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ALTERNATION AND THE ACKERMANN CASE
OF THE DECISION PROBLEM*

by Martin FURER?

ABSTRACT. The Ackermann prefix class is the set of all formulas of

predicate calculus (first order logic without function symbols) with quantifier
. prefix 3 ... 3V3 ... 3. This is one of the few prefix classes for which satis-

fiability is decidable. Lower bounds for the computational complexity of

~ this decision problem and the V3 sub-problem are presented. The tool to

get the main result is the alternating Turing machine. An introduction to
alternating Turing machines is given, because they are probably the most
remarkable new subject of automata theory, and are well known only to

- computer scientists.

1. INTRODUCTION AND HISTORICAL BACKGROUND

From the beginning of this century to the thirties, the problem of
deciding universal validity of first order formulas, moved slowly to the
center of interest of mathematical logic. Especially Hilbert considered it
to be a fundamental problem. As it seemed too hard to solve the decision
problem (or Entscheidungsproblem) in general, the main approach was
to restrict the class of formulas (for which a decision algorithm should work)
by very simple syntactic criteria. An earlier example of this kind of restric-
tion was the decidability result of Lowenheim [29] for the monadic (only
unary predicate symbols) predicate calculus. Later the main such criterion
was the form of the quantifier sequence for formulas in prenex form (see
[14], [28], [43] for other syntactically defined classes). There is a duality
between universal validity and satisfiability. A closed formula (i.e. a formula
of predicate calculus without free variables) is universally valid, iff its
negation 1s not satisfiable. Around 1930 the decidability of the satisfiability

1) Presented at the Symposium iiber Logik und Algorithmik in honour of Ernst SPECKER,
Ziirich, February 1980.

#) This work was supported by the British Science Research Council and by the
Swiss National Fonds.
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problem for closed formulas with the following prefixes has been shown
(3* (V*) stands for finite sequences of existential (universal) quantifiers).

Bernays and Schonfinkel [7] J* V*
Ackermann [1] d* V3*
Godel [16, 17], Kalmar [23], Schiitte [33, 34]  3* VV3I*

Independent of Ackermann, Skolem [39] solved Vd*. Bernays and Schon-
finkel [7] solved the V1 case before.

These results are for predicate calculus without equality. But for the
first two cases, the methods can be extended to predicate calculus with
equality (see [2] or [14]). Dreben has discovered that the same extension
1s not obvious in the Godel-Kalmar-Schiitte case. Dreben’s conjecture that
this case might be more difficult with equality was supported by Aanderaa
and Goldfarb with various examples. Recently Goldfarb [18] (see also [14])
has shown this case not to be primitive recursive. It is not known, if it is
decidable.

It took a long time to prove that for predicate calculus without equality
the subclasses of 3* V* and 3* VV3* are the only decidable prefix classes.
The major steps in this direction were: Church [12] showed that the predi-
cate calculus is undecidable. Turing [41] gave a more direct proof of this
fact using Turing machines. So in the thirties, it was known that not all
prefix classes allow an algorithmic solution. Undecidability results have
been obtained by several researchers for prefix classes containing prefixes
of arbitrary length (see [2, p. 61]). The gap was narrowed by Suranyi [40]
who showed that the prefix classes obtained from VVd A VVV are
undecidable. Here the refined classification according to conjunctions of
formulas in prenex form is used. The formulas of the class VVd A VVV
allow a straightforward transformation to formulas of both the prefix classes
VVV3 and VV3IV. With an elegant proof Biichi [8] showed the un-
decidability for 3 A VIV. Wang [43, 44] has invented several versions of
domino problems. They represent an intermediate step between compu-
tations and formulas. Infinite computations are technically harder to
describe by formulas, than the corresponding domino problems. Using
dominoes, Kahr, Moore and Wang [22] got rid of the additional 3 (which
seemed necessary to describe a start configuration) and showed the un-
decidability of VdV. With this result, the decidability problem for all
prefix classes was solved. The undecidability of V4 A VVV follows as a
corollary, and all other undecidability results in the refined classification
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follow immediately [8], while all decidable classes are contained in the
classes of the form

5V A FEVF A L A IHVE
or

JHVVI* A FFYVI* A oA FFVVI,

At the same time, as these purely syntactically defined subclasses of the
predicate calculus have been investigated, many decidability and un-
decidability results for mathematical theories (i.e. for classes of sentences
that are not selected primarily from a syntactical point of view) have been
obtained.

In recent years many researchers have investigated the computational
complexity of decidable theories. But very few have looked at this problem
for syntactically (in the above vague sense) defined sets of formulas, except
for propositional calculus. One of these few is Kozen [25] who got the
surprising result that predicate calculus without negation is NP-complete.
The other is Lewis [27] who has investigated the computational complexity,
just of the (above defined) decidable prefix classes and the monadic predi-
cate calculus. (The latter was investigated before by Rackoff [31].) The work
of Asser [4], Mostowski [30], Bennett [5], Jones and Selman [21], and of
Christen [11] about spectra is related to this field.

The reason, why the computational complexity of these problems is of
interest is not that we would like to know how many hours we have to spend,
in order to decide if a certain formula is satisfiable. It is very much the
same, as the logicians have not been interested to use their decidability
results to decide for many formulas, if they are satisflable. Nevertheless
the decidability problem was considered to be a fundamental question of
deep mathematical significance. In the same sense, we claim that the precise
asymptotic computational complexity of a natural class of formulas is a
fundamental mathematical property. Naturally this does not mean that
complexity results are of no importance for the computational practice.
But at least some results (mostly huge lower bounds) are not so directly
applicable. What they can do, is to improve our understanding of the
investigated problem, show connections to other problems, and give us
hints for a better understanding of the reasons for the complexity of certain
problems, and for the different qualities of complexity.

