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ZUR AXIOMATISIERUNG GEWISSER
AFFINER GEOMETRIEN

von Alexander Prestel

Professor E. Specker zum 60. Geburtstag gewidmet 1)

1. Einführung und Problemstellung

In seiner Arbeit [T] „What is elementary geometry?" stellt A. Tarski

heraus, daß Hilberts bekannte Axiomatisierung [H] des euklidischen

Raumes im Sinne der Prädikatenlogik 1. Stufe nicht „elementar" ist. Dies

liegt daran, daß das Stetigkeitsaxiom 2)

C2: 3zVxy (xeX AyeY =>B (zxy)) => 3zVxy (xeX AyeY=>B (xzy))

Aussagen über alle Mengen X und Y macht. Die hier gewählte Form
besagt inhaltlich, daß auf einer Geraden zwischen zwei nicht-leeren Mengen
immer ein Punkt liegt. Dabei bedeutet

B (.xyz): „Der Punkt y liegt zwischen den

Punkten x und z (unter Einschluß
der Begrenzungspunkte x und z)".

Will man nun die Geometrie des euklidischen Raumes den

Fragestellungen und Methoden der Logik 1. Stufe zugänglich machen, so bietet
sich an, das Stetigkeitsaxiom nur für Mengen zu formulieren, die sich

explizit definieren lassen, und zwar unter ausschließlicher Benutzung
geometrischer Grundbegriffe und Quantification nur über Punkte3). Das
heißt, statt des Stetigkeitsaxioms (2. Stufe) C2 fordert man für jedes Paar

von Formeln (p (x) und \j/ (y)

C1 : 3 zVxy (<p (x) a ^ (y) =>£ (zxy)) => 3 zVxy ((p (x) a ^ (y) =>B (xzy))

x) Die vorliegende Arbeit ist eine erweiterte Fassung des Vortrages „Remarks on the
axiomatization of general affine geometry" vom 7. Februar 1980 im Symposium über
Logik und Algorithmik, Zürich.

2) Die hier verwendete Fassung findet sich nicht bei Hilbert, sondern etwa bei [T],
ist aber dem von Hilbert verwendeten Stetigkeitsaxiom gleichwertig.

3) Dies schliesst implizit natürlich die Qualifikation über Geraden und Ebenen mit
ein, da diese ja durch zwei bzw. drei Punkte eindeutig festgelegt sind.
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Die Formeln <p und \j/ dürfen dabei selbstverständlich Parameter
enthalten.

Das nun resultierende Axiomensystem hat nicht mehr wie bei Hilbert
nur den R3 als Modell, vielmehr sind die Modelle genau die euklidischen
Räume R3, wobei R ein reell abgeschlossener Körper ist. Die resultierende
Theorie nennt Tarski die „elementare euklidische Geometrie". Das Wort
elementar steht also dafür, daß statt des Stetigkeitsaxioms C2 das Schema

der „elementaren" (d.h.erststufigen) Axiome C1 gefordert wird.
In [S] führt W. Szmielew analog die elementare hyperbolische und

elementare absolute Geometrie ein.

In allen Fällen sind die Grundbegriffe die Zwischenbeziehung B (xyz)
und die Streckenkongruenz D (xyuv) die Strecke xy ist kongruent zu
der Strecke uv). Wieder sehen die Modelle der elementaren Theorie ähnlich
wie die der klassischen Theorie aus, es ist lediglich der Körper R durch
einen reell abgeschlossenen Körper R zu ersetzen.

Die Verhältnisse ändern sich jedoch wesentlich, wenn man diese Methode
des „Elementarisierens" auf die im folgenden zu beschreibende, etwa bei

Coxeter [C] formulierte, Geometrie anwendet 1). Als einziger Grundbegriff
wird jetzt die Zwischenbeziehung B (xyz) verwendet. Die Axiome sind die

üblicherweise für B formulierten, die bei Hinzunahme weiterer Axiome für
die Streckenkongruenz gerade die absolute Geometrie ergeben. Die Modelle
dieser Axiome sind genau die konvexen offenen (nichtleeren) Teilmengen
des R3 mit der vom R3 induzierten Zwischenbeziehung. (Siehe etwa

Klingenberg [K], §9). Bei dieser Axiomatisierung wurde wieder das

Stetigkeitsaxiom C2 gefordert.
In [S-TJ „elementarisieren" Szczerba und Tarski diese eben beschriebene

Geometrie, indem sie wieder C2 durch das Schema der Stetigkeitsaxiome
C1 ersetzen. In [S-TJ findet man eine Axiomatisierung für den 2-

dimensionalen Fall durch Axiome mit den folgenden Namen:

A 1 : identity axiom

A 2 : transitivity axiom

A 3 : connectivity axiom

A 4 : extension axiom

A 5 : Pasch's axiom

*) Dort als deskriptive Geometrie bezeichnet.
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A 6 : Desargues' axiom

