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ALTERNATION AND THE ACKERMANN CASE
OF THE DECISION PROBLEM*

by Martin FURER?

ABSTRACT. The Ackermann prefix class is the set of all formulas of

predicate calculus (first order logic without function symbols) with quantifier
. prefix 3 ... 3V3 ... 3. This is one of the few prefix classes for which satis-

fiability is decidable. Lower bounds for the computational complexity of

~ this decision problem and the V3 sub-problem are presented. The tool to

get the main result is the alternating Turing machine. An introduction to
alternating Turing machines is given, because they are probably the most
remarkable new subject of automata theory, and are well known only to

- computer scientists.

1. INTRODUCTION AND HISTORICAL BACKGROUND

From the beginning of this century to the thirties, the problem of
deciding universal validity of first order formulas, moved slowly to the
center of interest of mathematical logic. Especially Hilbert considered it
to be a fundamental problem. As it seemed too hard to solve the decision
problem (or Entscheidungsproblem) in general, the main approach was
to restrict the class of formulas (for which a decision algorithm should work)
by very simple syntactic criteria. An earlier example of this kind of restric-
tion was the decidability result of Lowenheim [29] for the monadic (only
unary predicate symbols) predicate calculus. Later the main such criterion
was the form of the quantifier sequence for formulas in prenex form (see
[14], [28], [43] for other syntactically defined classes). There is a duality
between universal validity and satisfiability. A closed formula (i.e. a formula
of predicate calculus without free variables) is universally valid, iff its
negation 1s not satisfiable. Around 1930 the decidability of the satisfiability

1) Presented at the Symposium iiber Logik und Algorithmik in honour of Ernst SPECKER,
Ziirich, February 1980.
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problem for closed formulas with the following prefixes has been shown
(3* (V*) stands for finite sequences of existential (universal) quantifiers).

Bernays and Schonfinkel [7] J* V*
Ackermann [1] d* V3*
Godel [16, 17], Kalmar [23], Schiitte [33, 34]  3* VV3I*

Independent of Ackermann, Skolem [39] solved Vd*. Bernays and Schon-
finkel [7] solved the V1 case before.

These results are for predicate calculus without equality. But for the
first two cases, the methods can be extended to predicate calculus with
equality (see [2] or [14]). Dreben has discovered that the same extension
1s not obvious in the Godel-Kalmar-Schiitte case. Dreben’s conjecture that
this case might be more difficult with equality was supported by Aanderaa
and Goldfarb with various examples. Recently Goldfarb [18] (see also [14])
has shown this case not to be primitive recursive. It is not known, if it is
decidable.

It took a long time to prove that for predicate calculus without equality
the subclasses of 3* V* and 3* VV3* are the only decidable prefix classes.
The major steps in this direction were: Church [12] showed that the predi-
cate calculus is undecidable. Turing [41] gave a more direct proof of this
fact using Turing machines. So in the thirties, it was known that not all
prefix classes allow an algorithmic solution. Undecidability results have
been obtained by several researchers for prefix classes containing prefixes
of arbitrary length (see [2, p. 61]). The gap was narrowed by Suranyi [40]
who showed that the prefix classes obtained from VVd A VVV are
undecidable. Here the refined classification according to conjunctions of
formulas in prenex form is used. The formulas of the class VVd A VVV
allow a straightforward transformation to formulas of both the prefix classes
VVV3 and VV3IV. With an elegant proof Biichi [8] showed the un-
decidability for 3 A VIV. Wang [43, 44] has invented several versions of
domino problems. They represent an intermediate step between compu-
tations and formulas. Infinite computations are technically harder to
describe by formulas, than the corresponding domino problems. Using
dominoes, Kahr, Moore and Wang [22] got rid of the additional 3 (which
seemed necessary to describe a start configuration) and showed the un-
decidability of VdV. With this result, the decidability problem for all
prefix classes was solved. The undecidability of V4 A VVV follows as a
corollary, and all other undecidability results in the refined classification
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follow immediately [8], while all decidable classes are contained in the
classes of the form

5V A FEVF A L A IHVE
or

JHVVI* A FFYVI* A oA FFVVI,

At the same time, as these purely syntactically defined subclasses of the
predicate calculus have been investigated, many decidability and un-
decidability results for mathematical theories (i.e. for classes of sentences
that are not selected primarily from a syntactical point of view) have been
obtained.

In recent years many researchers have investigated the computational
complexity of decidable theories. But very few have looked at this problem
for syntactically (in the above vague sense) defined sets of formulas, except
for propositional calculus. One of these few is Kozen [25] who got the
surprising result that predicate calculus without negation is NP-complete.
The other is Lewis [27] who has investigated the computational complexity,
just of the (above defined) decidable prefix classes and the monadic predi-
cate calculus. (The latter was investigated before by Rackoff [31].) The work
of Asser [4], Mostowski [30], Bennett [5], Jones and Selman [21], and of
Christen [11] about spectra is related to this field.