From a practical computational point of view, the deterministic time
complexity is certainly the most important complexity measure. But other
measures have been developed, such as nondeterministic and space measures




140 M. FURER

and certain more complex measures concerning alternating Turing machines.
The claim that the computational complexity is an important mathematical
notion is supported by the fact that natural problems are in nice complexity
classes.

Lewis [27] has given good complexity bounds for the decidable prefix
classes of the predicate calculus. The largest gap is in his result about the
Ackermann class 3* V3*, Lewis claims an upper deterministic time bound
c"'°¢» His lower bound is polynominal space. Naturally he conjectures that
the lower space bound is the correct bound, as problems containing quan-
tifiers do not tend to have good deterministic time bounds. And in any case,
there are very few problems known with good deterministic time bounds.
The usual method to prove lower time bounds is to describe Turing machine
computations. So just as well a nondeterministic Turing machine can be
chosen, yielding even a nondeterministic lower time bound.

But there are a few methods to prove deterministic lower time bounds,
using tools of automata theory, namely the auxiliary pushdown automaton
of Cook [13], or the auxiliary stack automaton of Ibarra [20], or the alter-
nating versions of them, investigated by Ladner, Lipton and Stockmeyer
[26], or the alternating Turing machine. The latter seems to be the most
interesting, but so far it has not had too many applications. And most
applications are to problems involving games or sequences of quantifiers
with an unbounded number of quantifier alternations. We apply alternating
Turing machines to get a ¢"/'*¢ " deterministic lower time bound for the
Ackermann case of the decision problem. This is an application of alter-
nating Turing machines in a new field, where it is not obvious that this tool
can be successful.

Here is a summary of the rest of this paper. In the next section a short
presentation of some notions from logic, and in section three from com-
putational complexity is given. In section four, the alternating Turing
machine is introduced.

In section five, a transformation from the full Ackermann class to the
monadic Ackermann class is described. This is a good transformation for
the classes 37 V3* (only p existential quantifiers in front of the universal
quantifier) with constant p. But for the class 3* V3* this transformation
is via length order n?*/log n instead of n. It is not clear, if a better trans-
formation exists. Alternating Turing machines can test the satisfiability
of 3* Vi4* formulas more directly than deterministic Turing machines.
They are used here to get the optimal upper bound of Lewis [27] for the
monadic case, because with alternating Turing machines a polynomial
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space upper bound for the 3* V3 subcase is obtained at the same time. It
is easy to see that the class 3* V is NP-complete.

Section six contains the main result, namely the ¢"/'°¢ " lower bound for
the V33 case, and also a tight lower bound for the V3 case, as well as
some NP-complete problems. In the last section are some conclusions.

2. SOME NOTIONS FROM LOGIC

The formulas of first order logic (see e.g. Shoenfield [36]) are built
from:

— variables y, x4, X5, ... Z¢, Z5, ...

— function symbols £, g, f1, fr> f1, f25 -
(we use ¢, ¢4, Cy, ... for O-any function symbols, i.e. constants)

— predicate symbols P, P, P,, ... (and other capitals)
— auxiliary symbols (, )

— equality symbol =

— propositional symbols A, v, ™, -, &

— quantifiers V, 3

We use F [x/t] to denote the result of the substitution of the term ¢ for
the variable x in the formula F.

A formula Q; x; @, x, ... O, x,, Fo with Q; quantifiers (for i = 1, ..., 1)
and F, quantifier-free is in prenex form. F, is called the matrix of the
formula.

We are investigating decision procedures for formulas of first order
logic without equality and without function symbols. But we use the
functional form of formulas.

The functional form of a formula in prenex form is constructed by
repeatedly changing

Vx; Vx,..Vx,dy F (F may contain quantifiers) to
vxl vxZ vxn F [y[f‘i (xla raey xn)]

using each time a new n-ary function symbol f; until no more existential
quantifiers appear.

A formula is satisfiable, iff its functional form is satisfiable. In addition,
both are satisfiable by structures of the same cardinality.
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We use «, ¢’ to denote structures. A structure o for a first order language
L consists of:

— a nonempty set | o

(the universe of «),

— a function f* : ]oc " [oc I for each n-ary function symbol f of L, (in
particular an individual (= element) ¢* of ]oc ] for each constant ¢ of L),

— a predicate P* : Ioc
Pin L.

T {true, fa]se} for each m-ary predicate symbol

f* and P“ are called interpretations of fand P.

A structure for a language L defines a truth-value for each closed
formula (i.e. formula without free variables) of L in the obvious way (see
e.g. [36]). A structure « is a model of a set of closed formulas, if all the
formulas of the set get the value true (i.e. are valid in «). A formula F is
satisfiable, if its negation =1 F is not valid.

Let o be the following structure for a language L without equality:

The universe ] o l (the Herbrand universe) is the set of terms built with
the function symbols of L (resp. of L together with the constant ¢, if L
contains no constants (= 0-ary function symbols)). Each function symbol
f1s interpreted by f* with the property: For each term ¢, f*(¢) is the term
f(t). We call such an « a Herbrand structure. If a formula F (in the language
L) is valid in «, then we call @ a Herbrand model of F.

