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ZUR AXIOMATISIERUNG GEWISSER
AFFINER GEOMETRIEN

von Alexander Prestel

Professor E. Specker zum 60. Geburtstag gewidmet 1)

1. Einführung und Problemstellung

In seiner Arbeit [T] „What is elementary geometry?" stellt A. Tarski

heraus, daß Hilberts bekannte Axiomatisierung [H] des euklidischen

Raumes im Sinne der Prädikatenlogik 1. Stufe nicht „elementar" ist. Dies

liegt daran, daß das Stetigkeitsaxiom 2)

C2: 3zVxy (xeX AyeY =>B (zxy)) => 3zVxy (xeX AyeY=>B (xzy))

Aussagen über alle Mengen X und Y macht. Die hier gewählte Form
besagt inhaltlich, daß auf einer Geraden zwischen zwei nicht-leeren Mengen
immer ein Punkt liegt. Dabei bedeutet

B (.xyz): „Der Punkt y liegt zwischen den

Punkten x und z (unter Einschluß
der Begrenzungspunkte x und z)".

Will man nun die Geometrie des euklidischen Raumes den

Fragestellungen und Methoden der Logik 1. Stufe zugänglich machen, so bietet
sich an, das Stetigkeitsaxiom nur für Mengen zu formulieren, die sich

explizit definieren lassen, und zwar unter ausschließlicher Benutzung
geometrischer Grundbegriffe und Quantification nur über Punkte3). Das
heißt, statt des Stetigkeitsaxioms (2. Stufe) C2 fordert man für jedes Paar

von Formeln (p (x) und \j/ (y)

C1 : 3 zVxy (<p (x) a ^ (y) =>£ (zxy)) => 3 zVxy ((p (x) a ^ (y) =>B (xzy))

x) Die vorliegende Arbeit ist eine erweiterte Fassung des Vortrages „Remarks on the
axiomatization of general affine geometry" vom 7. Februar 1980 im Symposium über
Logik und Algorithmik, Zürich.

2) Die hier verwendete Fassung findet sich nicht bei Hilbert, sondern etwa bei [T],
ist aber dem von Hilbert verwendeten Stetigkeitsaxiom gleichwertig.

3) Dies schliesst implizit natürlich die Qualifikation über Geraden und Ebenen mit
ein, da diese ja durch zwei bzw. drei Punkte eindeutig festgelegt sind.
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Die Formeln <p und \j/ dürfen dabei selbstverständlich Parameter
enthalten.

Das nun resultierende Axiomensystem hat nicht mehr wie bei Hilbert
nur den R3 als Modell, vielmehr sind die Modelle genau die euklidischen
Räume R3, wobei R ein reell abgeschlossener Körper ist. Die resultierende
Theorie nennt Tarski die „elementare euklidische Geometrie". Das Wort
elementar steht also dafür, daß statt des Stetigkeitsaxioms C2 das Schema

der „elementaren" (d.h.erststufigen) Axiome C1 gefordert wird.
In [S] führt W. Szmielew analog die elementare hyperbolische und

elementare absolute Geometrie ein.

In allen Fällen sind die Grundbegriffe die Zwischenbeziehung B (xyz)
und die Streckenkongruenz D (xyuv) die Strecke xy ist kongruent zu
der Strecke uv). Wieder sehen die Modelle der elementaren Theorie ähnlich
wie die der klassischen Theorie aus, es ist lediglich der Körper R durch
einen reell abgeschlossenen Körper R zu ersetzen.

Die Verhältnisse ändern sich jedoch wesentlich, wenn man diese Methode
des „Elementarisierens" auf die im folgenden zu beschreibende, etwa bei

Coxeter [C] formulierte, Geometrie anwendet 1). Als einziger Grundbegriff
wird jetzt die Zwischenbeziehung B (xyz) verwendet. Die Axiome sind die

üblicherweise für B formulierten, die bei Hinzunahme weiterer Axiome für
die Streckenkongruenz gerade die absolute Geometrie ergeben. Die Modelle
dieser Axiome sind genau die konvexen offenen (nichtleeren) Teilmengen
des R3 mit der vom R3 induzierten Zwischenbeziehung. (Siehe etwa

