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128 A. PRESTEL

Dieses Lemma zeigt, daß die „Kompliziertheit" der Menge S nicht die

von R überschreiten darf, um Modell von GA2 zu sein. Für R R sieht

man damit sofort, daß jedes konvexe offene S ein Modell ist.
Im 3. Abschnitt folgern wir aus diesem Zusammenhang dann den

folgenden Satz über die Nicht-Charakterisierbarkeit:

Satz. Es gibt keine Aussage p in der Sprache der geordneten Körper
mit einem zusätzlichen 2-steiligen Prädikat S, die genau die konvexen

offenen Teilmengen S a R2 mit R reell abgeschlossen charakterisiert
(d.h. in (R, S) gilt), die Modelle von GA2 sind.

2. Beweis der Charakterisierungslemmas

Wir bedienen uns in diesem Abschnitt der Ausführungen von Szczerba-

Tarski in [S-T2], ohne sie jeweils im einzelnen zu zitieren.
Sei zuerst S c= R2 offen und konvex, R reell abgeschlossen und in R

sei jeder V-definierbare Schnitt realisiert. Von den Axiomen von GA2
bleibt dann für S lediglich A 9 d.h. C1 zu zeigen. Es seien also die
geometrischen 0 Formeln (p (x) und xf (j) gegeben. Unter Ausschluß von
trivialen Fällen können wir annehmen, daß (p und ijt zwei nicht-leere

Mengen auf einer Geraden durch Punkte x0 =£ y0 mit cp (x0) und if (y0)
definieren. Für die Koordinaten eines Punktes z e R2 schreiben wir immer
(.z', z"). Es ist nun klar, daß das folgende Verfahren unter Benutzung der

Parameterdarstellung der Punkte der Geraden durch x0, y0 einen S-

definierbaren Schnitt auf R beschreibt, dessen Realisierung in R mit der

Realisierung des durch cp und i/z in S definierten Schnittes gleichwertig ist.

Man verändere folgendermaßen die Formeln cp und xj/:

(1) alle Parameter a bzw. Variablen z werden durch (a!, a") bzw. (z', z")
ersetzt,

(2) entsprechend werden Quantifikationen Vzp und 3 z p durch
V z' z" (S (z', z") => p) bzw. 3 z' z" (S (z\ z") a p) ersetzt,

(3) die Primformeln B ((«', u") (vf, v") (wr, w")) werden ersetzt durch
3 t (0<£<1 av tu+ (1 — 0 w)2),

1) D.h. als einziger Grundbegriff tritt die Zwischenbeziehung B auf und die
Qualifikation läuft nur über Punkte.

2) Eine Gleichung a b meint natürlich die Konjunktion a' b' A d' b".



AXIOMATISIERUNG AFFINER GEOMETRIEN 129

(4) sind q>* (.x', x") bzw. \j/* (y',y") die resultierenden Formeln, so setzen

wir schließlich

a (r) : 3 x'x" (<p* (x', x") a x x0 + rQ/Q-Xo))1)

Die Umkehrung bereitet erheblich größere technische Schwierigkeiten.
Sei dazu S a R konvex und offen, R reell abgeschlossen und außerdem S

ein Modell von GA2. Es gilt jetzt die Richtigkeit von C1 in S zu benützen,

um zu zeigen, daß in R jeder *S-definierbare Schnitt realisierbar ist. Wir
haben also eine Übertragung eines Schnittes von R in das Modell S
vorzunehmen und müssen dort die arithmetischen Operationen geometrisch
beschreiben.

Es ist klar, daß durch Anwendung von affinen Transformationen im
R2 die folgende Situation keine Beschränkung der Allgemeinheit darstellt:

(i) die arithmetischen Formeln a und ß definieren unter Benutzung eines

2-stelligen Prädikates S zwei nicht-leere Teilmengen von R im Intervall

[0, 1],

(ii) die konvexe offene Menge S enthält die Punkte e0 (0,0),

Wir denken uns jetzt die affine Ebene R2 in die projektive Ebene P#
eingebettet und bilden mit einer projektiven Transformation/ die uneigentliche

Gerade des R2 im auf die Gerade durch e„ und ab, wobei e0 in
sich überführt werden soll. Diese Abbildung kann für (x', x") e R2 etwa
durch

beschrieben werden. Die Abbildung/bildet also den Quadranten 0 <x',x"
auf das Dreieck e0, eœ, eœ ab, das im Innern von S liegt. Insbesondere
bildet/das Intervall [0, 1] von R auf die Strecke [e0, e±] in S ab 2). Damit
liegen die /-Bilder des durch a und ß definierten Schnittes in S. Es bleibt
also noch die Übersetzung der arithmetischen Operationen in die
geometrische Sprache von S.

x) Eine Gleichung a-b meint natürlich die Konjunktion a' b' A d' — b".
2) Dabei wird wie üblich R durch r \-+ (r, 0) in R2 eingebettet.

