number. J. London Math. Soc. 35 (1960), 444-448.

2. P. ErDOs and A. HAINAL. On chromatic number of graphs and set-systems. Acta
Math. Acad. Sci. Hungar. 17 (1966), 61-99. On chromatic number of infinite
graphs. Graph theory symposium held at Tihany Hungary 1966 (Akad. Kiado
Budapest and Academic Press New York) 83-98.

3. F. GavLviN. Chromatic numbers of subgraphs. Periodica Math. Hungar. 4 (1973),
117-119,

4. P. Erp0Os, A. HANAL and S. SHELAH. On some general properties of chromatic
numbers. Coll. Math. Soc. J. Bolyai 8. Topics in topology Keszthely (Hungary)
1972, 243-255.

5.  P. ErDOs. Graph theory and probability. Canad. J. Math. 11 (1959), 34-38. On circuits
and subgraphs of chromatic graphs. Mathematica, 9 (1962), 170-175.

6. P. ErDOs, F. GALVIN and A. HAINAL. On set-systems having large chromatic number
and not containing prescribed subsystems. Coll. Math. Soc. J. Bdlyai 10.
Infinite and finite sets, Keszthely Hungary 1973, 425-513.

7. L. LovAsz, On chromatic number of finite set systems. Acta Math. Acad. Sci.
Hungar. 19 (1968), 59-67.

4. In this chapter I give a short report on those problems of I where
significant progress has been made since I has been written.

On p. 407 of I, I state the following problem. Let ¥, = |« |, N, not
inaccessible. Is there a family of N, sets Ay, 1 < < 0,41, | 45| = N,
so that for every fi; < f, < B,

IAﬂlmAﬁa*l 9'élAﬁzmAﬁssl'

If N, is inaccessible, the construction of such a family is easy, and such a
family clearly can not exist if |« | < N,. I believed that if such a family
exists, then &, must be inaccessible. Ketonen to my great surprise showed
that if | o | = N, then such a family always exists. Unfortunately Ketonen’s
proof is unpublished.

Let m (n) be the smallest integer for which there is a three chromatic
uniform hypergraph having m (n) hyperedges. On p. 410 the inequality

oy -1
z° (1+ —> <m(n) <cn?2"
n
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is given. The upper bound has, as far as I know, never been improved, but
Beck very significantly improved the lower bound. He showed

m(n) >cn%2",

It would of course be very desirable to obtain an asymptotic formula
for m (n), but this is nowhere in sight. '

2n + k _
Let | S| = 2n + k. Define a graph of )Vemces as follows:
n
2 ..
The vertices are the ( n ) n-tuples of S, two of the n-tuples are joined
n

if they are disjoint. Kneser conjectured (p. 424 of I) that the chromatic
number of this graph is k + 2. Kneser’s conjecture has recently been
proved first by Lovasz, then Barany obtained a much simpler proof.

On p. 419 I state the following problem: Is there an infinite cardinal m
so that if | S [ = m and if we divide all subsets of S into two classes then
there is a sequence of disjoint subsets 4, = S,k = 1,2,... so that all
finite or infinite unions of the A, belong to the same class? I expected the
answer to be negative even if we restrict ourselves only to infinite unions
and further insist that all the 4, are denumerable. Galvin just informs me
that he proved that if 28 < (28" then for every set S we can color the
subsets of power <X by 2™ colors in such a way that given any family
of ¥, disjoint nonempty sets of cardinality <X, all the colors occur among
their infinite unions.

If we only consider finite subsets of S and allow only finite unions
(see p. 418 of I) then we obtain the well known conjecture of Graham and
Rothschild which was first proved by Hindman, simpler proofs were later
obtained by Baumgartner and Glazer.

