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Ct-i,s ^f-i and Ct-±,s+1 G-i- (Naturally these values must imply
the state qa and the headposition st at time t.) Now player A is allowed to
doubt one of these three claims, by playing the integer s' e [s — 1, s, s + 1},
and player E has to justify his claim for Cf_1>s, by claiming values for
Ct-2f s'-i, Q-2,s' and Ct-2,sf+i which imply his value for Ct^1 etc.

Finally the value claimed for C0s» is checked by comparison with the
V~th input symbol. If it is correct, then player E, otherwise player A wins.

If w is accepted by M, then the winning strategy for player E is to make

always correct claims. If w is not accepted by M, then player A has a

winning strategy. He always doubts one of the wrong claims of player E.

5. Upper bounds

Proposition. 1. For all p > 0, the 3PV3* class is logspace
transformable to the monadic 3 V3 * class via length order n.

2. The 3 * V3 * class is logspace transformable to the monadic 3 * V3 *
class via length order n2/log n.

Proof The main ideas of this proof are due to Lewis [27, Lemma 7.1]
and Ackermann [2, Section VIII. 1]. Given a formula F of the class 3P \/3q
with prefix 3xx ...3xp\/y3zl ...3zq and matrix M, let S be the set of
atomic formulas in M. We define the set S' by S' S U {A [y/xj | A e S
and 1 < i <p }

Let S' {Au Ar}.
Then | S'|r<0 + 1) | S |.

Now we change the matrix M of F toget the formula with matrix
M' by replacing (for; 1,r) all occurrences of the atomic formula A}
by Pj(y) (for a new monadic predicate symbol P}) and by adding —as a
conjunct to M—aset Bofbiconditionals.

The set B is constructed to ensure that every Herbrand model a' of the
functional form of the formula F'(withmatrix M') defines immediately a
model a of the functional form of Fby | a | | a' |,

4 4' ck, k -1 (where ck is the replacement of in the
functional forms of F and F'),



148 M. FÜRER

fk !>•••># (where fk(y) is the replacement of zk in the
functional forms of F and F'),

Pa (bl9 bn) Paj (b), if Aj eS',be\ot' |, bl9 bn e | a | and there
exist variables vl9 vn fulfilling for all z, k the following properties:

a) Aj P(yu
b) if vt xk then bt ck,

c) if vt y then bt b,

d) ifv< zfcthenZ>, - ft (b).

P" (bu Z>n) is defined arbitrarily (e.g. false) if no such ^ and b exist.
There might exist several Aj and b having these properties. To ensure that
in this case the definition of P* (bu bn) is correct, i.e. independent of the

particular choice of Aj and b, we conjoin the set B of biconditionals to the

matrix M.
Take any n-tupel (bl9 bn) e | a |". In the following cases, several

Aj e S' and b e | a | might satisfy the conditions a), b), c), d):

1. {bu...,bn} ^
2. There is a b' in {c*,..., c*} such that {Z^...., Z?„} Ç {c*,..., c*,/* (6'),

00}.
3. There is a b" in {Z>1? such that {Z>l5 Z>n} Ç {c", c*, Z>"}.

To make the definition correct in case 1, we add to B the following
biconditionals :

If there is an Aj in S' such that Aj P(vu with \yl9...,
Ç {xl9 xp], we add

Pj(y)^Pj(x1)

If Aj P(vu...,v„) with {v1,...,vn}çandAjly/x,]
Aj, [y/xk] (for Aj / Aj), then we add

Pj(X;)Pj. (xk)

Note : Here the length of the monadic formula might grow quadratically
in p.