Klingenberg [K], §9). Bei dieser Axiomatisierung wurde wieder das

Stetigkeitsaxiom C2 gefordert.
In [S-TJ „elementarisieren" Szczerba und Tarski diese eben beschriebene

Geometrie, indem sie wieder C2 durch das Schema der Stetigkeitsaxiome
C1 ersetzen. In [S-TJ findet man eine Axiomatisierung für den 2-

dimensionalen Fall durch Axiome mit den folgenden Namen:

A 1 : identity axiom

A 2 : transitivity axiom

A 3 : connectivity axiom

A 4 : extension axiom

A 5 : Pasch's axiom

*) Dort als deskriptive Geometrie bezeichnet.
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A 6 : Desargues' axiom

A 7 : lower dimension axiom

A 8 : upper dimension axiom

A 9 : elementary continuity axioms

Das Schema A 9 ist dabei mit dem oben eingeführten Schema C1

gleichwertig. Szczerba und Tarski nennen die resultierende Geometrie

„allgemeine affine Geometrie" GA2). Die Modelle dieses Axiomensystems

sind konvexe offene (nicht-leere) Teilmengen von R2, wobei R ein

reell abgeschlossener Körper ist. Im Spezialfall R R sind die konvexen
offenen Teilmengen genau die Modelle von GA2. Ist jedoch R ^ R, so

gibt es immer konvexe offene Teilmengen von R2, die keine Modelle von
GA2 sind.1) In [S-TJ blieb es ein offenes Problem, diejenigen offenen und
konvexen Teilmengen von R2 zu charakterisieren, die Modelle von GA2
sind. Wir werden im folgenden zeigen, daß dies in einem gewissen Sinne

nicht möglich ist.

Der Grund dafür, daß bei dieser Geometrie im Gegensatz zu den vorher
erwähnten die Modellklasse sich nicht vernünftig beschreiben läßt, liegt
an der unterschiedlichen Stärke des Schemas C1 in den verschiedenen
Geometrien. In allen betrachteten Geometrien läßt sich eine Koordina-
tisierung mit einem geordneten Körper R vornehmen. Das Schema C1

erzwingt dann in den zuerst betrachteten Geometrien lediglich die Realisierbarkeit

rein körpertheoretisch definierbarer Schnitte, dies ist aber mit der
reellen Abgeschlossenheit von R äquivalent. Im Falle der Geometrie GA 2

kann jedoch die „Gestalt" eines Modelles die Realisierung wesentlich
komplizierterer Schnitte erzwingen. Dies kommt zum Ausdruck durch
das im 2. Abschnitt zu beweisende.

Charakterisierungslemma. Es sei R ein reell abgeschlossener Körper
und S ci R2 konvex und offen. S ist genau dann ein Modell von GA2,
wenn in R jeder S-definierbare Schnitt realisiert ist.

Dies soll heißen, daß für je zwei Formeln (mit Parametern) a (r) und
ß (s) aus der Sprache eines angeordneten Körpers mit einem zusätzlichen
2-stelligen Prädikat für S (das wir wie üblich selbst wieder mit S bezeichnen)
die folgende Aussage in (R, S) gilt:

3ïVrs(a(r) Aj5(s) => f<r<s) => 3rVrs(a(r) a/?(s) => r<f<s)
x) Siehe [S - 7\] bzw. für die Beweise [S - T2].
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Dieses Lemma zeigt, daß die „Kompliziertheit" der Menge S nicht die

von R überschreiten darf, um Modell von GA2 zu sein. Für R R sieht

man damit sofort, daß jedes konvexe offene S ein Modell ist.
Im 3. Abschnitt folgern wir aus diesem Zusammenhang dann den

folgenden Satz über die Nicht-Charakterisierbarkeit:

Satz. Es gibt keine Aussage p in der Sprache der geordneten Körper
mit einem zusätzlichen 2-steiligen Prädikat S, die genau die konvexen

offenen Teilmengen S a R2 mit R reell abgeschlossen charakterisiert
(d.h. in (R, S) gilt), die Modelle von GA2 sind.