ß(s) : =3 y'y"(iß* (y', y") a y x0 + s (y0-x0))

L'Enseienemp.nt mathAm. t YYVTT focn 1_0
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Da wir nur für nicht-negative r e R garantieren können, daß ihre

/-Bilder in S liegen, ersetzen wir die Formeln a und ß durch gleichwertige
Formeln (die wir wieder mit a und ß bezeichnen wollen), in denen jedoch
nur über die Elemente aus P {r e R | r > 0} quantifiziert wird. Es ist

klar, wie dies zu geschehen hat : statt von einem Körperelement r sprechen
wir von einer Äquivalenzklasse < r1? r2 >/~, wobei für rl9 r2, su s2 e P
definiert wird

< n, r2>~ < su s2y : orx + s2 st

In den Formeln a und ß taucht jetzt natürlich das ursprünglich 2-stellige
Prädikat S als vierstelliges auf :

S«r1,r2>,<s1,s2»

Wir haben also statt (i) jetzt:

(f) die Formeln a und ß enthalten nur Qualifikationen über Elemente

aus P, Parameter aus P, das vierstellige Prädikat S((rl9 r2>, <Jl5 s2))
und definieren nicht-leere Mengen im Intervall [0, 1].

Sind nun r9 s9 t eP gegeben, so läßt sich die Beziehung r + s t
im Quadranten 0 < x'9 x" bekanntlich rein affin beschreiben:
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Wenden wir die projektive Abbildung/an, so wird daraus:

Bezeichnet dann x © y z die folgende geometrische Formel:

3 abcuv\B{e0ae^) a e0 ^ a ^ em a B(eœbeœ) a b # a B(yub) A

a B («aueJ a B (e0uc) a B (ave^) a B (xvc) a B (e^ce^) a

a B (zvbj\

so ist klar, daß gilt :

fir) ©/« /(r + 5)

Analog läßt sich die Multiplikation Q von Elementen aus [e0, >

rein geometrisch in S definieren. Es gilt dann

/WO/ (5) / 0
Es fehlt jetzt noch die Übersetzung von

S«r1,r2},{sl,s2»

Wir suchen eine geometrische Formel o (x1? x2; jl5 j>2) der Eigenschaft

:

ff (/ OA / (r2); fOi),/ (s2))I ^
f s2»

gilt in S1 J I gilt in (i?, S)
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Die Formel a muß also in S ausdrücken, daß <x1? x2y und < Ji, J2)
die /-Bilder der affinen Koordinaten <rl5 r2> und (sl9 s2) eines Punktes
aus S sind. Dabei genügt es natürlich, wenn

< xu x2>« < / (rj), f (r2) > und < y2 > « < / (sj, / (s2) >

gilt, wobei » die analog zu ~ mit © in [e0, gebildete Äquivalenzrelation

ist. Nach Szczerba-Tarski [S-T2], §5 läßt sich eine Formel
K5 (z; xu x2\ yi, y2) angeben, die für z, xu x2, yu y2 e S gerade besagt,
daß

(/ 0')> f(z")) (<x1,x2y

ist. Wir können also

<7(*i,x2; yi,yi):3 z yt,y2)

setzen.

Nach diesen Ausführungen dürfte klar sein, daß die folgende
Übersetzungsvorschrift für die Formeln a und ß einen geometrisch definierten
Schnitt auf [e0, et] liefert, dessen Realisierung in S eine Realisierung des

ursprünglichen Schnittes auf [0, 1] nach sich zieht:

(1) ersetze in a und ß Qualifikationen Vxp bzw. 3 x p durch
V x (B 0o*0 AX 5É^ =>p) bzw. 3 x (B (e0*O Ax^eœ ap),

(2) ersetze die Teilformeln w + w und w • v w durch u © v — w
bzw. u Q v w,

(3) ersetze die Teilformeln S «wx, w2>, ^2)) durch a (m1? w2 ; v2),

(4) ersetze Parameter r durch/ (r).

3. Die Nicht-Charakterisierbarkeit

Wir wollen nun den im 1. Abschnitt formulierten Nicht-Charakteri-
sierbarkeitssatz beweisen, indem wir ihn auf ein Resultat von R. Montague
in [M] zurückführen.

Dazu betrachten wir zuerst einen reell abgeschlossenen Körper R mit
einer Teilmenge N, die die folgenden Bedingungen erfüllen soll:

(a) O eN und r eN => r + 1 eN

(b r9 s e N,r < s => r + 1 < s

(c) (VreR, r > O) (3 teN) t < r < t + 1
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