To make the definition correct in the case when 2 but not 3 holds, we
add to B for all jj\ i with Aj [y/xL] Aj, [y/xj the formula

Pj(x^PJ, (X).
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To make the definition correct, when 3. but not 2. holds, we add to B the

following biconditional.
For all j,jr, k such that Aj P (v±,..., vn) with

ye{vu,..,vn}s
and Aj [y/zk\ Ar, we add

Pj(zk)~Pr(y)

If both 2. and 3. but not 1. hold, and if there are atomic formulas Ay

and Ay, such that Aj contains y but no variables of (zl5 zqj and

Aj [y/zk] Ay [y/xi], we have to make sure that

Pj'ifïtâ)) =*?(#).
But in this case S ' contains an Ay with

Ay Aj \_yI zk~\

and we have added the formulas:

Pj(zk)^Py(y) (case 3)

and

Py (Xi) Py (xt) (case 2)

Hence

wsrwr» Fj-vï) rfv,')
It is not obvious that the transformation from formula F to formula F'

can be done in logarithmic space, because F might contain variables or
predicate symbols with excessively long indices. But then a simple trick
solves the problem. Instead of writing such an index on a work tape, only
a pointer position number) to its location on the input tape is stored on
a work tape.

If I F j n, then at most O («/log n) different atomic formulas appear
in F (i.e. | S | O («/log «)). The number | S' | of different atomic formulas
in F' is then bounded by c{p+ 1) | S |. Hence the transformation from F
to F' is via length order n for constant p and via length order n2/log n in
general (i.e. for p O (n/log «)).

Problem. Is there an efficient transformation from the 3* V3* class to
the monadic 3* V3* class via length order n

Theorem (Upper bound). The satisfiability of the monadic prefix class
3* V3* is decidable by an alternating Turing machine M in space
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O («/log «). Furthermore M enters no universal states for formulas of the
subclass 3* V3.

Proof Let the input F be the monadic formula

3x1 ...aXpVySzj ...3

with F0 quantifier-free. It is easy to find out if the input has this form or
not. Let F0 contain m different atomic formulas. Then m O («/log «)
for n - I F \.

Let (vlf ...,vp+q+1)be(xu xp,y,zu z4) and let Au be the
atomic formulas Pj (vt) of F0 in lexicographical order according to (i,j).

Tl9 is a sequence of truth values for the atomic formulas. (The
atomic formula Ak is interpreted to be true if Tk true.)

The alternating Turing machine M executes the following satisfiability
test:

Program

1. begin

for all k such that the atomic formula Ak contains an xi9 choose

existentially Tk to be true or false;
for r : 1 to max (19p) do

begin

2. for all k9 k'9 j such that Ak is Pj (y and Ak, is Pj (xr) do Tk : Tr ;

3. for all k9 j such that Ak is Pj (y and Pj (xr) does not appear in Fdo
choose existentially a value of {true, false} for Tk;

4. for counter : 1 to 2W do

begin

5. for all k such that Ak is a Pj (zf) do choose existentially a truth
value for Tk; check that the interpretation of the atomic
formulas Ak (k 1, m) by Tk gives the value true to the

matrix F0, otherwise stop rejecting;

7. if q 0 then goto E\
if q 1 then s : I (i.e. zs zf);
if q > 1 then choose universally a value from (l,..., #} for s;

8. for all k9k'J such that Ak is Pj(y) and Ak> is Pj (zs) do

T, : 7L:



ALTERNATION AND DECISION PROBLEM 151

9. for all k such that (for any j) Ak is Pj (y) and Pj (zs) does not

appear in F do choose existentially a truth value for Tk;

end;

E : end;

stop accepting;
end.

To execute this program, the alternating Turing machine M uses only

space

m to count to 2m,

m to store Tu Tm,

log p < log m to store r,

c log n for anxillary storage, especially to store position
numbers of certain information on the input tape,

e.g. long indices, which are not copied to the work
tapes.

Because m O (n/log n), there is an upper bound O (n/log n) (independent
of p and q) for the space used by M.

We have to show that the above program decides satisfiability of the
formula F correctly.