2. Beweis der Charakterisierungslemmas

Wir bedienen uns in diesem Abschnitt der Ausführungen von Szczerba-

Tarski in [S-T2], ohne sie jeweils im einzelnen zu zitieren.
Sei zuerst S c= R2 offen und konvex, R reell abgeschlossen und in R

sei jeder V-definierbare Schnitt realisiert. Von den Axiomen von GA2
bleibt dann für S lediglich A 9 d.h. C1 zu zeigen. Es seien also die
geometrischen 0 Formeln (p (x) und xf (j) gegeben. Unter Ausschluß von
trivialen Fällen können wir annehmen, daß (p und ijt zwei nicht-leere

Mengen auf einer Geraden durch Punkte x0 =£ y0 mit cp (x0) und if (y0)
definieren. Für die Koordinaten eines Punktes z e R2 schreiben wir immer
(.z', z"). Es ist nun klar, daß das folgende Verfahren unter Benutzung der

Parameterdarstellung der Punkte der Geraden durch x0, y0 einen S-

definierbaren Schnitt auf R beschreibt, dessen Realisierung in R mit der

Realisierung des durch cp und i/z in S definierten Schnittes gleichwertig ist.

Man verändere folgendermaßen die Formeln cp und xj/:

(1) alle Parameter a bzw. Variablen z werden durch (a!, a") bzw. (z', z")
ersetzt,

(2) entsprechend werden Quantifikationen Vzp und 3 z p durch
V z' z" (S (z', z") => p) bzw. 3 z' z" (S (z\ z") a p) ersetzt,

(3) die Primformeln B ((«', u") (vf, v") (wr, w")) werden ersetzt durch
3 t (0<£<1 av tu+ (1 — 0 w)2),

1) D.h. als einziger Grundbegriff tritt die Zwischenbeziehung B auf und die
Qualifikation läuft nur über Punkte.

2) Eine Gleichung a b meint natürlich die Konjunktion a' b' A d' b".
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(4) sind q>* (.x', x") bzw. \j/* (y',y") die resultierenden Formeln, so setzen

wir schließlich

a (r) : 3 x'x" (<p* (x', x") a x x0 + rQ/Q-Xo))1)

Die Umkehrung bereitet erheblich größere technische Schwierigkeiten.
Sei dazu S a R konvex und offen, R reell abgeschlossen und außerdem S

ein Modell von GA2. Es gilt jetzt die Richtigkeit von C1 in S zu benützen,

um zu zeigen, daß in R jeder *S-definierbare Schnitt realisierbar ist. Wir
haben also eine Übertragung eines Schnittes von R in das Modell S
vorzunehmen und müssen dort die arithmetischen Operationen geometrisch
beschreiben.

Es ist klar, daß durch Anwendung von affinen Transformationen im
R2 die folgende Situation keine Beschränkung der Allgemeinheit darstellt:

(i) die arithmetischen Formeln a und ß definieren unter Benutzung eines

2-stelligen Prädikates S zwei nicht-leere Teilmengen von R im Intervall

[0, 1],

(ii) die konvexe offene Menge S enthält die Punkte e0 (0,0),

Wir denken uns jetzt die affine Ebene R2 in die projektive Ebene P#
eingebettet und bilden mit einer projektiven Transformation/ die uneigentliche

Gerade des R2 im auf die Gerade durch e„ und ab, wobei e0 in
sich überführt werden soll. Diese Abbildung kann für (x', x") e R2 etwa
durch

beschrieben werden. Die Abbildung/bildet also den Quadranten 0 <x',x"
auf das Dreieck e0, eœ, eœ ab, das im Innern von S liegt. Insbesondere
bildet/das Intervall [0, 1] von R auf die Strecke [e0, e±] in S ab 2). Damit
liegen die /-Bilder des durch a und ß definierten Schnittes in S. Es bleibt
also noch die Übersetzung der arithmetischen Operationen in die
geometrische Sprache von S.

x) Eine Gleichung a-b meint natürlich die Konjunktion a' b' A d' — b".
2) Dabei wird wie üblich R durch r \-+ (r, 0) in R2 eingebettet.

