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Dabei meint ,,schwache 2. Stufe®, daB auch Quantifikationen {iiber
endliche Folgen von Kérperelementen zugelassen sind.

Wir skizzieren den Beweis: Falls es eine solche Aussage p gibe, so
wiirde p insbesondere in (R, SR) gelten. Ersetzen wir Sy in p durch seine
Definition, so erhalten wir eine Aussage p* der schwachen 2. Stufe, die in
(R, N) gelten wiirde. Aus Lemma 1 und 2 bei Apt in [A] 1aBt sich nun (mit
einigem technischen Aufwand) folgern, dall es eine Zahl n > 2 gibt, so
daB die durch A.-Folgen definierten reellen Zahlen einen reell abgeschlos-
senen Teilkdrper R, von R bilden, in dem einerseits p* gelten wiirde, der
aber andererseits nicht alle N-definierbaren Schnitte realisiert. Damit
miiite einerseits p in (R,, S'\) gelten, andererseits ist aber S If\? nach dem
Lemma im 3. Abschnitt kein Modell von GA4,.

Es sei noch bemerkt, dal die Lemmata 1 und 2 bei Apt unter der Vor-
aussetzung ¥V = L bewiesen werden. Der Satz’ behilt dann jedoch auch
ohne diese Voraussetzung seine Giiltigkeit.

2. Die Menge Sx wurde schon von Szczerba und Tarski beniitzt, um
die Unentscheidbarkeit von G4, zu beweisen. Weiterhin wurde dieses
Modell in Prestel-Szczerba [P-S] beniitzt, um zu zeigen, dall dic Menge
derjenigen Aussagen, die in allen Modellen von G4, iiber R gelten (d.h. in
denen das Stetigkeitsaxiom C? der 2. Stufe gilt) nicht rekursive axioma-
tisiert werden kann (also insbesondere groBer als die Theorie GA, ist).
Dies heil3t insbesondere, daB3 das ,,Elementarisierungsverfahren® hier zu
einer echt schwicheren Theorie fithren muf3. SchlieBlich wurde von Schwab-
héduser in [Sch] fiir archimedisch geordnete, reell abgeschlossene Kdrper R
eine Charakterisierung derjenigen Sy angekiindigt, die Modelle von G4,
sind. Diese Charakterisierung folgt ebenfalls aus dem Lemma im 3.
Abschnitt.

3. Es bleibt eine Frage aus [S-T,] ungeldst, ndmlich, ob GA, eine
endlich axiomatisierbare Obertheorie besitzt.

4. Bei R. Fritsch und U. Friedrichsdorf mochte ich mich fiir viele

informative und anregende Gespriche zu dem Thema dieser Arbeit
bedanken.
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