The reason, why the computational complexity of these problems is of
interest is not that we would like to know how many hours we have to spend,
in order to decide if a certain formula is satisfiable. It is very much the
same, as the logicians have not been interested to use their decidability
results to decide for many formulas, if they are satisflable. Nevertheless
the decidability problem was considered to be a fundamental question of
deep mathematical significance. In the same sense, we claim that the precise
asymptotic computational complexity of a natural class of formulas is a
fundamental mathematical property. Naturally this does not mean that
complexity results are of no importance for the computational practice.
But at least some results (mostly huge lower bounds) are not so directly
applicable. What they can do, is to improve our understanding of the
investigated problem, show connections to other problems, and give us
hints for a better understanding of the reasons for the complexity of certain
problems, and for the different qualities of complexity.

From a practical computational point of view, the deterministic time
complexity is certainly the most important complexity measure. But other
measures have been developed, such as nondeterministic and space measures
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and certain more complex measures concerning alternating Turing machines.
The claim that the computational complexity is an important mathematical
notion is supported by the fact that natural problems are in nice complexity
classes.

Lewis [27] has given good complexity bounds for the decidable prefix
classes of the predicate calculus. The largest gap is in his result about the
Ackermann class 3* V3*, Lewis claims an upper deterministic time bound
c"'°¢» His lower bound is polynominal space. Naturally he conjectures that
the lower space bound is the correct bound, as problems containing quan-
tifiers do not tend to have good deterministic time bounds. And in any case,
there are very few problems known with good deterministic time bounds.
The usual method to prove lower time bounds is to describe Turing machine
computations. So just as well a nondeterministic Turing machine can be
chosen, yielding even a nondeterministic lower time bound.

But there are a few methods to prove deterministic lower time bounds,
using tools of automata theory, namely the auxiliary pushdown automaton
of Cook [13], or the auxiliary stack automaton of Ibarra [20], or the alter-
nating versions of them, investigated by Ladner, Lipton and Stockmeyer
[26], or the alternating Turing machine. The latter seems to be the most
interesting, but so far it has not had too many applications. And most
applications are to problems involving games or sequences of quantifiers
with an unbounded number of quantifier alternations. We apply alternating
Turing machines to get a ¢"/'*¢ " deterministic lower time bound for the
Ackermann case of the decision problem. This is an application of alter-
nating Turing machines in a new field, where it is not obvious that this tool
can be successful.

Here is a summary of the rest of this paper. In the next section a short
presentation of some notions from logic, and in section three from com-
putational complexity is given. In section four, the alternating Turing
machine is introduced.

In section five, a transformation from the full Ackermann class to the
monadic Ackermann class is described. This is a good transformation for
the classes 37 V3* (only p existential quantifiers in front of the universal
quantifier) with constant p. But for the class 3* V3* this transformation
is via length order n?*/log n instead of n. It is not clear, if a better trans-
formation exists. Alternating Turing machines can test the satisfiability
of 3* Vi4* formulas more directly than deterministic Turing machines.
They are used here to get the optimal upper bound of Lewis [27] for the
monadic case, because with alternating Turing machines a polynomial




ALTERNATION AND DECISION PROBLEM 141

space upper bound for the 3* V3 subcase is obtained at the same time. It
is easy to see that the class 3* V is NP-complete.

Section six contains the main result, namely the ¢"/'°¢ " lower bound for
the V33 case, and also a tight lower bound for the V3 case, as well as
some NP-complete problems. In the last section are some conclusions.

2. SOME NOTIONS FROM LOGIC

The formulas of first order logic (see e.g. Shoenfield [36]) are built
from:

— variables y, x4, X5, ... Z¢, Z5, ...

— function symbols £, g, f1, fr> f1, f25 -
(we use ¢, ¢4, Cy, ... for O-any function symbols, i.e. constants)

— predicate symbols P, P, P,, ... (and other capitals)
— auxiliary symbols (, )

— equality symbol =

— propositional symbols A, v, ™, -, &

— quantifiers V, 3

We use F [x/t] to denote the result of the substitution of the term ¢ for
the variable x in the formula F.

A formula Q; x; @, x, ... O, x,, Fo with Q; quantifiers (for i = 1, ..., 1)
and F, quantifier-free is in prenex form. F, is called the matrix of the
formula.

We are investigating decision procedures for formulas of first order
logic without equality and without function symbols. But we use the
functional form of formulas.

The functional form of a formula in prenex form is constructed by
repeatedly changing

Vx; Vx,..Vx,dy F (F may contain quantifiers) to
vxl vxZ vxn F [y[f‘i (xla raey xn)]

using each time a new n-ary function symbol f; until no more existential
quantifiers appear.

A formula is satisfiable, iff its functional form is satisfiable. In addition,
both are satisfiable by structures of the same cardinality.
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