The following version of the Lowenheim Skolem theorem is very useful
for our investigations.

THEOREM. The functional form of a closed formula without equality is
satisfiable iff it has a Herbrand model. .

This theorem can be proved with the methods developed by Léwenheim
[29] and completed as well as simplified by Skolem [38]. The version of
Skolem [37] which uses the axiom of choice, has less connections with this
theorem. Also in Ackermann [2] and Biichi [8] versions of the above theorem
are present. Probably for the first time, Ackermann [1] constructs a kind
of Herbrand model, the other authors use natural numbers instead.

3. SOME NOTIONS FROM COMPUTATIONAL COMPLEXITY
We use one-tape Turing machines and multi-tape Turing machines with

a two-way read-only input tape and, if necessary, a one-way write-only
output tape. The other tapes are called work tapes. The Turing machine
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alphabet I' and the input alphabet X are any finite set of symbols with
> < I'and Be ' — X, where B is the blank symbol.
A language L is a set of (finite) words over a finite alphabet. 2* is the
set of all words over the alphabet .
We write f () if we mean the function f : N — R. This unprecise notation
is standard in computational complexity. In connection with Turing
machines # denotes always | W l, the length of the input word,

f(n) = O0(g (m) means Ic 3Iny Vn = no f(n) < cg (n)

A language L, (over X) is logspace transformable to a language L,
| (over X) via length order g (n), if there exists a function f: Z* — 2* such
B that:

: fwyeL,iff weL; forallweZX¥,

I f(w) l = 0(g (lwl)), and there exists a multi-tape Turing machine
B which computes f, scanning only O (log ) tape squares of the work tapes.
: We use the following complexity classes:

DTIME (f (n)) = {L IL is accepted by a deterministic Turing machine
B inat most /(n) steps (for all we 2* with n = |w D}

NTIME (f (n)) = {L IL is accepted by a nondeterministic Turing machine
in at most f (n) steps (for all we L with n = ] W D}

DSPACE (f (n) = {L IL is accepted by a deterministic Turing machine
using at most f (n) tape squares on each work tape}

i NSPACE (f(n)) = {L|Lis accepted by a nondeterministic Turing machine
using at most f (n) tape squares on each work tape}

P = U DTIME (c+n"

; c,keN
NP = U NTIME (c+n")
' c,keN
| POLYSPACE = U DSPACE (c+n*) = U NSPACE (c+n")

C,kEN C5k€N

It is easy to see that DSPACE (f (n)) = DSPACE ([c f(n)]) for all
positive constants c¢. This linear speed-up is done by increasing the alphabet
size. The same theorems hold for nondeterministic and alternating (defined
below) Turing machines. In the corresponding theorems for time complexity
(and for one-tape space complexity) ¢ f (n) is replaced by max (n+1, ¢ f (1)),
and they hold if lim »n/f (n) = 0.

A configuration of a Turing machine consists of its state, the position(s)
of its head(s), and the contents of the tape(s).
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Configurations are described by instantaneous descriptions (ID). An
ID of a one-tape (infinite only to the right) Turing machine with finite tape
contents (i.e. almost everywhere is the blank symbol) is the representation
of its configuration by a word, built from an initial segment of the tape
inscription which contains the non-blank part. In this segment the scanned
symbol s is replaced by (s, ¢), where ¢ is the state of the configuration.

4. ALTERNATING TURING MACHINES

We assume that the reader is familiar with (one version of) deterministic
Turing machines. In nondeterministic Turing machines (see e.g. [3]), the
scanned symbol(s) do not determine a move (new symbol(s) and shift of
head(s)), but a finite set of moves. By choosing any move of this set, the
Turing machine follows a computation path. The nondeterministic Turing
machine accepts, iff at least one computation path leads to an accepting
configuration (i.e. a configuration with accepting state). Chandra and
Stockmeyer [10] and Kozen [24] have extended the concept of non-
deterministic Turing machines to alternating Turing machines [9]. Non-
deterministic machines involve an existential quantification (there exists a
path). Alternating machines are a natural extension involving universal as
well as existential quantification. This extension from nondeterministic to
alternating machines, works for all kinds of abstract machine models, but
we look here only at alternating Turing machines.

Definitions (Automata theory)

Alternating Turing machines have two disjoint sets of states, existential
and universal states. Configurations and successor configurations (reachable
in one move) are defined as for nondeterministic Turing machines, but the

conditions for acceptance are different.
An accepting computation tree of an alternating Turing machine M with
input w is a finite tree 7" whose nodes are labeled with configurations of M

according to the conditions:
a) The root of T is labeled with the start configuration of M with input w.

b) If a node is labeled with a configuration C, then all descendants are
Jabeled with successor configurations of C.

c) Nodes labeled with a non accepting existential configuration have at
least one descendant.
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d) If C’ is a successor configuration of a universal configuration C, and a
node N is labeled by C, then at least one descendant of N is labeled
with C’.

| e) All leaves are labeled with accepting configurations.

The language L (M) accepted by an alternating Turing machine M is
| the set of all words w, such that there exists an accepting computation tree
b of M with input w.

} Hence a nondeterministic Turing machine is an alternating Turing
-: machine with only existential states.

A very intuitive way of looking at alternating Turing machines is: Two
players A and E make moves (maybe not strictly alternating) beginning
in the start configuration of M with input w. Player A moves from universal
f‘ configurations, and E from existential configurations to successor con-
figurations. E wins if (after finitely many moves) an accepting configuration
is reached. The input w is in L (M) iff E has a winning strategy.

