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144 M. FURER

Configurations are described by instantaneous descriptions (ID). An
ID of a one-tape (infinite only to the right) Turing machine with finite tape
contents (i.e. almost everywhere is the blank symbol) is the representation
of its configuration by a word, built from an initial segment of the tape
inscription which contains the non-blank part. In this segment the scanned
symbol s is replaced by (s, ¢), where ¢ is the state of the configuration.

4. ALTERNATING TURING MACHINES

We assume that the reader is familiar with (one version of) deterministic
Turing machines. In nondeterministic Turing machines (see e.g. [3]), the
scanned symbol(s) do not determine a move (new symbol(s) and shift of
head(s)), but a finite set of moves. By choosing any move of this set, the
Turing machine follows a computation path. The nondeterministic Turing
machine accepts, iff at least one computation path leads to an accepting
configuration (i.e. a configuration with accepting state). Chandra and
Stockmeyer [10] and Kozen [24] have extended the concept of non-
deterministic Turing machines to alternating Turing machines [9]. Non-
deterministic machines involve an existential quantification (there exists a
path). Alternating machines are a natural extension involving universal as
well as existential quantification. This extension from nondeterministic to
alternating machines, works for all kinds of abstract machine models, but
we look here only at alternating Turing machines.

Definitions (Automata theory)

Alternating Turing machines have two disjoint sets of states, existential
and universal states. Configurations and successor configurations (reachable
in one move) are defined as for nondeterministic Turing machines, but the

conditions for acceptance are different.
An accepting computation tree of an alternating Turing machine M with
input w is a finite tree 7" whose nodes are labeled with configurations of M

according to the conditions:
a) The root of T is labeled with the start configuration of M with input w.

b) If a node is labeled with a configuration C, then all descendants are
Jabeled with successor configurations of C.

c) Nodes labeled with a non accepting existential configuration have at
least one descendant.
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d) If C’ is a successor configuration of a universal configuration C, and a
node N is labeled by C, then at least one descendant of N is labeled
with C’.

| e) All leaves are labeled with accepting configurations.

The language L (M) accepted by an alternating Turing machine M is
| the set of all words w, such that there exists an accepting computation tree
b of M with input w.

} Hence a nondeterministic Turing machine is an alternating Turing
-: machine with only existential states.

A very intuitive way of looking at alternating Turing machines is: Two
players A and E make moves (maybe not strictly alternating) beginning
in the start configuration of M with input w. Player A moves from universal
f‘ configurations, and E from existential configurations to successor con-
figurations. E wins if (after finitely many moves) an accepting configuration
is reached. The input w is in L (M) iff E has a winning strategy.

One might first think alternating Turing machines accept all arithmetic
sets and even more. But naturally, exactly the recursively enumerable sets
are accepted by alternating Turing machines, because every deterministic
Turing machine is an alternating Turing machine, and alternating Turing
machines can easily be simulated by deterministic Turing machines.

What goes wrong if we want a player (A or E) of an alternating Turing
E machine to choose any natural number, is that this player could decide for
ever that he wants to choose an even bigger number (computation trees
g have only finite branching).

' The situation changes drastically if Turing machines do not accept by
E cntering one accepting state, but by infinitely often entering accepting
states. Then nondeterministic Turing machines accept exactly the X}-sets
of the analytical hierarchy, while deterministic Turing machines accept
| exactly the IT3-sets of the arithmetical hierarchy. (It is not known, if the
' | sets accepted by alternating Turing machines in this way have such a nice
| characterisation.) This remark is just to indicate that automata theory
might be useful for non-recursive sets too.

Alternating Turing machines are important for several reasons. First
they are a very natural extension of nondeterministic Turing machines, and
they are closely related to the fundamental concept of quantifiers. Second
they are a basic model of parallel computation, which is of growing im-
f portance with modern technology. And third, there are beautiful relations
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between the power of time and space bounded versions of ordinary and
alternating Turing machines. Some versions of alternating Turing machines
with restricted alternating power (see Berman [6], Ruzzo [32]) are able to
bridge the gaps between deterministic and nondeterministic time and space
complexity classes. And the problems about the relation of these classes
(e.g. P = NP? P = POLYSPACE?) are still the most challenging open
questions in computational complexity.