On p. 405 of I, I state our old conjecture with Rado: A family {4,} of
sets is said to form a strong A4 system if the intersection of any two of them
is the same set. It is a weak A system if the intersection of any two of them
has the same size. Denote by f; (k, [) (I use the notations of I) the smallest
integer for which for any choice of f; (k, I) sets of size k there are / of them
which form a strong 4 system. Rado and I conjectured

(1) £, 1) < c*IF,

(1) is open even for / = 3! This is one of my favourite finite problems. The
best upper bound for f; (k, [) is due to J. Spencer, he proved that for every
& > 0 there is a k > k, (¢, [) for which

folke, ) < (1 +e)k!
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In T (p. 406) 1 state that Abbott raised the following problem: Denote
by £ (n) (I use the notations of I) the largest integer ¢ for which there |
are ¢ subsets of a set S of size n so that no / of them form a weak 4 system.
Abbott observed that it is not trivial to show that £ (n) > cn for every ¢
if n > ngy (c). Sharpening a previous result of Szemerédi, Szemerédi and I
proved

2
) 5O () > exp (M)

loglog n

(2) is probably far from being best possible, we have no non-trivial upper
bound for £’ (n) and can not even prove

(3) (f ) - 1.

Our paper with Szemerédi poses many new unsolved problems. Here I
state only one of them: Let S be a set of n elements and consider subsets
A, = S with 4, = [(log n)*]. Can we have more than n*** sets {4,} no
three of which form a weak A system.

Hajnal and I conjectured (I, p. 414) that for every / and » there is a
function f (n, /) tending to infinity for every fixed / if » - oo so that if
% (G) >n then G has a subgraph G, which contains no C,, 3 <r </ and

~which has chromatic number >f (n,/). Rodl proved this conjecture for

! = 3. The infinite form of our conjecture is open even in this case. It
seems likely that every G with y (G) = m > w contains a subgraph G
which has no triangle and for which y (G,) = m. This question is open for
every m > yq.

Two further conjectures of ours stated (I, p. 415): Is there a G, ] G ] = ¥,
% (G) = N, so that for every subgraph G, with |G, | <N, we have
¥ (G) < N,? As far as I know this problem is still open. Our other con-
jecture stated: Is there a G satisfying [ G] = N,or1, x(G) = X, so that
every subgraph G, With| Gy | < N, has chromatic number <N,. I believe
that this has been proved to be consistent.

I. J. BEck. On three-chromatic hypergraphs. Discrete Math. 29 (1978), 127-137.

L. Lovasz. I. Knerer’s conjecture, chromatic number and homotopy. J. Comb. Theory
(A) 25 (1978), 319-324. 1. BARARY. A short proof of Kneser’s conjecture.
ibid. 325-326.

N. HinoMmaN. Finite sums from sequences within cells of a partition. J. Comb. Theory 17
(1974), 1-11. J. BAUMGARTNER. A short proof of Hindman’s theorem. ibid.
384-386.




COMBINATORIAL ANALYSIS 173

W. Comrort. Ultrafilters some old and some new results. Bull. Amer. Math. Soc. 83
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5. In this final chapter I state a few solved and unsolved problems.

I. One of our old problems with Hajnal was settled two years ago by
Mills and Prikry. Let |A| = |B| = | C| =¥, be three disjoint sets.
Divide the set of all triples (X, Y, Z), X € 4, Y e B, Z € C into two classes.
Is it then true that there are subsets 4, « 4, By <« B,C, <« C, | A, l

=|B,| = | Cy| = N, so that all triples (X, Y, Z), Xed,, Ye B,
Z e C, are in the same class? Mills and Prikry proved that the answer is
negative, for further results I have to refer to their paper which will soon
appear.

II. Assume ¢ = N;. I conjectured that E, (the n-dimensional euclidean
space) can be decomposed as the union of X, sets S,,n = 1,2, ... so that
for every n all the distances between two points of S, are distinct (i.e., every
set of four points of S, determines six distinct distances). For n = 1 this
(and more) follows from an old result of Kakutani and myself. For n = 2
R. V. Davies proved it and very recently K. Kunen settled the general case.
Our paper with Kakutani shows that if ¢ > N, thenthe result fails even
forn = 1.

P. ErDOs and S. KAKUTANI. On non-denumerable graphs. Bull. Amer. Math. Soc. 49
(1943), 457-461.

R. V. Davies. Partitioning the plane into denumerably many sets without repeated
distances. Proc. Cambridge Philos. Soc. 72 (1972), 179-183.

HI. Galvin and T proved the following theorem: Divide the r-tuples of
the integers into k classes. Then there always is an infinite subsequence

{a; < ..} = 4 satisfying Y 1>¢ log,_4yn (the r — 1 times iterated

a;<n
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logarithm) for infinitely many », all r-tuples of which belong to at most
2"~1 classes. 27! can not be replaced by a smaller number, log,_, # is
probably best possible too but we know this only for r = 2.