One might first think alternating Turing machines accept all arithmetic
sets and even more. But naturally, exactly the recursively enumerable sets
are accepted by alternating Turing machines, because every deterministic
Turing machine is an alternating Turing machine, and alternating Turing
machines can easily be simulated by deterministic Turing machines.

What goes wrong if we want a player (A or E) of an alternating Turing
E machine to choose any natural number, is that this player could decide for
ever that he wants to choose an even bigger number (computation trees
g have only finite branching).

' The situation changes drastically if Turing machines do not accept by
E cntering one accepting state, but by infinitely often entering accepting
states. Then nondeterministic Turing machines accept exactly the X}-sets
of the analytical hierarchy, while deterministic Turing machines accept
| exactly the IT3-sets of the arithmetical hierarchy. (It is not known, if the
' | sets accepted by alternating Turing machines in this way have such a nice
| characterisation.) This remark is just to indicate that automata theory
might be useful for non-recursive sets too.

Alternating Turing machines are important for several reasons. First
they are a very natural extension of nondeterministic Turing machines, and
they are closely related to the fundamental concept of quantifiers. Second
they are a basic model of parallel computation, which is of growing im-
f portance with modern technology. And third, there are beautiful relations
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between the power of time and space bounded versions of ordinary and
alternating Turing machines. Some versions of alternating Turing machines
with restricted alternating power (see Berman [6], Ruzzo [32]) are able to
bridge the gaps between deterministic and nondeterministic time and space
complexity classes. And the problems about the relation of these classes
(e.g. P = NP? P = POLYSPACE?) are still the most challenging open
questions in computational complexity.

Definitions (Complexity)

ATIME (T (v)) is the class of languages L accepted by alternating Turing
machines M, such that for each input w, there exists an accepting compu-
tation tree (of M with input w) of depth << T'(n) (for n = Iw I) ifwel,
and there exists no accepting computation tree if w¢ L.

ASPACE (S (n)) is the class of languages L accepted by alternating
Turing machines M, such that for each input w, there exists an accepting
computation tree (of M with input w), whose labels are S (n)-space bounded
configurations (for n = | w ]) if w e L, and there exists no accepting compu-
tation tree if w ¢ L. (A configuration is S (n)-space bounded if at most
S (n) tape squares on work tapes are used.)

The fundamental complexity relations between alternating and non-
alternating Turing machines are (Chandra and Stockmeyer [10], Kozen [24]):

For S(n) > n

ATIME (S (n)) = DSPACE(S (n))
and

NSPACE (S (n)) € ATIME (S (n)*)

For T (n) > logn
ASPACE (T (n)) = U DTIME (c™™)

c>0

We sketch the proof of DTIME (¢"™™) = ASPACE (T (n)), because we
use this fact for the complexity result about the Ackermann case.

Let C, , be the s-th symbol in the ID (instantaneous description) of the
configuration at time ¢, of a ¢I™ time bounded deterministic one-tape
Turing machine M with input w. The computation of M is simulated back-
wards. '

Player E says, M accepts w by entering the accepting state ¢, at time ¢
with headposition s,. And to prove this, he presents ¢ — 1, a,_4, b,_ 4,
¢,_1and s = 5,_; (¢t—1 and s in binary), claiming that C,_; .y = a,_4,
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Cio1s = b,y and C,_4 ¢+1 = ¢,—1. (Naturally these values must imply
the state g, and the headposition s, at time z.) Now player A is allowed to
‘doubt one of these three claims, by playing the integer s’ € {s — 1,55+ 1} ,
and player E has to justify his claim for C,_ by claiming values for
| Ci—5 -1, Ci_y ¢ and C,_, ¢4 which imply his value for C,_, ; etc.
Finally the value claimed for C,,. is checked by comparison with the
s"-th input symbol. If it is correct, then player E, otherwise player A wins.
' If w is accepted by M, then the winning strategy for player E is to make
always correct claims. If w is not accepted by M, then player A has a
| winning strategy. He always doubts one of the wrong claims of player E.

5. UPPER BOUNDS

_ ProroSITION. 1. For all p >0, the dPV3* class is logspace trans-
| formable to the monadic 3 N¥3* class via length order n.

2. The 3* Y 3* class is logspace transformable to the monadic 3% V3*
class via length order n?*/log n.

Proof. The main ideas of this proof are due to Lewis [27, Lemma 7.1]
| and Ackermann [2, Section VIII.1]. Given a formula F of the class 37 V3¢
f with prefix dx; ... 3x, Vy 3z, ... 3z, and matrix M, let S be the set of
| atomic formulas in M. We define the set S" by S’ = SU {4 [y/x]|4€ S
and 1 <i<p}.

Let S = {4y, .., 4,}.
Then | S’ | = r <(p+1)| S|

Now we change the matrix M of F to get the formula F’' with matrix
M’ by replacing (for j = 1, ..., r) all occurrences of the atomic formula A j
by P; (y) (for a new monadic predicate symbol P;) and by adding —as a
conjunct to M —a set B of biconditionals.

The set B is constructed to ensure that every Herbrand model &’ of the
functional form of the formula F’ (with matrix M") defines immediately a
model o of the functional form of F by I « I = l o l,

a

¢k = ¢k =c¢nk=1,.,p (where ¢, is the replacement of x, in the
functional forms of ¥ and F"),
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fe=7%,k=1,..q (where £, (») is the replacement of z, in the
functional forms of F and F’),

P*(by, ..., b)) = P% (b), if 4;€S",be|o | by,....,b,e|a| and there
exist variables v, ..., v, fulfilling for all i, & the following properties:
a) A; = P(vy, ..., ),
b) if v; = x, then b, = ¢,
c) ifv, = ythen b, = b,
d) if v; = z, then b, = f7 (b).

