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134 A. PRESTEL

auch umgekehrt A mit Hilfe von S* definiert werden kann. Es gilt
nämlich für t e R, 0 < t

t eN o (VO <r <4) (35) 52 + (^ —VA ^)eSß
d.h. die Gerade durch (0,0) und (t, 1) reicht in S* bis zum Rand des Kreises

mit dem Radius 2. q.e.d.
Wir können jetzt den Satz beweisen: Angenommen, es gäbe eine Aussage

p der Sprache der angeordneten Körper mit einem zusätzlichen 2-stelligen
Prädikat für S, so daß für S c R2 mit S konvex und offen und R reell

abgeschlossen S genau dann ein Modell von GA2 ist, falls p in (R, S) gilt.
Für jedes A er R, das (a)-(c) erfüllt, heißt dies speziell

S* Modell von GA2 <=> in (R, N) gilt p*

wobei man p* aus p erhält, indem man die Definition von S* in p für das

Prädikat S einsetzt, p* hat jetzt das zusätzliche Prädikat N. Mit dem
letzten Lemma erhalten wir dann :

Ist R reell abgeschlossen und hat N c= R
die Eigenschaften (a)-(c), so ist genau dann
in R jeder iV-definierbare Schnitt realisiert,
falls in (R, N) die einzelne Aussage p* gilt.

Dies widerspricht jedoch Theorem 8 zusammen mit Theorem 6 in [M].
Montague zeigt nämlich dort in Theorem 6, daß die Theorie der reell

abgeschlossenen Körper R mit Teilprädikat N mit (a)-(c), in dem jeder
A-definierbare Schnitt realisiert ist, „strongly semantically closed" ist.

Nach Theorem 8 impliziert dies, daß das Schema der „reellen Abgeschlossenheit"

zusammen mit endlich vielen anderen Aussagen (z.B. (a)-(c) und p*)
nicht ausreicht, diese Theorie zu axiomatisieren.

4. Schlussbemerkungen

1. Der eben bewiesene Satz läßt sich verschärfen zu

Satz'. Es gibt keine Aussage p der schwachen 2. Stufe für angeordnete

Körper mit zusätzlichem 2-stelligen Prädikat S, so dass für konvexe offene

Teilmengen S ci R2 und R reell abgeschlossen S genau dann ein Modell

von GA2 ist, falls p in (R, S) gilt.
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Dabei meint „schwache 2. Stufe", daß auch Qualifikationen über

endliche Folgen von Körperelementen zugelassen sind.

Wir skizzieren den Beweis: Falls es eine solche Aussage p gäbe, so

würde p insbesondere in (R, S^) gelten. Ersetzen wir Ajj in p durch seine

Definition, so erhalten wir eine Aussage p* der schwachen 2. Stufe, die in

fR, N) gelten würde. Aus Lemma 1 und 2 bei Apt in [A] läßt sich nun (mit
einigem technischen Aufwand) folgern, daß es eine Zahl n > 2 gibt, so

daß die durch A ^-Folgen definierten reellen Zahlen einen reell abgeschlossenen

Teilkörper Rn von R bilden, in dem einerseits p* gelten würde, der

aber andererseits nicht alle N-definierbaren Schnitte realisiert. Damit
müßte einerseits p in (Rn, gelten, andererseits ist aber S1^ nach dem

Lemma im 3. Abschnitt kein Modell von GA2.
Es sei noch bemerkt, daß die Lemmata 1 und 2 bei Apt unter der

Voraussetzung V L bewiesen werden. Der Satz' behält dann jedoch auch
ohne diese Voraussetzung seine Gültigkeit.

2. Die Menge S^ wurde schon von Szczerba und Tarski benützt, um
die Unentscheidbarkeit von GA2 zu beweisen. Weiterhin wurde dieses

Modell in Prestel-Szczerba [P-S] benützt, um zu zeigen, daß die Menge
derjenigen Aussagen, die in allen Modellen von GA2 über R gelten (d.h. in
denen das Stetigkeitsaxiom C2 der 2. Stufe gilt) nicht rekursive axioma-
tisiert werden kann (also insbesondere größer als die Theorie GA2 ist).
Dies heißt insbesondere, daß das „Elementarisierungsverfahren" hier zu
einer echt schwächeren Theorie führen muß. Schließlich wurde von Schwabhäuser

in [Sch] für archimedisch geordnete, reell abgeschlossene Körper R
eine Charakterisierung derjenigen angekündigt, die Modelle von GA2
sind. Diese Charakterisierung folgt ebenfalls aus dem Lemma im 3.

Abschnitt.

3. Es bleibt eine Frage aus [S-TJ ungelöst, nämlich, ob GA2 eine
endlich axiomatisierbare Obertheorie besitzt.

4. Bei R. Fritsch und U. Friedrichsdorf möchte ich mich für viele
informative und anregende Gespräche zu dem Thema dieser Arbeit
bedanken.
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