The following conjecture of ours seems to be of interest. Assume
k = r = 2. Is it true that to every C there is a set 4 all pairs of which are
in the same class and

(1) 2—1—>C.

aeA a;

(1) very likely remains true for k classes too. We observe that (1) can

1
not be strengthened to ) — = o0. (Added in proof) Rédl proved that
ajed “i
(1) is false for £ > 2.
We further prove the following result: Let £ = r = 2, then there is a
monochromatic path {a, a,, ...} (i.e., the edges (a;, a;,,) are all in the

same class, the a’s are all distinct but ;< a;, ; is not assumed) satisfying

> 0.

(2) lim sup
now MAax a
1=k=n
The proof of (2) is surprisingly difficult.
It is easy to see that there is a monochromatic path for which

1
(3) limsup— > 1>

1
n— o0 n a;<=n 2

1
We expect that in (3) 5 can be replaced by a larger constant but so far

1
we could not do this. It is easy to see that in (3) 3 can not be replaced by

9 : :
— . For more details I have to refer to our forthcoming paper, which I

10
hope will appear in a finite time.

IV. Several years ago the following problem occured to me: Let K (n)
be a complete graph on n vertices (n<w). Two players alternatingly choose
an edge of K (n). The game is finished if all the edges of K () have been
chosen by one (and only one) of the players. The first player wins if the
largest clique of his graph is larger than the largest clique of the graph of
the second player; otherwise he loses. Trivially the first player wins for

T
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n = 2 and I think if n > 2 the second player can force a win. I could not
even prove that the second player can force a win if n is sufficiently
- large.

One could modify the rules as follows: The first player wins if he has
the larger clique or if the largest cliques are of the same size; he wins if he
has more cliques of maximal size than the second player. Perhaps here the
first player wins for all sufficiently large n.

Hajnal and his colleagues did recently a great deal of interesting work
on infinite Ramsey games, the relevant papers will soon appear. These
results lead me to the following question: Let S = {a,}, 2 = 1,2, ... be
a set [S { = N, > N, the @, are assumed to be linearly independent. Let
S (r) be the set of all element X r, a, where the r, are rational and the sums
are finite. Clearly | S| = | S (r)] = N,. Now two players play the following
game in S (r). They move alternatingly, the first player always chooses one
element which has not yet been chosen and then the second player chooses
N, elements which have not yet been chosen. The game continues until
S (r) has been completely divided between the players, after f moves
where f has no predecessor it always is the first players move. The aim of
the first player is to get as long an arithmetic progression as possible.

Hajnal and I observed that the second player can always prevent the
first player from getting an infinite arithmetic progression. In fact he can
do this even if he is also permitted only the choice of one element. We
further observed that for » = 1 the second player can prevent the first
player from getting an arithmetic progression of three terms and for n = 2
he can prevent an arithmetic progression of four terms, but not of three
terms. Galvin and Nagy proved that the first player alsways can force an
arithmetic progression of » + 1 terms but the second player can prevent
him from getting an arithmetic progression of n + 2 terms.

To end the paper I state two problems. The first is a beautiful old prob-
lem of Kemperman: Let f(X), oo < x < oo be a real function. Assume
that

2fX)<fX+h) + f(X+2h)

holds for every x and every positive 4. Does it then follow that f (x) is non-
decreasing i.e., if ¥ > x then f () > f(x). One would expect that it will
be easy to prove this or get a counterexample. If £ (x) is assumed to be
measurable the proof is indeed easy but the general case seems to present
difficulties. (Added in proof) Laczkovics proved that f(x) is monotonic,
his proof will soon appear in Acta Math. Acad. Sci. Hungar.
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The second problem is an old question of mine which perhaps will not
be difficult: Let E be an infinite set of real numbers. Is there always a set
of real numbers S of positive measure which does not contain a set E;
similar to E? (similar here means homotetic i.e., E{ can be obtained
from E by translation and dilation or contraction). It clearly would suffice
to prove this if F is a sequence of positive numbers tending to 0.

I expect that such a set S of positive measure always exist.
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