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132 A. PRESTEL

Die Formel a muß also in S ausdrücken, daß <x1? x2y und < Ji, J2)
die /-Bilder der affinen Koordinaten <rl5 r2> und (sl9 s2) eines Punktes
aus S sind. Dabei genügt es natürlich, wenn

< xu x2>« < / (rj), f (r2) > und < y2 > « < / (sj, / (s2) >

gilt, wobei » die analog zu ~ mit © in [e0, gebildete Äquivalenzrelation

ist. Nach Szczerba-Tarski [S-T2], §5 läßt sich eine Formel
K5 (z; xu x2\ yi, y2) angeben, die für z, xu x2, yu y2 e S gerade besagt,
daß

(/ 0')> f(z")) (<x1,x2y

ist. Wir können also

<7(*i,x2; yi,yi):3 z yt,y2)

setzen.

Nach diesen Ausführungen dürfte klar sein, daß die folgende
Übersetzungsvorschrift für die Formeln a und ß einen geometrisch definierten
Schnitt auf [e0, et] liefert, dessen Realisierung in S eine Realisierung des

ursprünglichen Schnittes auf [0, 1] nach sich zieht:

(1) ersetze in a und ß Qualifikationen Vxp bzw. 3 x p durch
V x (B 0o*0 AX 5É^ =>p) bzw. 3 x (B (e0*O Ax^eœ ap),

(2) ersetze die Teilformeln w + w und w • v w durch u © v — w
bzw. u Q v w,

(3) ersetze die Teilformeln S «wx, w2>, ^2)) durch a (m1? w2 ; v2),

(4) ersetze Parameter r durch/ (r).

3. Die Nicht-Charakterisierbarkeit

Wir wollen nun den im 1. Abschnitt formulierten Nicht-Charakteri-
sierbarkeitssatz beweisen, indem wir ihn auf ein Resultat von R. Montague
in [M] zurückführen.

Dazu betrachten wir zuerst einen reell abgeschlossenen Körper R mit
einer Teilmenge N, die die folgenden Bedingungen erfüllen soll:

(a) O eN und r eN => r + 1 eN

(b r9 s e N,r < s => r + 1 < s

(c) (VreR, r > O) (3 teN) t < r < t + 1



AXIOMATISIERUNG AFFINER GEOMETRIEN IJJ

Die Menge Nenthältdann alle natürlichen Zahlen, ist jedoch, falls R

nicht-archimedisch ist, nicht eindeutig festgelegt. Mit Hilfe von N definieren

wir die folgende Teilmenge S* von R2 :

(x',x")eS% : o [(x'<0 v x"<0) a V2 + x"2 < 4] v
x1

O < x',x"a(3 teN)(<-<i+ 1a
X

wobei At das Innere des Dreieckes mit den Eckpunkten (0, 0) 0,

[2t 2 \(2(1+ 1) 2 \
lyrT? ' VîT?J " ' Wi +(i+D3 ' Vi + (!+i)V '

mit Einschluß der offenen Strecke von 0 nach ut bezeichnet.

Wegen (a)-(c) ist S* offensichtlich konvex und offen.

j Lemma. Es sei R reell abgeschlossen und N a R erfülle (a)-(c). Dann
I ist S* genau dann ein Modell von GA2, falls in R jeder N-definierbare
I Schnitt realisiert ist.1)

I Beweis. Dieses Lemma folgt unmittelbar aus dem Charakterisierungslemma,

wenn man beachtet daß nicht nur S* mit Hilfe von N, sondern

1) Dies ist analog zu S-definierbar zu verstehen, d.h. jetzt darf in den definierenden
arithmetischen Formeln a und ß ein zusätzliches 1-stelliges Prädikat für iV benützt werden.



134 A. PRESTEL

auch umgekehrt A mit Hilfe von S* definiert werden kann. Es gilt
nämlich für t e R, 0 < t

t eN o (VO <r <4) (35) 52 + (^ —VA ^)eSß
d.h. die Gerade durch (0,0) und (t, 1) reicht in S* bis zum Rand des Kreises

mit dem Radius 2. q.e.d.
Wir können jetzt den Satz beweisen: Angenommen, es gäbe eine Aussage

p der Sprache der angeordneten Körper mit einem zusätzlichen 2-stelligen
Prädikat für S, so daß für S c R2 mit S konvex und offen und R reell

abgeschlossen S genau dann ein Modell von GA2 ist, falls p in (R, S) gilt.
Für jedes A er R, das (a)-(c) erfüllt, heißt dies speziell

S* Modell von GA2 <=> in (R, N) gilt p*

wobei man p* aus p erhält, indem man die Definition von S* in p für das

Prädikat S einsetzt, p* hat jetzt das zusätzliche Prädikat N. Mit dem
letzten Lemma erhalten wir dann :

Ist R reell abgeschlossen und hat N c= R
die Eigenschaften (a)-(c), so ist genau dann
in R jeder iV-definierbare Schnitt realisiert,
falls in (R, N) die einzelne Aussage p* gilt.

Dies widerspricht jedoch Theorem 8 zusammen mit Theorem 6 in [M].
Montague zeigt nämlich dort in Theorem 6, daß die Theorie der reell

abgeschlossenen Körper R mit Teilprädikat N mit (a)-(c), in dem jeder
A-definierbare Schnitt realisiert ist, „strongly semantically closed" ist.

Nach Theorem 8 impliziert dies, daß das Schema der „reellen Abgeschlossenheit"

zusammen mit endlich vielen anderen Aussagen (z.B. (a)-(c) und p*)
nicht ausreicht, diese Theorie zu axiomatisieren.

4. Schlussbemerkungen

1. Der eben bewiesene Satz läßt sich verschärfen zu

Satz'. Es gibt keine Aussage p der schwachen 2. Stufe für angeordnete

Körper mit zusätzlichem 2-stelligen Prädikat S, so dass für konvexe offene

Teilmengen S ci R2 und R reell abgeschlossen S genau dann ein Modell

von GA2 ist, falls p in (R, S) gilt.
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