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Cio1s = b,y and C,_4 ¢+1 = ¢,—1. (Naturally these values must imply
the state g, and the headposition s, at time z.) Now player A is allowed to
‘doubt one of these three claims, by playing the integer s’ € {s — 1,55+ 1} ,
and player E has to justify his claim for C,_ by claiming values for
| Ci—5 -1, Ci_y ¢ and C,_, ¢4 which imply his value for C,_, ; etc.
Finally the value claimed for C,,. is checked by comparison with the
s"-th input symbol. If it is correct, then player E, otherwise player A wins.
' If w is accepted by M, then the winning strategy for player E is to make
always correct claims. If w is not accepted by M, then player A has a
| winning strategy. He always doubts one of the wrong claims of player E.

5. UPPER BOUNDS

_ ProroSITION. 1. For all p >0, the dPV3* class is logspace trans-
| formable to the monadic 3 N¥3* class via length order n.

2. The 3* Y 3* class is logspace transformable to the monadic 3% V3*
class via length order n?*/log n.

Proof. The main ideas of this proof are due to Lewis [27, Lemma 7.1]
| and Ackermann [2, Section VIII.1]. Given a formula F of the class 37 V3¢
f with prefix dx; ... 3x, Vy 3z, ... 3z, and matrix M, let S be the set of
| atomic formulas in M. We define the set S" by S’ = SU {4 [y/x]|4€ S
and 1 <i<p}.

Let S = {4y, .., 4,}.
Then | S’ | = r <(p+1)| S|

Now we change the matrix M of F to get the formula F’' with matrix
M’ by replacing (for j = 1, ..., r) all occurrences of the atomic formula A j
by P; (y) (for a new monadic predicate symbol P;) and by adding —as a
conjunct to M —a set B of biconditionals.

The set B is constructed to ensure that every Herbrand model &’ of the
functional form of the formula F’ (with matrix M") defines immediately a
model o of the functional form of F by I « I = l o l,

a

¢k = ¢k =c¢nk=1,.,p (where ¢, is the replacement of x, in the
functional forms of ¥ and F"),
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fe=7%,k=1,..q (where £, (») is the replacement of z, in the
functional forms of F and F’),

P*(by, ..., b)) = P% (b), if 4;€S",be|o | by,....,b,e|a| and there
exist variables v, ..., v, fulfilling for all i, & the following properties:
a) A; = P(vy, ..., ),
b) if v; = x, then b, = ¢,
c) ifv, = ythen b, = b,
d) if v; = z, then b, = f7 (b).

P*(by, ..., b,) is defined arbitrarily (e.g. false) if no such 4; and b exist.
There might exist several 4; and b having these properties. To ensure that
in this case the definition of P* (b4, ..., b,) is correct, i.e. independent of the
particular choice of 4; and b, we conjoin the set B of biconditionals to the
matrix M.

Take any mn-tupel (b, ..., b,) € | o I". In the following cases, several
A;eS" and be l o l might satisfy the conditions a), b), c), d):

1. {by, ... b} = {cf, ..., c3}.

2. There is a b" in {cf, ..., c;} such that {b;...,b,} < {cf,...,c}, 1 (D),
v fq ()}

3. There is a b” in {by, ..., b,}, such that {b,, ..., b,} = {c{, ..., ¢}, b"}.

To make the definition correct in case 1, we add to B the following
biconditionals:
If there is an A4; in S’ such that 4; = P (vy, ...,v,) with {vq,..,9,}
< {xg, ..., x,}, we add
Pj(J’)HPj(XQ

If 4, =P({y,..,v,) with {7)1, ...,vn} = {xl, tavs K y} and A4; [y/x]]
= A, [y/x;] (for A; # A;), then we add
P;(x;) <> Py (xp) .

Note : Here the length of the monadic formula might grow quadratically
in p. .
To make the definition correct in the case when 2 but not 3 holds, we
add to B for all j,j’, i with 4; [y/x;] = A; [y/x;] the formula

Pj(x) < P (x;) .