P*(by, ..., b,) is defined arbitrarily (e.g. false) if no such 4; and b exist.
There might exist several 4; and b having these properties. To ensure that
in this case the definition of P* (b4, ..., b,) is correct, i.e. independent of the
particular choice of 4; and b, we conjoin the set B of biconditionals to the
matrix M.

Take any mn-tupel (b, ..., b,) € | o I". In the following cases, several
A;eS" and be l o l might satisfy the conditions a), b), c), d):

1. {by, ... b} = {cf, ..., c3}.

2. There is a b" in {cf, ..., c;} such that {b;...,b,} < {cf,...,c}, 1 (D),
v fq ()}

3. There is a b” in {by, ..., b,}, such that {b,, ..., b,} = {c{, ..., ¢}, b"}.

To make the definition correct in case 1, we add to B the following
biconditionals:
If there is an A4; in S’ such that 4; = P (vy, ...,v,) with {vq,..,9,}
< {xg, ..., x,}, we add
Pj(J’)HPj(XQ

If 4, =P({y,..,v,) with {7)1, ...,vn} = {xl, tavs K y} and A4; [y/x]]
= A, [y/x;] (for A; # A;), then we add
P;(x;) <> Py (xp) .

Note : Here the length of the monadic formula might grow quadratically
in p. .
To make the definition correct in the case when 2 but not 3 holds, we
add to B for all j,j’, i with 4; [y/x;] = A; [y/x;] the formula

Pj(x) < P (x;) .
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To make the definition correct, when 3. but not 2. holds, we add to B the

following biconditionals.
“For all j, j’, k such that 4; = P (vy, ..., v,) With

Y€ U1, s U} S {X15 ooy X ¥}

and 4; [y/z] = A;, we add
Pj (zp) ‘_’Pj' )

If both 2. and 3. but not 1. hold, and if there are atomic formulas 4;
and A, such that 4; contains y but no variables of {zl, ...y 2,4 and
| A; [y/z] = A} [y/x;], we have to make sure that

Py (f3 (%) = P5(c).
But in this case S’ contains an A4 ;. with

4y = 4Dz
'_ and we have added the formulas:

: P;(z) < P;(y) (case 3)
 and
i P (x;)) <> P; (x;) (case 2)

¢ Hence

“ PY(f%(e) = Po(ch) = P (%)

4 It is not obvious that the transformation from formula F to formula F’
can be done in logarithmic space, because F might contain variables or
§ predicate symbols with excessively long indices. But then a simple trick
| solves the problem. Instead of writing such an index on a work tape, only
a pointer (= position number) to its location on the input tape is stored on
| a work tape.

If | F [ = n, then at most O (n/log n) different atomic formulas appear
| in F (i.e. I S I = O (n/log n)). The number ] S’ | of different atomic formulas
g in F’ is then bounded by c(p+1) | S | Hence the transformation from F
| to F’ is via length order » for constant p and via length order n?/log n in
general (i.e. for p = O (n/log n)). ]

Problem. Is there an efficient transformation from the 3* WV3* class to

the monadic 4* V3* class via length order n ?

TreorEM (Upper bound). The satisfiability of the monadic prefix class
{ 3*V3* s decidable by an alternating Turing machine M in space
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O (n/log n). Furthermore M enters no universal states for formulas of the
subclass 3* V1.

Proof. Let the input F be the monadic formula
dx, ...dx,Vydz, ...dz, F,

with F, quantifier-free. It is easy to find out if the input has this form or
not. Let F, contain m different atomic formulas. Then m = O (n/log n)
forn = |F I

Let (U1, vy Vprge1) b€ (X1, oy Xpy ¥, 24, ooy 2,) and let Ay, ..., 4, be the
atomic formulas P; (v;) of F, in lexicographical order according to (i, j).

Ty, .., T, is a sequence of truth values for the atomic formulas. (The
atomic formula A, is interpreted to be true if 7}, = true.)

The alternating Turing machine M executes the following satisfiability
test:

Program
1. begin

for all £ such that the atomic formula A4, contains an x;, choose
existentially 7} to be true or false;
forr : = 1 to max (1, p) do

begin
2. forall k, k', jsuchthat 4,is P; (y)and 4y is P; (x,)do T}, : = T},
3. for all k, j such that 4, is P; (y) and P; (x,) does not appear in F'do
choose existentially a value of {true, false} for 7,;
4. for counter : = 1 to 2" do
begin
5. for all k such that 4, is a P; (z;) do choose existentially a truth

value for T;; check that the interpretation of the atomic
formulas 4, (k = 1, ..., m) by T, gives the value true to the
matrix F,, otherwise stop rejecting;

14 if ¢ = 0 then goto E;
ifg=1thens: = 1(@e. z; = zy);
if ¢ > 1 then choose universally a value from {1, ey q} for s;

8. for all k, k', j such that 4, is P;(y) and A4, is P;(z,) do
T, : =1
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2. for all k such that (for any j) 4, is P; (y) and P; (z,) does not
appear in F do choose existentially a truth value for T};

end;
E : end;

stop accepting;
end.

