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128 A. PRESTEL

Dieses Lemma zeigt, dafl die ,,Kompliziertheit“ der Menge S nicht die
von R uberschreiten darf, um Modell von GA, zu sein. Fiir R = R sieht
man damit sofort, dal jedes konvexe offene S ein Modell ist.

Im 3. Abschnitt folgern wir aus diesem Zusammenhang dann den
folgenden Satz {iber die Nicht-Charakterisierbarkeit:

SATZ. Es gibt keine Aussage p in der Sprache der geordneten Korper
mit einem zusdtzlichen 2-stelligen Prddikat S, die genau die konvexen
offenen Teilmengen S < R* mit R reell abgeschlossen charakterisiert
(d.h. in (R, S) gilt), die Modelle von GA, sind.

2. BEWEIS DER CHARAKTERISIERUNGSLEMMAS

Wir bedienen uns in diesem Abschnitt der Ausfithrungen von Szczerba-
Tarski in [S-T,], ohne sie jeweils im einzelnen zu zitieren.

Sei zuerst S = R?* offen und konvex, R reell abgeschlossen und in R -

sei jeder S-definierbare Schnitt realisiert. Von den Axiomen von GA4,
bleibt dann fiir S lediglich 4 9 d.h. C! zu zeigen. Es seien also die geo-
metrischen ') Formeln ¢ (x) und  (y) gegeben. Unter Ausschlu von
trivialen Fillen konnen wir annehmen, daB ¢ und ¥ zwei nicht-leere
Mengen auf einer Geraden durch Punkte x, # y, mit ¢ (xo) und ¥ (y,)
definieren. Fiir die Koordinaten eines Punktes z € R* schreiben wir immer
(z', z"). Es ist nun klar, daB3 das folgende Verfahren unter Benutzung der
Parameterdarstellung der Punkte der Geraden durch x,, y, einen S-
definierbaren Schnitt auf R beschreibt, dessen Realisierung in R mit der
Realisierung des durch ¢ und ¥ in S definierten Schnittes gleichwertig ist.
Man verdndere folgendermaflen die Formeln ¢ und :

(1) alle Parameter a bzw. Variablen z werden durch (d’, @”) bzw. (z/, z")
ersetzt,

(2) entsprechend werden Quantifikationen Vzp und Jzp durch
Vzz'(S(Z,z") = p) bzw. 32" 2" (S (2, 2") A p) ersetzt,

(3) die Primformeln B ((', u") (v', v") (W', w")) werden ersetzt durch
F 1 (0<t<l Av=tu+ (1—1)w)?),

1) D.h. als einziger Grundbegriff tritt die Zwischenbeziehung B auf und die Quanti-

fikation lauft nur Gber Punkte.
2) Eine Gleichung a = b meint natiirlich die Konjunktion a’ = " A a” = b”.

stk e g e s



AXIOMATISIERUNG AFFINER GEOMETRIEN 129

(4) sind @* (x', x") bzw. ¥* (y’, y") die resultierenden Formeln, so setzen
wir schlielich

a(r): = 3x x"(*(x',x") A x = xg + 1 (¥o—%p)) ")
B(s): =Ty y (W*Q,y) Ay = x5+ s(o—X0) ") -

Die Umkehrung bereitet erheblich groBere technische Schwierigkeiten.
Sei dazu S = R konvex und offen, R reell abgeschlossen und auBerdem S
ein Modell von GA,. Es gilt jetzt die Richtigkeit von C' in S zu beniitzen,
um zu zeigen, dafl in R jeder S-definierbare Schnitt realisierbar ist. Wir
haben also eine Ubertragung eines Schnittes von R in das Modell S vor-
zunehmen und miissen dort die arithmetischen Operationen geometrisch
beschreiben.

Es ist klar, daB durch Anwendung von affinen Transformationen im
R? die folgende Situation keine Beschrinkung der Allgemeinheit darstellt:

(1) die arithmetischen Formeln o und S definieren unter Benutzung eines
2-stelligen Priadikates S zwei nicht-leere Teilmengen von R im Inter-
vall [0, 1],

(i) die konvexe offene Menge S enthdlt die Punkte e, = (0, 0),

1
ey = <—2—, 0>, e, = (1,0),e, = (0, Dund e = (1, —1).

Wir denken uns jetzt die affine Ebene R? in die projektive Ebene P2
eingebettet und bilden mit einer projektiven Transformation f die uneigent-
liche Gerade des R? im P auf die Gerade durch e, und e_, ab, wobei e, in
sich iiberfithrt werden soll. Diese Abbildung kann fiir (x’, x”) € R? etwa

durch
14 144 x, x”
f(x ’x) = ’ "2 ' ”
14x"4+x" " 14+x"+x

beschrieben werden. Die Abbildung f bildet also den Quadranten0 <<x’, x"
auf das Dreieck ey, e, e, ab, das im Innern von S liegt. Insbesondere
bildet f das Intervall [0, 1] von R auf die Strecke [e,, e,] in S ab 2). Damit
liegen die f~Bilder des durch « und B definierten Schnittes in S. Es bleibt
also noch die Ubersetzung der arithmetischen Operationen in die geo-
metrische Sprache von S.

