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ZUR AXIOMATISIERUNG GEWISSER
AFFINER GEOMETRIEN

von Alexander PRESTEL

Professor E. Specker zum 60. Geburtstag gewidmet H

1. EINFUHRUNG UND PROBLEMSTELLUNG

In seiner Arbeit [T] ,,What is elementary geometry?* stellt A. Tarski
heraus, daB Hilberts bekannte Axiomatisierung [H] des euklidischen
Raumes im Sinne der Pridikatenlogik 1. Stufe nicht ,,elementar® ist. Dies
liegt daran, daB das Stetigkeitsaxiom 2)

C?: JzVxy(xeX AyeY =B(zxy)) = zVxy (xeX AyeY =B (xzy))

Aussagen iiber alle Mengen X und Y macht. Die hier gewihlte Form
besagt inhaltlich, da auf einer Geraden zwischen zwel nicht-leeren Mengen
immer ein Punkt liegt. Dabei bedeutet

B (xyz): ,,Der Punkt y liegt zwischen den
Punkten x und z (unter Einschluf3
der Begrenzungspunkte x und z)*.

Will man nun die Geometrie des euklidischen Raumes den Frage-
stellungen und Methoden der Logik 1. Stufe zugénglich machen, so bietet
sich an, das Stetigkeitsaxiom nur fiir Mengen zu formulieren, die sich
explizit definieren lassen, und zwar unter ausschlieBlicher Benutzung
geometrischer Grundbegriffe und Quantifikation nur iiber Punkte 2). Das
heiBt, statt des Stetigkeitsaxioms (2. Stufe) C? fordert man fiir jedes Paar
~von Formeln ¢ (x) und ¥ (y)

C': FzVxy (o (x) AY (y)=B(zxy)) =3zVxy (¢ (x) AY (y)=B (xzy))

1) Die vorliegende Arbeit ist eine erweiterte Fassung des Vortrages ,,Remarks on the
- axiomatization of general affine geometry” vom 7. Februar 1980 im Symposium iiber
- Logik und Algorithmik, Zirich.
| ?) Die hier verwendete Fassung findet sich nicht bei Hilbert, sondern etwa bei [T],
; ist aber dem von Hilbert verwendeten Stetigkeitsaxiom gleichwertig.

3) Dies schliesst implizit nattirlich die Quantifikation tiber Geraden und Ebenen mit
em da diese ja durch zwei bzw. drei Punkte eindeutig festgelegt sind.
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Die Formeln ¢ und ¥ diirfen dabei selbstverstindlich Parameter ent-
halten.

Das nun resultierende Axiomensystem hat nicht mehr wie bei Hilbert
nur den R> als Modell, vielmehr sind die Modelle genau die euklidischen
Riume R?, wobei R ein reell abgeschlossener Korper ist. Die resultierende
Theorie nennt Tarski die ,,elementare euklidische Geometrie®“. Das Wort
elementar steht also dafiir, daB3 statt des Stetigkeitsaxioms C? das Schema
der ,,elementaren (d.h.erststufigen) Axiome C' gefordert wird.

In [S] fiihrt W. Szmielew analog die elementare hyperbolische und
elementare absolute Geometrie ein.

In allen Fillen sind die Grundbegriffe die Zwischenbeziehung B (xyz)
und die Streckenkongruenz D (xyuv) (= die Strecke xy ist kongruent zu
der Strecke uv). Wieder sehen die Modelle der elementaren Theorie dhnlich
wie die der klassischen Theorie aus, es ist lediglich der Korper R durch
einen reell abgeschlossenen Korper R zu ersetzen.

Die Verhiltnisse dndern sich jedoch wesentlich, wenn man diese Methode
des ,,Elementarisierens® auf die im folgenden zu beschreibende, etwa bei
Coxeter [C] formulierte, Geometrie anwendet ). Als einziger Grundbegriff
wird jetzt die Zwischenbeziehung B (xyz) verwendet. Die Axiome sind die
ublicherweise fiir B formulierten, die be1 Hinzunahme weiterer Axiome fir
die Streckenkongruenz gerade die absolute Geometrie ergeben. Die Modelle
dieser Axiome sind genau die konvexen offenen (nichtleeren) Teilmengen
des R® mit der vom R® induzierten Zwischenbezichung. (Siehe etwa
Klingenberg [K], §9). Bei dieser Axiomatisierung wurde wieder das Stetig-
keitsaxiom C? gefordert.

In [S-T,],,elementarisieren Szczerba und Tarski diese eben beschriebene
Geometrie, indem sie wieder C? durch das Schema der Stetigkeitsaxiome
C! ersetzen. In [S-T,] findet man eine Axiomatisierung fiir den 2-
dimensionalen Fall durch Axiome mit den folgenden Namen:

A 1 : identity axiom

A 2 : transitivity axiom
A 3 : connectivity axiom
A 4 : extension axiom

A 5: Pasch’s axiom

1) Dort als deskriptive Geometrie bezeichnet.
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A 6 : Desargues’ axiom
A 7 : lower dimension axiom
A 8 : upper dimension axiom

A 9 : elementary continuity axioms

Das Schema A 9 ist dabei mit dem oben eingefiithrten Schema C!
gleichwertig. Szczerba und Tarski nennen die resultierende Geometrie
,,allgemeine affine Geometrie“ (= GA,). Die Modelle dieses Axiomen-
systems sind konvexe offene (nicht-leere) Teilmengen von R?, wobei R ein
reell abgeschlossener Korper ist. Im Spezialfall R = R sind die konvexen
offenen Teilmengen genau die Modelle von GA,. Ist jedoch R # R, so
gibt es immer konvexe offene Teilmengen von R?, die keine Modelle von
GA, sind.!) In [S-T,] blieb es ein offenes Problem, diejenigen offenen und
konvexen Teilmengen von R* zu charakterisieren, die Modelle von G4,
sind. Wir werden im folgenden zeigen, dal3 dies in einem gewissen Sinne
nicht moglich ist.