To execute this program, the alternating Turing machine M uses only
space
m to count to 2™,
m to store Ty, ..., T,

log p < log m to store r,

¢ log n for anxillary storage, especially to store position
numbers of certain information on the input tape,
e.g. long indices, which are not copied to the work
tapes.

Because m = O (n/log n), there is an upper bound O (n/log n) (independent
of p and ¢) for the space used by M.

We have to show that the above program decides satisfiability of the
formula F correctly.

Let F' = Vy F; be the functional form of F= 3x;..3x,Vy3z,
... 4z, F,, obtained by replacing x; by ¢; and z; by f; (»).

a) Let F’ (and F) be satisfiable and let o« be a model of F".
We think the program of M extended by:

before 2. b:=c¢

r

before 8. b:=f5(b)

Then good existential choices for the truth values T; are
if 4, = P; (x;) then T}, : = P%(c))
if 4, = P; (y) then T, : = P% ()
if 4, = P;(z;) then Ty : = P5(f% (b))

The computation tree defined by these existential choices accepts the
formula F.
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b) Assume the alternating Turing machine M accepts the formula F. Then
each minimal accepting computation tree (without unnecessary branches)
of M with input F can be used to construct a Herbrand model o of F’.

Note that the Herbrand universe

loo| = {e1s oo o f1 (C1)s oons £ (1 (€3)), e}

(as a set of terms) and the functions 7, ..., f; of a possible Herbrand model
of F’ are uniquely defined. We have to define the predicates P{, P, ... .
We look at the program extended by

b:=c (before 2) and
b:=f%(0) (before 8) as in a).

All elements of I o l with nesting depth < 2™ are assigned to b somewhere
in the accepting computation tree. The current values of the sequence
Ty, ..., T, define some truth values of predicates in cf, ..., ¢, b, f1 (), ...,
fq(b) by

P’ (cp) = TJ if Aj = P;(xy)

Pib) =T, if A =P0)

J

P"i(fi(b)) = T; if  A; = Pi(zy).

J

The other truth values of the predicates P’ are defined arbitrarily. This
method of defining predicates of b is used on each path in the tree
(I o I, 4, .., fq), only until the first repetition of all truth values on that
path. That happens on each path in a depth <C2™. Let b’ be the node on
the path to b with the same truth values for all predicates as . Then (in-
ductively) the predicates are defined to have the same values on the subtree
with root b as on the subtree with root b’. The so constructed structure o is

a model of F. O

CoroLLARY 1 (Lewis [27]). The set of satisfiable formulas of the mon-
adic 3* Y3* class is (for a constant ¢ > 1) in DTIME (c""** ™).

Proof. The alternating Turing machine of the upper bound theorem
can be simulated in deterministic time c"/'8 ", o

The direct construction of a deterministic ¢"/'°® " time decision procedure
of Lewis [27] is easier. He starts with a big structure (with 2™ elements,
where m is the number of predicate symbols), and eliminates bad elements
of this structure, to get either a model or the non-existence of a model.
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We have chosen the decision procedure by an alternating Turing
machine to get the following result for free.

COROLLARY 2. The satisfiable formulas of the monadic 3* V3 class
are in NSPACE (n/log n).

Proof. The universal states of the alternating Turing machine M which
decides the monadic 3* V3* class are not used for the subclass 3* V3.
If we drop them, we get a nondeterministic Turing machine. ]

By combining the proposition with the upper bound theorem we get
immediately.

COROLLARY 3. The satisfiable formulas of the 3I* V3* class are
in DTIME (¢ ™?) for some c. ]

COROLLARY 4. The satisfiable formulas of the 3* V3 class are in
NSPACE ((n/logn)?). n
Lewis [27] claims the same time bound in Corollary 3 as for the monadic
case. But this seems not to work. For example, if P (xy, ), ... P (x,, ¥)
and P (y, x4), ..., P (», x,) appear in the formula, then p* truth values for
P*(c% %) (i,j = 1, ..., p) have to be guessed.
| But these upper bounds are not very good, as e.g. in Corollary 3 the Turing
machine could be replaced by one which works a short time (O ((n/log n)?)
steps) nondeterministically and then only c¢"/'*®" steps deterministically.

The A* Y class

Formulas of the 3* V class are transformed by our procedure in
monadic formulas again of the 3* V class. For these formulas, the pro-
cedure of the upper bound theorem works in nondeterministic polynomial
time. On the other hand the J* V class is certainly more difficult than
propositional calculus. Therefore the set of satisfiable formulas of the
3* V class is NP-complete. (NP-completeness is discussed in [15].)

In fact, as the Herbrand models of the satisfiable formulas of the
1?7 V1 class, have only max (p, 1) elements, it is easy to see that the satis-
fiability problem for all the following classes in NP-complete:

a) PVe p+g>1
b) d*V? ¢g>0

But the classes 33V* and 3* V* need NTIME c"/"°8" resp. c".
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6. LOWER BOUNDS

Definition. A marked binary number is a word over the alphabet
{0, 0,1, 1 } described by the regular expression (0 U 1)* 0 1* U I*. The value
of a marked binary number is given by the homomorphism % with % (0)
= h(@) =0 and A(1) = h(I) = 1, i.e. by disregarding the type of the
digits.

Note: The digits in italics are those which will change their value when
the marked binary number is increased by one.
Marked binary numbers allow the following local tests:

1. A word over the alphabet {0, 0,1, ]} is a marked binary number, iff
the last digit is in italics and only the following adjacent pairs of digits
occur:

a) 00,01, 00, 10, 11, 10 (0, 1 or 0 behind O or 1), and
b) 01, 11 (I behind 0 or I).