ALTERNATION AND DECISION PROBLEM 149

To make the definition correct, when 3. but not 2. holds, we add to B the

following biconditionals.
“For all j, j’, k such that 4; = P (vy, ..., v,) With

Y€ U1, s U} S {X15 ooy X ¥}

and 4; [y/z] = A;, we add
Pj (zp) ‘_’Pj' )

If both 2. and 3. but not 1. hold, and if there are atomic formulas 4;
and A, such that 4; contains y but no variables of {zl, ...y 2,4 and
| A; [y/z] = A} [y/x;], we have to make sure that

Py (f3 (%) = P5(c).
But in this case S’ contains an A4 ;. with

4y = 4Dz
'_ and we have added the formulas:

: P;(z) < P;(y) (case 3)
 and
i P (x;)) <> P; (x;) (case 2)

¢ Hence

“ PY(f%(e) = Po(ch) = P (%)

4 It is not obvious that the transformation from formula F to formula F’
can be done in logarithmic space, because F might contain variables or
§ predicate symbols with excessively long indices. But then a simple trick
| solves the problem. Instead of writing such an index on a work tape, only
a pointer (= position number) to its location on the input tape is stored on
| a work tape.

If | F [ = n, then at most O (n/log n) different atomic formulas appear
| in F (i.e. I S I = O (n/log n)). The number ] S’ | of different atomic formulas
g in F’ is then bounded by c(p+1) | S | Hence the transformation from F
| to F’ is via length order » for constant p and via length order n?/log n in
general (i.e. for p = O (n/log n)). ]

Problem. Is there an efficient transformation from the 3* WV3* class to

the monadic 4* V3* class via length order n ?

TreorEM (Upper bound). The satisfiability of the monadic prefix class
{ 3*V3* s decidable by an alternating Turing machine M in space
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O (n/log n). Furthermore M enters no universal states for formulas of the
subclass 3* V1.

Proof. Let the input F be the monadic formula
dx, ...dx,Vydz, ...dz, F,

with F, quantifier-free. It is easy to find out if the input has this form or
not. Let F, contain m different atomic formulas. Then m = O (n/log n)
forn = |F I

Let (U1, vy Vprge1) b€ (X1, oy Xpy ¥, 24, ooy 2,) and let Ay, ..., 4, be the
atomic formulas P; (v;) of F, in lexicographical order according to (i, j).

Ty, .., T, is a sequence of truth values for the atomic formulas. (The
atomic formula A, is interpreted to be true if 7}, = true.)

The alternating Turing machine M executes the following satisfiability
test:

Program
1. begin

for all £ such that the atomic formula A4, contains an x;, choose
existentially 7} to be true or false;
forr : = 1 to max (1, p) do

begin
2. forall k, k', jsuchthat 4,is P; (y)and 4y is P; (x,)do T}, : = T},
3. for all k, j such that 4, is P; (y) and P; (x,) does not appear in F'do
choose existentially a value of {true, false} for 7,;
4. for counter : = 1 to 2" do
begin
5. for all k such that 4, is a P; (z;) do choose existentially a truth

value for T;; check that the interpretation of the atomic
formulas 4, (k = 1, ..., m) by T, gives the value true to the
matrix F,, otherwise stop rejecting;

14 if ¢ = 0 then goto E;
ifg=1thens: = 1(@e. z; = zy);
if ¢ > 1 then choose universally a value from {1, ey q} for s;

8. for all k, k', j such that 4, is P;(y) and A4, is P;(z,) do
T, : =1
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2. for all k such that (for any j) 4, is P; (y) and P; (z,) does not
appear in F do choose existentially a truth value for T};

end;
E : end;

stop accepting;
end.

To execute this program, the alternating Turing machine M uses only
space
m to count to 2™,
m to store Ty, ..., T,

log p < log m to store r,

¢ log n for anxillary storage, especially to store position
numbers of certain information on the input tape,
e.g. long indices, which are not copied to the work
tapes.

Because m = O (n/log n), there is an upper bound O (n/log n) (independent
of p and ¢) for the space used by M.

We have to show that the above program decides satisfiability of the
formula F correctly.