Der Grund dafiir, daf3 bei dieser Geometrie im Gegensatz zu den vorher
erwihnten die Modellklasse sich nicht verniinftig beschreiben 1483t, liegt
an der unterschiedlichen Stirke des Schemas C! in den verschiedenen
Geometrien. In allen betrachteten Geometrien 1483t sich eine Koordina-
tisierung mit einem geordneten Korper R vornehmen. Das Schema C!
erzwingt dann in den zuerst betrachteten Geometrien lediglich die Realisier-
barkeit rein korpertheoretisch definierbarer Schnitte, dies ist aber mit der
reellen Abgeschlossenheit von R &dquivalent. Im Falle der Geometrie G4,
kann jedoch die ,,Gestalt“ eines Modelles die Realisierung wesentlich
komplizierterer Schnitte erzwingen. Dies kommt zum Ausdruck durch
das im 2. Abschnitt zu beweisende.

CHARAKTERISIERUNGSLEMMA. Es sei R ein reell abgeschlossener Korper

und S = R*® konvex und offen. S ist genau dann ein Modell von GA 25
wenn in R jeder S-definierbare Schnitt realisiert ist.

Dies soll heiBlen, daB fiir je zwei Formeln (mit Parametern) « (r) und
B (s) aus der Sprache eines angeordneten Korpers mit einem zusitzlichen

2-stelligen Préddikat fiir S (das wir wie iiblich selbst wieder mit S bezeichnen)
die folgende Aussage in (R, S) gilt:

FtVrs (e (r) AB(s) = t<r<s) = ItVrs (¢ () A (s) = r<{t<s)

1) Siehe [S — T;] bzw. fiir die Beweise [S — T,].
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Dieses Lemma zeigt, dafl die ,,Kompliziertheit“ der Menge S nicht die
von R uberschreiten darf, um Modell von GA, zu sein. Fiir R = R sieht
man damit sofort, dal jedes konvexe offene S ein Modell ist.

Im 3. Abschnitt folgern wir aus diesem Zusammenhang dann den
folgenden Satz {iber die Nicht-Charakterisierbarkeit:

SATZ. Es gibt keine Aussage p in der Sprache der geordneten Korper
mit einem zusdtzlichen 2-stelligen Prddikat S, die genau die konvexen
offenen Teilmengen S < R* mit R reell abgeschlossen charakterisiert
(d.h. in (R, S) gilt), die Modelle von GA, sind.

2. BEWEIS DER CHARAKTERISIERUNGSLEMMAS

Wir bedienen uns in diesem Abschnitt der Ausfithrungen von Szczerba-
Tarski in [S-T,], ohne sie jeweils im einzelnen zu zitieren.

Sei zuerst S = R?* offen und konvex, R reell abgeschlossen und in R -

sei jeder S-definierbare Schnitt realisiert. Von den Axiomen von GA4,
bleibt dann fiir S lediglich 4 9 d.h. C! zu zeigen. Es seien also die geo-
metrischen ') Formeln ¢ (x) und  (y) gegeben. Unter Ausschlu von
trivialen Fillen konnen wir annehmen, daB ¢ und ¥ zwei nicht-leere
Mengen auf einer Geraden durch Punkte x, # y, mit ¢ (xo) und ¥ (y,)
definieren. Fiir die Koordinaten eines Punktes z € R* schreiben wir immer
(z', z"). Es ist nun klar, daB3 das folgende Verfahren unter Benutzung der
Parameterdarstellung der Punkte der Geraden durch x,, y, einen S-
definierbaren Schnitt auf R beschreibt, dessen Realisierung in R mit der
Realisierung des durch ¢ und ¥ in S definierten Schnittes gleichwertig ist.
Man verdndere folgendermaflen die Formeln ¢ und :

(1) alle Parameter a bzw. Variablen z werden durch (d’, @”) bzw. (z/, z")
ersetzt,

(2) entsprechend werden Quantifikationen Vzp und Jzp durch
Vzz'(S(Z,z") = p) bzw. 32" 2" (S (2, 2") A p) ersetzt,

(3) die Primformeln B ((', u") (v', v") (W', w")) werden ersetzt durch
F 1 (0<t<l Av=tu+ (1—1)w)?),

1) D.h. als einziger Grundbegriff tritt die Zwischenbeziehung B auf und die Quanti-

fikation lauft nur Gber Punkte.
2) Eine Gleichung a = b meint natiirlich die Konjunktion a’ = " A a” = b”.

stk e g e s
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