Definitions (Complexity)

ATIME (T (v)) is the class of languages L accepted by alternating Turing
machines M, such that for each input w, there exists an accepting compu-
tation tree (of M with input w) of depth << T'(n) (for n = Iw I) ifwel,
and there exists no accepting computation tree if w¢ L.

ASPACE (S (n)) is the class of languages L accepted by alternating
Turing machines M, such that for each input w, there exists an accepting
computation tree (of M with input w), whose labels are S (n)-space bounded
configurations (for n = | w ]) if w e L, and there exists no accepting compu-
tation tree if w ¢ L. (A configuration is S (n)-space bounded if at most
S (n) tape squares on work tapes are used.)

The fundamental complexity relations between alternating and non-
alternating Turing machines are (Chandra and Stockmeyer [10], Kozen [24]):

For S(n) > n

ATIME (S (n)) = DSPACE(S (n))
and

NSPACE (S (n)) € ATIME (S (n)*)

For T (n) > logn
ASPACE (T (n)) = U DTIME (c™™)

c>0

We sketch the proof of DTIME (¢"™™) = ASPACE (T (n)), because we
use this fact for the complexity result about the Ackermann case.

Let C, , be the s-th symbol in the ID (instantaneous description) of the
configuration at time ¢, of a ¢I™ time bounded deterministic one-tape
Turing machine M with input w. The computation of M is simulated back-
wards. '

Player E says, M accepts w by entering the accepting state ¢, at time ¢
with headposition s,. And to prove this, he presents ¢ — 1, a,_4, b,_ 4,
¢,_1and s = 5,_; (¢t—1 and s in binary), claiming that C,_; .y = a,_4,
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Cio1s = b,y and C,_4 ¢+1 = ¢,—1. (Naturally these values must imply
the state g, and the headposition s, at time z.) Now player A is allowed to
‘doubt one of these three claims, by playing the integer s’ € {s — 1,55+ 1} ,
and player E has to justify his claim for C,_ by claiming values for
| Ci—5 -1, Ci_y ¢ and C,_, ¢4 which imply his value for C,_, ; etc.
Finally the value claimed for C,,. is checked by comparison with the
s"-th input symbol. If it is correct, then player E, otherwise player A wins.
' If w is accepted by M, then the winning strategy for player E is to make
always correct claims. If w is not accepted by M, then player A has a
| winning strategy. He always doubts one of the wrong claims of player E.

5. UPPER BOUNDS

_ ProroSITION. 1. For all p >0, the dPV3* class is logspace trans-
| formable to the monadic 3 N¥3* class via length order n.

2. The 3* Y 3* class is logspace transformable to the monadic 3% V3*
class via length order n?*/log n.

Proof. The main ideas of this proof are due to Lewis [27, Lemma 7.1]
| and Ackermann [2, Section VIII.1]. Given a formula F of the class 37 V3¢
f with prefix dx; ... 3x, Vy 3z, ... 3z, and matrix M, let S be the set of
| atomic formulas in M. We define the set S" by S’ = SU {4 [y/x]|4€ S
and 1 <i<p}.

Let S = {4y, .., 4,}.
Then | S’ | = r <(p+1)| S|

Now we change the matrix M of F to get the formula F’' with matrix
M’ by replacing (for j = 1, ..., r) all occurrences of the atomic formula A j
by P; (y) (for a new monadic predicate symbol P;) and by adding —as a
conjunct to M —a set B of biconditionals.

The set B is constructed to ensure that every Herbrand model &’ of the
functional form of the formula F’ (with matrix M") defines immediately a
model o of the functional form of F by I « I = l o l,

a

¢k = ¢k =c¢nk=1,.,p (where ¢, is the replacement of x, in the
functional forms of ¥ and F"),
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