2. For two right adjusted marked binary numbers x and y with y below x
holds:
value (x) + 1 = value (y) iff only the following vertically
adjacent pairs of digits occur:

a) 0 or 0 below O or / and
b) 1 or / below 0 or 1.

THEOREM (Lower bound). If a language L is accepted by a linear space
bounded alternating Turing machine M, with at most q successors for each
universal configuration, then L is polynomial time transformable to the set
of satisfiable formulas of the monadic V3% class via length order nlog n.

Proof. We can assume that M is a one-tape alternating Turing machine
accepting L in space n + 1 and time 2" — 1 foran m = O (n). We describe
the case ¢ = 2. To each input w of M, we define (using function symbols
f1 and fy) the functional form F (w) of a formula F’ (w) of the monadic
V47 class, such that:
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Claim A : we L iff F(w) is satisfiable.

Before we define the formula F (w), we show how to construct a structure
8 « from an accepting computation tree, such that « will turn out to be a
model of F(w).

If w is accepted by M, then there is an accepting computation tree CT
| with the properties:

| — Every node of the tree with depth less than 2" — 1 has exactly two sons,
| and every node with depth 2™ — 1 is a leaf. I.e. it is a complete binary
tree.

i — If the same configuration appears in several nodes, then the correspond-
| ing successor configurations are the same.

g Therefore, there are functions succ; and succg, which define the instan-
taneous descriptions of the successor configurations in the tree. Further-
B more, we can choose succ, and succ in such a way that they have the
following property:

For every pair consisting of a state and a scanned symbol, we consider
| the possible moves of M to be an ordered set.
i If ID is a universal instantaneous description, then succy (ID) is the first
and succy (ID) is the second successor of ID.
, If ID is existential, then succ; (ID) and succg (ID) are arbitrary successors
of ID (typically succ; (ID) = succg (ID)).
| If ID is accepting, then succ, (ID) = succy (ID) = ID.
f Given functions succ;, and succg and an accepting computation tree CT’
| of depth 2™ — 1 with the above properties, we define now the structure «,
| such that:

\ Claim B: « is a model of F(W).

1. The universe l o I is the set {(t, ID) l t is an integer with 0 <{¢ <<2™ — 1
| and ID is the instantaneous description of a configuration occuring in a
branch of the computation tree CT of M with input w at time t}.

2. fi (resp. fp) is interpreted by a function mapping (¢, ID) for # < 2™ — 1
to (z+1, succy, (ID)) (resp. (¢ +1, succg (ID))) and (2" — 1, ID) to (0, start
ID for input w). succ, (ID) (succg (ID)) is defined to be the instan-
taneous description of the left (right) successor configuration of ID.

3. In (¢, ID) the monadic predicates are interpreted as follows:

1

Lett = Y 5,2 with be {0, 1},
i=0
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and let ID = a, ... ay_; (@, q) a4+ ... a, With a; € X (alphabet) and ge Q
(states).

Then the O (m) monadic predicate symbols B;, M;, Z,L;,S,, T,; .
with je {0, ..,m — 1}, j'€ {0, ...,n}, pe Q and ceX are interpreted as

B ((t,1ID)) is true iff b; = 1

M ((t,1ID)) is true iff b; = 1 for all i < j, i.e. b; is marked

Z* ((1,1D)) is true iff b; = O for all i

L% ((t,ID)) is true iff j* = k

Sy (¢, ID)) is true iff p = ¢

T3 (¢, ID)) is true iff a; = o

We now define the formula F (w) and add some remarks about the intended
meaning of its subformulas. This makes it obvious that claim B holds.-
F (w) is the formula

Vy[FH(y) A FV(yst()’)) A FV(J’»fR(J’)) ANFo(y) A Fy(y)
A Fy(¥) A FL(J’,fL(JJ)) A FR(yafR(y)) A FA(Y)]

where
a) Fy(y) is /\ [Mj+1(}’)“"(Mj(J’)/\Bj(J’))] A My ()

0=j<m-—-2

The intended meaning is:
All binary numbers are correctly marked. (H stands for horizontal con-

dition.)
b)) Fy(.2)is A [Bj(2) < (M) —1B;(»)]

0=j=m-—-1

The intended meaning is: ’
The level number below level number / is / + 1. (V stands for vertical !
condition.) i

|

©) Fois[ A TIBWM]<ZO)

0=j=m—1

The intended meaning is:
The configuration at level O is distinguished by Z.

d) Fe(») is [ A A\ 71 (T;0) ATe;0)]

0O0=j=n o,6'e’X
o ¥* o’

AN TS0 A Sy ()]

4.9 €Q
q#Fq
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® The intended meaning is:

j For every configuration there is at most one symbol in every tape cell, and
the Turing machine is in at most one state.

&) Fy (0) is Z0) > [ N\ Ty () A Lo() A /N T L) ASe (1) ]

0=j=<n 1=j=n

} where 0,04 ... 0, is wb (the input w extended by a blank endmarker B),
¥ and g, is the start state of M. This is the only subformula of F (w) depending
| not only on n = l W ], but also on w. Its intended meaning is:

| The distinguished configuration at level O is the start configuration.