) Eine Gleichung a=5 meint natiirlich die Konjunktion a’=5" A a’=b".
#) Dabei wird wie iiblich R durch » — (r, 0) in R? eingebettet.

L’Enseignement mathém. t XXVIT face 1.9 ~
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Da wir nur fiir nicht-negative re R garantieren konnen, dal} ihre 1
f~Bilder in S liegen, ersetzen wir die Formeln « und  durch gleichwertige
Formeln (die wir wieder mit « und f bezeichnen wollen), in denen jedoch
nur iiber die Elemente aus P = {re R|r > 0} quantifiziert wird. Es ist
klar, wie dies zu geschehen hat: statt von einem Korperelement r sprechen
wir von einer Aquivalenzklasse < ry,7, Y/ ~, wobei fiir ry,r,, 5y, 5, € P
definiert wird

CrisTy) ~CS, 80 s L+, =8 + 1,

In den Formeln o und f taucht jetzt natiirlich das urspriinglich 2-stellige
Pradikat S als vierstelliges auf:

S(ris120, <515 82))
Wir haben also statt (i) jetzt:
(i) die Formeln o und f enthalten nur Quantifikationen iiber Elemente

aus P, Parameter aus P, das vierstellige Pradikat S ({ry, 75>, {5y, §5))
und definieren nicht-leere Mengen im Intervall [0, 1].

Sind nun r, s, € P gegeben, so 148t sich die Beziehung r + s = ¢
im Quadranten 0 << x’, x” bekanntlich rein affin beschreiben:

5 .
/ Vr _ r+8




AXIOMATISIERUNG AFFINER GEOMETRIEN 131

Wenden wir die projektive Abbildung f an, so wird daraus:

N\ e,
b
(&
a\
u
v
&
e oY e
o £(r) £(s) (r+s) SN

| Bezeichnet dann x @ y = z die folgende geometrische Formel:

d abcuv [B(eqae,) A ey #a # e, A B(eybey) AD # e, A B(yub) A
A B(aue,) A B(eguc) A B(ave,) A B(xvc) A B(ey,ce,) A

A B(zvb)],

| so ist Klar, daB gilt:

J@) @f(s) = f(r+s)

) Analog 148t sich die Multiplikation © von Elementen aus [e,, e, >
| rein geometrisch in S definieren. Es gilt dann

fF@®OSf(s) =1 (s
Es fehlt jetzt noch die Ubersetzung von

Sri,72,<515 52)

| Wir suchen eine geometrische Formel o (x4, x,; ¥, ¥,) mit der Eigen-
schaft:

O'(f (ry), f (r2); f (sq), f (52))} - { Sre, 120, <81, 52))
gilt in S gilt in (R, S)
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Die Formel ¢ muf} also in S ausdriicken, daB <{x;, x,> und <{y;,y,>
die f-Bilder der affinen Koordinaten {r, r,> und {sy, s,> eines Punktes
aus S sind. Dabei geniigt es natiirlich, wenn

{X,% ) RS (1), f(r)) und yy, ¥, ) & f(s9), f(s2))

gilt, wobei ~ die analog zu ~ mit @ in [e,, e, > gebildete Aquivalenz-
relation ist. Nach Szczerba-Tarski [S-T,], §5 148t sich eine Formel

Ks (z; x4, X551, ¥2) angeben, die fiir z, x,, x,, yy, y, € S gerade besagt,
daB

(f (Z’)>f(zﬂ)) = (<x13x2 >/R’/><y19y2>/"§‘)

ist. Wir konnen also

(X1, X235 Y1,V2) 1 = dz Ks(z5%4,%55 Y1, Y2)

setzen.

Nach diesen Ausfithrungen diirfte klar sein, daB die folgende Uber-
setzungsvorschrift fiir die Formeln o und f§ einen geometrisch definierten
Schnitt auf [e,, e,] liefert, dessen Realisierung in S eine Realisierung des -
urspriinglichen Schnittes auf [0, 1] nach sich zieht:

(1) ersetze in « und B Quantifikationen V xp bzw. I xp durch
V x (B (egXe,,) AX #e,=>p) bzw. 3 x (B (egxe,) AX#e, Ap),

(2) ersetze die Teilformeln u + v = wund u-v = w durch u Qv = w
bzw. u O v = w,

(3) ersetze die Teilformeln S ({uy, u,), {vq,v,)>) durch o (uy, u,;v,,v,),
(4) ersetze Parameter r durch f (r).

3. DiE NicHT-CHARAKTERISIERBARKEIT

Wir wollen nun den im 1. Abschnitt formulierten Nicht-Charakteri-
sierbarkeitssatz beweisen, indem wir ihn auf ein Resultat von R. Montague
in [M] zuriickfiihren.

Dazu betrachten wir zuerst einen reell abgeschlossenen Korper R mit
einer Teilmenge N, die die folgenden Bedingungen erfiillen soll:

() OeN und reN =r + 1eN
(b) r,seN,r <s =r+1<s
(©) (VreR,r > 0)(dteN)t <r <t + 1
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