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154 M. FURER

6. LOWER BOUNDS

Definition. A marked binary number is a word over the alphabet
{0, 0,1, 1 } described by the regular expression (0 U 1)* 0 1* U I*. The value
of a marked binary number is given by the homomorphism % with % (0)
= h(@) =0 and A(1) = h(I) = 1, i.e. by disregarding the type of the
digits.

Note: The digits in italics are those which will change their value when
the marked binary number is increased by one.
Marked binary numbers allow the following local tests:

1. A word over the alphabet {0, 0,1, ]} is a marked binary number, iff
the last digit is in italics and only the following adjacent pairs of digits
occur:

a) 00,01, 00, 10, 11, 10 (0, 1 or 0 behind O or 1), and
b) 01, 11 (I behind 0 or I).

2. For two right adjusted marked binary numbers x and y with y below x
holds:
value (x) + 1 = value (y) iff only the following vertically
adjacent pairs of digits occur:

a) 0 or 0 below O or / and
b) 1 or / below 0 or 1.

THEOREM (Lower bound). If a language L is accepted by a linear space
bounded alternating Turing machine M, with at most q successors for each
universal configuration, then L is polynomial time transformable to the set
of satisfiable formulas of the monadic V3% class via length order nlog n.

Proof. We can assume that M is a one-tape alternating Turing machine
accepting L in space n + 1 and time 2" — 1 foran m = O (n). We describe
the case ¢ = 2. To each input w of M, we define (using function symbols
f1 and fy) the functional form F (w) of a formula F’ (w) of the monadic
V47 class, such that:
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Claim A : we L iff F(w) is satisfiable.

Before we define the formula F (w), we show how to construct a structure
8 « from an accepting computation tree, such that « will turn out to be a
model of F(w).

If w is accepted by M, then there is an accepting computation tree CT
| with the properties:

| — Every node of the tree with depth less than 2" — 1 has exactly two sons,
| and every node with depth 2™ — 1 is a leaf. I.e. it is a complete binary
tree.

i — If the same configuration appears in several nodes, then the correspond-
| ing successor configurations are the same.

g Therefore, there are functions succ; and succg, which define the instan-
taneous descriptions of the successor configurations in the tree. Further-
B more, we can choose succ, and succ in such a way that they have the
following property:

For every pair consisting of a state and a scanned symbol, we consider
| the possible moves of M to be an ordered set.
i If ID is a universal instantaneous description, then succy (ID) is the first
and succy (ID) is the second successor of ID.
, If ID is existential, then succ; (ID) and succg (ID) are arbitrary successors
of ID (typically succ; (ID) = succg (ID)).
| If ID is accepting, then succ, (ID) = succy (ID) = ID.
f Given functions succ;, and succg and an accepting computation tree CT’
| of depth 2™ — 1 with the above properties, we define now the structure «,
| such that:

\ Claim B: « is a model of F(W).

1. The universe l o I is the set {(t, ID) l t is an integer with 0 <{¢ <<2™ — 1
| and ID is the instantaneous description of a configuration occuring in a
branch of the computation tree CT of M with input w at time t}.

2. fi (resp. fp) is interpreted by a function mapping (¢, ID) for # < 2™ — 1
to (z+1, succy, (ID)) (resp. (¢ +1, succg (ID))) and (2" — 1, ID) to (0, start
ID for input w). succ, (ID) (succg (ID)) is defined to be the instan-
taneous description of the left (right) successor configuration of ID.

3. In (¢, ID) the monadic predicates are interpreted as follows:

1

Lett = Y 5,2 with be {0, 1},
i=0
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and let ID = a, ... ay_; (@, q) a4+ ... a, With a; € X (alphabet) and ge Q
(states).

Then the O (m) monadic predicate symbols B;, M;, Z,L;,S,, T,; .
with je {0, ..,m — 1}, j'€ {0, ...,n}, pe Q and ceX are interpreted as

B ((t,1ID)) is true iff b; = 1

M ((t,1ID)) is true iff b; = 1 for all i < j, i.e. b; is marked

Z* ((1,1D)) is true iff b; = O for all i

L% ((t,ID)) is true iff j* = k

Sy (¢, ID)) is true iff p = ¢

T3 (¢, ID)) is true iff a; = o

We now define the formula F (w) and add some remarks about the intended
meaning of its subformulas. This makes it obvious that claim B holds.-
F (w) is the formula

Vy[FH(y) A FV(yst()’)) A FV(J’»fR(J’)) ANFo(y) A Fy(y)
A Fy(¥) A FL(J’,fL(JJ)) A FR(yafR(y)) A FA(Y)]

where
a) Fy(y) is /\ [Mj+1(}’)“"(Mj(J’)/\Bj(J’))] A My ()

0=j<m-—-2

The intended meaning is:
All binary numbers are correctly marked. (H stands for horizontal con-

dition.)
b)) Fy(.2)is A [Bj(2) < (M) —1B;(»)]

0=j=m-—-1

The intended meaning is: ’
The level number below level number / is / + 1. (V stands for vertical !
condition.) i

|

©) Fois[ A TIBWM]<ZO)

0=j=m—1

The intended meaning is:
The configuration at level O is distinguished by Z.

d) Fe(») is [ A A\ 71 (T;0) ATe;0)]

0O0=j=n o,6'e’X
o ¥* o’

AN TS0 A Sy ()]

4.9 €Q
q#Fq
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® The intended meaning is:

j For every configuration there is at most one symbol in every tape cell, and
the Turing machine is in at most one state.