A 7 : lower dimension axiom

A 8 : upper dimension axiom

A 9 : elementary continuity axioms

Das Schema A 9 ist dabei mit dem oben eingeführten Schema C1

gleichwertig. Szczerba und Tarski nennen die resultierende Geometrie

„allgemeine affine Geometrie" GA2). Die Modelle dieses Axiomensystems

sind konvexe offene (nicht-leere) Teilmengen von R2, wobei R ein

reell abgeschlossener Körper ist. Im Spezialfall R R sind die konvexen
offenen Teilmengen genau die Modelle von GA2. Ist jedoch R ^ R, so

gibt es immer konvexe offene Teilmengen von R2, die keine Modelle von
GA2 sind.1) In [S-TJ blieb es ein offenes Problem, diejenigen offenen und
konvexen Teilmengen von R2 zu charakterisieren, die Modelle von GA2
sind. Wir werden im folgenden zeigen, daß dies in einem gewissen Sinne

nicht möglich ist.

Der Grund dafür, daß bei dieser Geometrie im Gegensatz zu den vorher
erwähnten die Modellklasse sich nicht vernünftig beschreiben läßt, liegt
an der unterschiedlichen Stärke des Schemas C1 in den verschiedenen
Geometrien. In allen betrachteten Geometrien läßt sich eine Koordina-
tisierung mit einem geordneten Körper R vornehmen. Das Schema C1

erzwingt dann in den zuerst betrachteten Geometrien lediglich die Realisierbarkeit

rein körpertheoretisch definierbarer Schnitte, dies ist aber mit der
reellen Abgeschlossenheit von R äquivalent. Im Falle der Geometrie GA 2

kann jedoch die „Gestalt" eines Modelles die Realisierung wesentlich
komplizierterer Schnitte erzwingen. Dies kommt zum Ausdruck durch
das im 2. Abschnitt zu beweisende.

Charakterisierungslemma. Es sei R ein reell abgeschlossener Körper
und S ci R2 konvex und offen. S ist genau dann ein Modell von GA2,
wenn in R jeder S-definierbare Schnitt realisiert ist.

Dies soll heißen, daß für je zwei Formeln (mit Parametern) a (r) und
ß (s) aus der Sprache eines angeordneten Körpers mit einem zusätzlichen
2-stelligen Prädikat für S (das wir wie üblich selbst wieder mit S bezeichnen)
die folgende Aussage in (R, S) gilt:

3ïVrs(a(r) Aj5(s) => f<r<s) => 3rVrs(a(r) a/?(s) => r<f<s)
x) Siehe [S - 7\] bzw. für die Beweise [S - T2].
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Dieses Lemma zeigt, daß die „Kompliziertheit" der Menge S nicht die

von R überschreiten darf, um Modell von GA2 zu sein. Für R R sieht

man damit sofort, daß jedes konvexe offene S ein Modell ist.
Im 3. Abschnitt folgern wir aus diesem Zusammenhang dann den

folgenden Satz über die Nicht-Charakterisierbarkeit:

Satz. Es gibt keine Aussage p in der Sprache der geordneten Körper
mit einem zusätzlichen 2-steiligen Prädikat S, die genau die konvexen

offenen Teilmengen S a R2 mit R reell abgeschlossen charakterisiert
(d.h. in (R, S) gilt), die Modelle von GA2 sind.

2. Beweis der Charakterisierungslemmas

Wir bedienen uns in diesem Abschnitt der Ausführungen von Szczerba-

Tarski in [S-T2], ohne sie jeweils im einzelnen zu zitieren.
Sei zuerst S c= R2 offen und konvex, R reell abgeschlossen und in R

sei jeder V-definierbare Schnitt realisiert. Von den Axiomen von GA2
bleibt dann für S lediglich A 9 d.h. C1 zu zeigen. Es seien also die
geometrischen 0 Formeln (p (x) und xf (j) gegeben. Unter Ausschluß von
trivialen Fällen können wir annehmen, daß (p und ijt zwei nicht-leere

Mengen auf einer Geraden durch Punkte x0 =£ y0 mit cp (x0) und if (y0)
definieren. Für die Koordinaten eines Punktes z e R2 schreiben wir immer
(.z', z"). Es ist nun klar, daß das folgende Verfahren unter Benutzung der

Parameterdarstellung der Punkte der Geraden durch x0, y0 einen S-

definierbaren Schnitt auf R beschreibt, dessen Realisierung in R mit der

Realisierung des durch cp und i/z in S definierten Schnittes gleichwertig ist.

Man verändere folgendermaßen die Formeln cp und xj/:

(1) alle Parameter a bzw. Variablen z werden durch (a!, a") bzw. (z', z")
ersetzt,

(2) entsprechend werden Quantifikationen Vzp und 3 z p durch
V z' z" (S (z', z") => p) bzw. 3 z' z" (S (z\ z") a p) ersetzt,

(3) die Primformeln B ((«', u") (vf, v") (wr, w")) werden ersetzt durch
3 t (0<£<1 av tu+ (1 — 0 w)2),

1) D.h. als einziger Grundbegriff tritt die Zwischenbeziehung B auf und die
Qualifikation läuft nur über Punkte.

2) Eine Gleichung a b meint natürlich die Konjunktion a' b' A d' b".
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