Let F' = Vy F; be the functional form of F= 3x;..3x,Vy3z,
... 4z, F,, obtained by replacing x; by ¢; and z; by f; (»).

a) Let F’ (and F) be satisfiable and let o« be a model of F".
We think the program of M extended by:

before 2. b:=c¢

r

before 8. b:=f5(b)

Then good existential choices for the truth values T; are
if 4, = P; (x;) then T}, : = P%(c))
if 4, = P; (y) then T, : = P% ()
if 4, = P;(z;) then Ty : = P5(f% (b))

The computation tree defined by these existential choices accepts the
formula F.
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b) Assume the alternating Turing machine M accepts the formula F. Then
each minimal accepting computation tree (without unnecessary branches)
of M with input F can be used to construct a Herbrand model o of F’.

Note that the Herbrand universe

loo| = {e1s oo o f1 (C1)s oons £ (1 (€3)), e}

(as a set of terms) and the functions 7, ..., f; of a possible Herbrand model
of F’ are uniquely defined. We have to define the predicates P{, P, ... .
We look at the program extended by

b:=c (before 2) and
b:=f%(0) (before 8) as in a).

All elements of I o l with nesting depth < 2™ are assigned to b somewhere
in the accepting computation tree. The current values of the sequence
Ty, ..., T, define some truth values of predicates in cf, ..., ¢, b, f1 (), ...,
fq(b) by

P’ (cp) = TJ if Aj = P;(xy)

Pib) =T, if A =P0)

J

P"i(fi(b)) = T; if  A; = Pi(zy).

J

The other truth values of the predicates P’ are defined arbitrarily. This
method of defining predicates of b is used on each path in the tree
(I o I, 4, .., fq), only until the first repetition of all truth values on that
path. That happens on each path in a depth <C2™. Let b’ be the node on
the path to b with the same truth values for all predicates as . Then (in-
ductively) the predicates are defined to have the same values on the subtree
with root b as on the subtree with root b’. The so constructed structure o is

a model of F. O

CoroLLARY 1 (Lewis [27]). The set of satisfiable formulas of the mon-
adic 3* Y3* class is (for a constant ¢ > 1) in DTIME (c""** ™).

Proof. The alternating Turing machine of the upper bound theorem
can be simulated in deterministic time c"/'8 ", o

The direct construction of a deterministic ¢"/'°® " time decision procedure
of Lewis [27] is easier. He starts with a big structure (with 2™ elements,
where m is the number of predicate symbols), and eliminates bad elements
of this structure, to get either a model or the non-existence of a model.
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We have chosen the decision procedure by an alternating Turing
machine to get the following result for free.

COROLLARY 2. The satisfiable formulas of the monadic 3* V3 class
are in NSPACE (n/log n).

Proof. The universal states of the alternating Turing machine M which
decides the monadic 3* V3* class are not used for the subclass 3* V3.
If we drop them, we get a nondeterministic Turing machine. ]

By combining the proposition with the upper bound theorem we get
immediately.

COROLLARY 3. The satisfiable formulas of the 3I* V3* class are
in DTIME (¢ ™?) for some c. ]

COROLLARY 4. The satisfiable formulas of the 3* V3 class are in
NSPACE ((n/logn)?). n
Lewis [27] claims the same time bound in Corollary 3 as for the monadic
case. But this seems not to work. For example, if P (xy, ), ... P (x,, ¥)
and P (y, x4), ..., P (», x,) appear in the formula, then p* truth values for
P*(c% %) (i,j = 1, ..., p) have to be guessed.
| But these upper bounds are not very good, as e.g. in Corollary 3 the Turing
machine could be replaced by one which works a short time (O ((n/log n)?)
steps) nondeterministically and then only c¢"/'*®" steps deterministically.

The A* Y class

Formulas of the 3* V class are transformed by our procedure in
monadic formulas again of the 3* V class. For these formulas, the pro-
cedure of the upper bound theorem works in nondeterministic polynomial
time. On the other hand the J* V class is certainly more difficult than
propositional calculus. Therefore the set of satisfiable formulas of the
3* V class is NP-complete. (NP-completeness is discussed in [15].)

In fact, as the Herbrand models of the satisfiable formulas of the
1?7 V1 class, have only max (p, 1) elements, it is easy to see that the satis-
fiability problem for all the following classes in NP-complete:

a) PVe p+g>1
b) d*V? ¢g>0

But the classes 33V* and 3* V* need NTIME c"/"°8" resp. c".
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