E ) Exactly as for nondeterministic Turing machines, it is possible to check if
g 1D, is a successor of ID, by writing ID; below ID, and checking all 6-tuples
seen through a window of length 3 and height 2 which is pushed over the
two words, and by checking that no head of the Turing machine walks
in or out of the tape portion represented by the instantaneous descriptions.
i In this way, we check

— for universal ID,, if the left son is labeled with succ; (ID,) and the
{  right son is labeled with succy (ID,);
} — for existential 1Dy, just if both sons are labeled with any successors;

— for accepting ID,, if both sons are labeled with ID,,.

‘ It is easy to construct a formula PJ-L (», 2) (Pf (y, 2)) expressing the window
| condition at the positions j, j + 1, j + 2 for the ID’s in node y and in its
| left (right) son z.

P (y, z) and P} (y, z) are built from the atomic formulas

| Sy (0,8, () forpeQ

,‘ and Lj’ (y): Lj' (Z) fOI‘jl - ]a] + 19.] + 2

| and T, (), Typ(z) forj =jj+1,j+2 and oceX.

The length of PJ-L (y, z) and Pf (», z) are bounded by a constant times the
maximal length of the atomic formulas.

| For D = Land D = R,
Fp(y, z) is Z(z) v [ /\ P;) (y, Z)

0=Lj=n-2

A (Lo (z2) > (Lo(y) v L, (Y>)) A (Ln (z2) > (L,—1 (») v L, (y)))—] .
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g) FA(y) is [Bm—l(y) A Mm—-l(y):l - V Sq(y>
q9eQq
0, is the set of accepting states of M. The intended meaning of F, ()
is:
At the deepest level 2™ — 1, all branches of the computation tree accept.

Now the formula F (w) is defined, and for w € L it should be clear that
F (w) is satisfiable and has the model o.

We still have to show the other direction of claim A. If F (w) is satisfiable,
then w e L. Let « be a model of F (w). In a the formula

Vy[Fa) AFy (v, fr()) A Fy (v, fr)]

i1s valid. Hence for all b e l o l a level number /() is defined by the in-
terpretation of the predicate symbols B; in «. The level numbers have
the property

1(f3 () = 1(fE(b)) = L(b) + 1 mod 2",

Therefore (as [oz I 1S non-empty), there are elements of all levels mod 2™,
in particular, there is an element b, of level 0.

Because Vy [F, (») A F,, (»)] is valid in o, the truth values of the predicates
L% S, and T7; in b, encode the start configuration of the alternating
Turing machine M with input w.

Let I o I’ be the subset of | o | which is accessible from b, by several appli-
cations of f] and f%. Then the validity of

Vy[Fy() AFL(n.fL()) A Fr(y,fr)]

in o ensures that the predicates L%, Sy and Tg; define for all be |« | a
unique instantaneous description ID (b) such that ID (f (b)) is a left
successor of ID (b), and ID (fx (b)) is a right successor of ID (b).

Finally, the validity of Vy F, (y) guarantees that the computation tree
is accepting.

It is easy to check that F (w) contains only O (n) atomic formulas, each
of length O (log n). Therefore IF (w)[ = O (nlogn). It is also obvious
that the formula F’ (w) and its functional form F (w) can be computed from
w in logarithmic space by a Turing machine. Note that most parts of F (w)
depend only on n = I W l N

COROLLARY 1. There isa ¢ > 1 such that no deterministic Turing machine
accepts the satisfiable formulas of the monadic Y33 class in time O (c"'*® ™).
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Proof. By standard diagonalization arguments, there is a language L
in DTIME (c%) which is not in DTIME (c7) for ¢; < ¢, [19].

L is then in ASPACE (n). Assume Corollary 1 is not true. Then by first
transforming L according to the lower bound theorem to the monadic
V33 class, and then accepting this language fast, L could be accepted in
deterministic time c7. O

COROLLARY 2. For every nondeterministic Turing machine M  which
accepts the satisfiable formulas of the monadic V3 class, there exists a
| constant ¢, such that M uses space cnflogn for infinitely many inputs.

| Proof. We use the hierarchy result for NSPACE [35] and the fact that
| an alternating Turing machine with only one successor configuration for
R cach universal configuration, is a nondeterministic Turing machine. ]

CONCLUSIONS

| Alternating Turing machines are a powerful tool in the few areas where
8 applications have been found so far. They can make connections visible,
| which are not seen otherwise. It seems impossible to find the lower bound
| for the Ackermann case of the decision problem, without knowing alter-
nating Turing machines. Even knowing the result, a direct description of
| the computation of a deterministic exponential time bounded Turing
| machine M by a 3* V3* formula, without obviously copying the simulation
f of M/ by an alternating Turing machine, seems impossible.

We are used to think that nondeterministic machines correspond
to existential quantifiers (e.g. satisfiability in propositional calculus), and
that alternating machines correspond to a sequence of alternating quantifiers
(e.g. quantified boolean formulas, i.e. the theory of {0, 1} with equality).
This paper shows that this needs not always to be the case.

| Examples
1. Not only the satisfiability problem of the d* class, but also of the
V* class is NP-complete (not co- NP-complete).

2. Adding an existential quantifier to the V prefix class, means moving
from a time to a space complexity class.
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3. Adding another existential quantifier to the V3 prefix class means
moving from a nondeterministic (space) to a deterministic (time)
complexity class.

One possible continuation of this work, is to investigate the complexity
of the decision problem for formulas with simple quantifier patterns in
decidable theories. For most of the decidable theories, huge lower bounds
are known, because a class of formulas with so many quantifier alter-
nations, that they hardly appear in practice, is shown to be difficult to
decide.
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