Let F' y Fq be the functional form of F 3x±... 3xp \/y 3z}
3zq F0, obtained by replacing xt by c{ and zt by ft (y).

a) Let F' (and F) be satisfiable and let a be a model of F'.
We think the program of M extended by:

before 2. b : car

before 8. b : f% (b)

Then good existential choices for the truth values Tk are

if Ak Pj (xd then Tk : P«(c«)

if Ak Pj(y) then Tk : P* (b)

if Ak Pj (Zi) then : P) (/« (b))

The computation tree defined by these existential choices accepts the
formula F.
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b) Assume the alternating Turing machine M accepts the formula F. Then
each minimal accepting computation tree (without unnecessary branches)
of M with input F can be used to construct a Herbrand model a of F'.

Note that the Herbrand universe

I a I {clscp,fl (cj), (f1 ...}

(as a set of terms) and the functions f\, of a possible Herbrand model
of F' are uniquely defined. We have to define the predicates

We look at the program extended by

b : c* (before 2) and

b : /" (b) (before 8) as in a).

All elements of | a | with nesting depth < 2m are assigned to b somewhere

in the accepting computation tree. The current values of the sequence

Tu Tm define some truth values of predicates in cf,..., c^b, f\ (b),...,

f\ (b) by
Tj if

P*(b) Tj if AJ

PUflib)) Tj if AJ

The other truth values of the predicates P* are defined arbitrarily. This
method of defining predicates of b is used on each path in the tree

(| a |>/i> •••>/£)> °nly until the first repetition of all truth values on that
path. That happens on each path in a depth < 2m. Let bf be the node on
the path to b with the same truth values for all predicates as b. Then

(inductively) the predicates are defined to have the same values on the subtree

with root b as on the subtree with root b'. The so constructed structure a is

a model of F.

Corollary 1 (Lewis [27]). The set of satisfiable formulas of the monadic

3* V3* class is (for a constant c > 1) in DTIME (c"/log n).

Proof The alternating Turing machine of the upper bound theorem

can be simulated in deterministic time cn/log n.

The direct construction of a deterministic cn/loë n time decision procedure
of Lewis [27] is easier. He starts with a big structure (with 2m elements,

where m is the number of predicate symbols), and eliminates bad elements

of this structure, to get either a model or the non-existence of a model.
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We have chosen the decision procedure by an alternating Turing
machine to get the following result for free.

Corollary 2. The satisfiable formulas of the monadic 3* V3 class

are in NSPACE («/log n).

Proof The universal states of the alternating Turing machine M which

decides the monadic 3* V3* class are not used for the subclass 3" V3.

If we drop them, we get a nondeterministic Turing machine.

By combining the proposition with the upper bound theorem we get

immediately.

Corollary 3. The satisfiable formulas of the 3* V3* class are

in DTIME (c("/Iog n)2) for some c.

Corollary 4. The satisfiable formulas of the 3* V3 class are in

NSPACE ((«/log«)2).

Lewis [27] claims the same time bound in Corollary 3 as for the monadic

case. But this seems not to work. For example, if P(xuy), P (xp, y)
and P (y, xx), P (y, xp) appear in the formula, then p2 truth values for
Pa (c", (ij — 1, ...,p) have to be guessed.

But these upper bounds are not very good, as e.g. in Corollary 3 the Turing
machine could be replaced by one which works a short time (O ((«/log «)2)

steps) nondeterministically and then only c"/log M steps deterministically.

The 3* V class

Formulas of the 3* V class are transformed by our procedure in
monadic formulas again of the 3* V class. For these formulas, the
procedure of the upper bound theorem works in nondeterministic polynomial
time. On the other hand the 3* V class is certainly more difficult than
propositional calculus. Therefore the set of satisfiable formulas of the
3* V class is TVP-complete. (TVP-completeness is discussed in [15].)

In fact, as the Herbrand models of the satisfiable formulas of the
3P \/q class, have only max (p, 1) elements, it is easy to see that the
satisfiability problem for all the following classes in NP-complete :

a) 3p\fq p+q> 1

b) 3*V* q>0
c) V*
d) 3V*

But the classes 33V*and3*V* need NTIME cn/logn resp. cn.
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