&) Fy (0) is Z0) > [ N\ Ty () A Lo() A /N T L) ASe (1) ]

0=j=<n 1=j=n

} where 0,04 ... 0, is wb (the input w extended by a blank endmarker B),
¥ and g, is the start state of M. This is the only subformula of F (w) depending
| not only on n = l W ], but also on w. Its intended meaning is:

| The distinguished configuration at level O is the start configuration.

E ) Exactly as for nondeterministic Turing machines, it is possible to check if
g 1D, is a successor of ID, by writing ID; below ID, and checking all 6-tuples
seen through a window of length 3 and height 2 which is pushed over the
two words, and by checking that no head of the Turing machine walks
in or out of the tape portion represented by the instantaneous descriptions.
i In this way, we check

— for universal ID,, if the left son is labeled with succ; (ID,) and the
{  right son is labeled with succy (ID,);
} — for existential 1Dy, just if both sons are labeled with any successors;

— for accepting ID,, if both sons are labeled with ID,,.

‘ It is easy to construct a formula PJ-L (», 2) (Pf (y, 2)) expressing the window
| condition at the positions j, j + 1, j + 2 for the ID’s in node y and in its
| left (right) son z.

P (y, z) and P} (y, z) are built from the atomic formulas

| Sy (0,8, () forpeQ

,‘ and Lj’ (y): Lj' (Z) fOI‘jl - ]a] + 19.] + 2

| and T, (), Typ(z) forj =jj+1,j+2 and oceX.

The length of PJ-L (y, z) and Pf (», z) are bounded by a constant times the
maximal length of the atomic formulas.

| For D = Land D = R,
Fp(y, z) is Z(z) v [ /\ P;) (y, Z)

0=Lj=n-2

A (Lo (z2) > (Lo(y) v L, (Y>)) A (Ln (z2) > (L,—1 (») v L, (y)))—] .
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g) FA(y) is [Bm—l(y) A Mm—-l(y):l - V Sq(y>
q9eQq
0, is the set of accepting states of M. The intended meaning of F, ()
is:
At the deepest level 2™ — 1, all branches of the computation tree accept.

Now the formula F (w) is defined, and for w € L it should be clear that
F (w) is satisfiable and has the model o.

We still have to show the other direction of claim A. If F (w) is satisfiable,
then w e L. Let « be a model of F (w). In a the formula

Vy[Fa) AFy (v, fr()) A Fy (v, fr)]

i1s valid. Hence for all b e l o l a level number /() is defined by the in-
terpretation of the predicate symbols B; in «. The level numbers have
the property

1(f3 () = 1(fE(b)) = L(b) + 1 mod 2",

Therefore (as [oz I 1S non-empty), there are elements of all levels mod 2™,
in particular, there is an element b, of level 0.

Because Vy [F, (») A F,, (»)] is valid in o, the truth values of the predicates
L% S, and T7; in b, encode the start configuration of the alternating
Turing machine M with input w.

Let I o I’ be the subset of | o | which is accessible from b, by several appli-
cations of f] and f%. Then the validity of

Vy[Fy() AFL(n.fL()) A Fr(y,fr)]

in o ensures that the predicates L%, Sy and Tg; define for all be |« | a
unique instantaneous description ID (b) such that ID (f (b)) is a left
successor of ID (b), and ID (fx (b)) is a right successor of ID (b).

Finally, the validity of Vy F, (y) guarantees that the computation tree
is accepting.

It is easy to check that F (w) contains only O (n) atomic formulas, each
of length O (log n). Therefore IF (w)[ = O (nlogn). It is also obvious
that the formula F’ (w) and its functional form F (w) can be computed from
w in logarithmic space by a Turing machine. Note that most parts of F (w)
depend only on n = I W l N

COROLLARY 1. There isa ¢ > 1 such that no deterministic Turing machine
accepts the satisfiable formulas of the monadic Y33 class in time O (c"'*® ™).
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Proof. By standard diagonalization arguments, there is a language L
in DTIME (c%) which is not in DTIME (c7) for ¢; < ¢, [19].

L is then in ASPACE (n). Assume Corollary 1 is not true. Then by first
transforming L according to the lower bound theorem to the monadic
V33 class, and then accepting this language fast, L could be accepted in
deterministic time c7. O

COROLLARY 2. For every nondeterministic Turing machine M  which
accepts the satisfiable formulas of the monadic V3 class, there exists a
| constant ¢, such that M uses space cnflogn for infinitely many inputs.

| Proof. We use the hierarchy result for NSPACE [35] and the fact that
| an alternating Turing machine with only one successor configuration for
R cach universal configuration, is a nondeterministic Turing machine. ]

CONCLUSIONS

| Alternating Turing machines are a powerful tool in the few areas where
8 applications have been found so far. They can make connections visible,
| which are not seen otherwise. It seems impossible to find the lower bound
| for the Ackermann case of the decision problem, without knowing alter-
nating Turing machines. Even knowing the result, a direct description of
| the computation of a deterministic exponential time bounded Turing
| machine M by a 3* V3* formula, without obviously copying the simulation
f of M/ by an alternating Turing machine, seems impossible.

We are used to think that nondeterministic machines correspond
to existential quantifiers (e.g. satisfiability in propositional calculus), and
that alternating machines correspond to a sequence of alternating quantifiers
(e.g. quantified boolean formulas, i.e. the theory of {0, 1} with equality).
This paper shows that this needs not always to be the case.

| Examples
1. Not only the satisfiability problem of the d* class, but also of the
V* class is NP-complete (not co- NP-complete).

2. Adding an existential quantifier to the V prefix class, means moving
from a time to a space complexity class.
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