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132 A. PRESTEL

Die Formel ¢ muf} also in S ausdriicken, daB <{x;, x,> und <{y;,y,>
die f-Bilder der affinen Koordinaten {r, r,> und {sy, s,> eines Punktes
aus S sind. Dabei geniigt es natiirlich, wenn

{X,% ) RS (1), f(r)) und yy, ¥, ) & f(s9), f(s2))

gilt, wobei ~ die analog zu ~ mit @ in [e,, e, > gebildete Aquivalenz-
relation ist. Nach Szczerba-Tarski [S-T,], §5 148t sich eine Formel

Ks (z; x4, X551, ¥2) angeben, die fiir z, x,, x,, yy, y, € S gerade besagt,
daB

(f (Z’)>f(zﬂ)) = (<x13x2 >/R’/><y19y2>/"§‘)

ist. Wir konnen also

(X1, X235 Y1,V2) 1 = dz Ks(z5%4,%55 Y1, Y2)

setzen.

Nach diesen Ausfithrungen diirfte klar sein, daB die folgende Uber-
setzungsvorschrift fiir die Formeln o und f§ einen geometrisch definierten
Schnitt auf [e,, e,] liefert, dessen Realisierung in S eine Realisierung des -
urspriinglichen Schnittes auf [0, 1] nach sich zieht:

(1) ersetze in « und B Quantifikationen V xp bzw. I xp durch
V x (B (egXe,,) AX #e,=>p) bzw. 3 x (B (egxe,) AX#e, Ap),

(2) ersetze die Teilformeln u + v = wund u-v = w durch u Qv = w
bzw. u O v = w,

(3) ersetze die Teilformeln S ({uy, u,), {vq,v,)>) durch o (uy, u,;v,,v,),
(4) ersetze Parameter r durch f (r).

3. DiE NicHT-CHARAKTERISIERBARKEIT

Wir wollen nun den im 1. Abschnitt formulierten Nicht-Charakteri-
sierbarkeitssatz beweisen, indem wir ihn auf ein Resultat von R. Montague
in [M] zuriickfiihren.

Dazu betrachten wir zuerst einen reell abgeschlossenen Korper R mit
einer Teilmenge N, die die folgenden Bedingungen erfiillen soll:

() OeN und reN =r + 1eN
(b) r,seN,r <s =r+1<s
(©) (VreR,r > 0)(dteN)t <r <t + 1
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Die Menge N enthilt dann alle natiirlichen Zahlen, ist jedoch, falls R
nicht-archimedisch ist, nicht eindeutig festgelegt. Mit Hilfe von N definieren
wir die folgende Teilmenge Sy von R”:

(x',x")e Sy : < [(x'<OVvx"<0) A x? 4+ x"? < 4]v
x’
[O <x,x" A@tEeN)t< = <t +1A (x’,x”)eAt] ,
X

wobei 4, das Innere des Dreieckes mit den Eckpunkten (0,0) = 0,

2 2 B 2(t+1) 2 )
<\/1 +127 1 +t2> o <\/1 +(t+ 12 \/m> A

mit EinschluB der offenen Strecke von 0 nach u, bezeichnet.

u
(e}
N
./ |/

-~

Wegen (a)-(c) ist Sy offensichtlich konvex und offen.

LeMMA. Es sei R reell abgeschlossen und N < R erfiille (a)-(c). Dann

*é ist SK genau dann ein Modell von GA,, fallsin R jeder N-definierbare
é Schnitt realisiert ist.)
i

§  Beweis. Dieses Lemma folgt unmittelbar aus dem Charakterisierungs-
I lemma, wenn man beachtet dall nicht nur S¥ mit Hilfe von N, sondern

b 1 D.ies ist analog zu S-definierbar zu verstehen, d.h. jetzt darf in den definierenden
] arithmetischen Formeln o und (B ein zusétzliches 1-stelliges Pradikat fiir N beniitzt werden.
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auch umgekehrt N mit Hilfe von Sy definiert werden kann. Es gilt
nimlich fir re R,0 < ¢

2
teN < (V0<r<4)@s) I:S2 + <Et> =r A (S, Et> eSﬁ] ,

d.h. die Gerade durch (0, 0) und (z, 1) reicht in Sy bis zum Rand des Kreises
mit dem Radius 2. q.e.d.

Wir konnen jetzt den Satz beweisen: Angenommen, es gibe eine Aussage
p der Sprache der angeordneten Korper mit einem zusdtzlichen 2-stelligen
Pridikat fiir S, so daB fiir S < R? mit S konvex und offen und R reell
abgeschlossen S genau dann ein Modell von G4, ist, falls p in (R, S) gilt.
Fiir jedes N < R, das (a)-(c) erfiillt, heif3t dies speziell

SR Modell von GA, < in (R, N) gilt p*,

wobei man p* aus p erhilt, indem man die Definition von Sk in p fiir das
Pradikat S einsetzt. p* hat jetzt das zusitzliche Priddikat N. Mit dem
letzten Lemma erhalten wir dann:

Ist R reell abgeschlossen und hat N < R

die Eigenschaften (a)-(c), so ist genau dann
in R jeder N-definierbare Schnitt realisiert,
falls in (R, N) die einzelne Aussage p* gilt.

Dies widerspricht jedoch Theorem 8 zusammen mit Theorem 6 in [M].
Montague zeigt ndmlich dort in Theorem 6, dal3 die Theorie der reell ab-
geschlossenen Korper R mit Teilpradikat N mit (a)-(c), in dem jeder
N-definierbare Schnitt realisiert ist, ,,strongly semantically closed® 1ist.
Nach Theorem 8 impliziert dies, dal3 das Schema der ,,reellen Abgeschlossen-
heit”“ zusammen mit endlich vielen anderen Aussagen (z.B. (a)-(c) und p*)
nicht ausreicht, diese Theorie zu axiomatisieren.

4. SCHLUSSBEMERKUNGEN

1. Der eben bewiesene Satz 148t sich verschirfen zu

SATZ'. Es gibt keine Aussage p der schwachen 2. Stufe fiir angeordnete
Korper mit zusdtzlichem 2-stelligen Prddikat S, so dass fiir konvexe offene
Teilmengen S < R* und R reell abgeschlossen S genau dann ein Modell
von GA, ist, falls p in (R, S) gilt
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