ß(s) : =3 y'y"(iß* (y', y") a y x0 + s (y0-x0))

L'Enseienemp.nt mathAm. t YYVTT focn 1_0
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Da wir nur für nicht-negative r e R garantieren können, daß ihre

/-Bilder in S liegen, ersetzen wir die Formeln a und ß durch gleichwertige
Formeln (die wir wieder mit a und ß bezeichnen wollen), in denen jedoch
nur über die Elemente aus P {r e R | r > 0} quantifiziert wird. Es ist

klar, wie dies zu geschehen hat : statt von einem Körperelement r sprechen
wir von einer Äquivalenzklasse < r1? r2 >/~, wobei für rl9 r2, su s2 e P
definiert wird

< n, r2>~ < su s2y : orx + s2 st

In den Formeln a und ß taucht jetzt natürlich das ursprünglich 2-stellige
Prädikat S als vierstelliges auf :

S«r1,r2>,<s1,s2»

Wir haben also statt (i) jetzt:

(f) die Formeln a und ß enthalten nur Qualifikationen über Elemente

aus P, Parameter aus P, das vierstellige Prädikat S((rl9 r2>, <Jl5 s2))
und definieren nicht-leere Mengen im Intervall [0, 1].

Sind nun r9 s9 t eP gegeben, so läßt sich die Beziehung r + s t
im Quadranten 0 < x'9 x" bekanntlich rein affin beschreiben:
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Wenden wir die projektive Abbildung/an, so wird daraus:

Bezeichnet dann x © y z die folgende geometrische Formel:

3 abcuv\B{e0ae^) a e0 ^ a ^ em a B(eœbeœ) a b # a B(yub) A

a B («aueJ a B (e0uc) a B (ave^) a B (xvc) a B (e^ce^) a

a B (zvbj\

so ist klar, daß gilt :

fir) ©/« /(r + 5)

Analog läßt sich die Multiplikation Q von Elementen aus [e0, >

rein geometrisch in S definieren. Es gilt dann

/WO/ (5) / 0
Es fehlt jetzt noch die Übersetzung von

S«r1,r2},{sl,s2»

Wir suchen eine geometrische Formel o (x1? x2; jl5 j>2) der Eigenschaft

:

ff (/ OA / (r2); fOi),/ (s2))I ^
f s2»

gilt in S1 J I gilt in (i?, S)
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Die Formel a muß also in S ausdrücken, daß <x1? x2y und < Ji, J2)
die /-Bilder der affinen Koordinaten <rl5 r2> und (sl9 s2) eines Punktes
aus S sind. Dabei genügt es natürlich, wenn

< xu x2>« < / (rj), f (r2) > und < y2 > « < / (sj, / (s2) >

gilt, wobei » die analog zu ~ mit © in [e0, gebildete Äquivalenzrelation

ist. Nach Szczerba-Tarski [S-T2], §5 läßt sich eine Formel
K5 (z; xu x2\ yi, y2) angeben, die für z, xu x2, yu y2 e S gerade besagt,
daß

(/ 0')> f(z")) (<x1,x2y

ist. Wir können also

<7(*i,x2; yi,yi):3 z yt,y2)

setzen.

Nach diesen Ausführungen dürfte klar sein, daß die folgende
Übersetzungsvorschrift für die Formeln a und ß einen geometrisch definierten
Schnitt auf [e0, et] liefert, dessen Realisierung in S eine Realisierung des

ursprünglichen Schnittes auf [0, 1] nach sich zieht:

(1) ersetze in a und ß Qualifikationen Vxp bzw. 3 x p durch
V x (B 0o*0 AX 5É^ =>p) bzw. 3 x (B (e0*O Ax^eœ ap),

(2) ersetze die Teilformeln w + w und w • v w durch u © v — w
bzw. u Q v w,

(3) ersetze die Teilformeln S «wx, w2>, ^2)) durch a (m1? w2 ; v2),

(4) ersetze Parameter r durch/ (r).

3. Die Nicht-Charakterisierbarkeit

Wir wollen nun den im 1. Abschnitt formulierten Nicht-Charakteri-
sierbarkeitssatz beweisen, indem wir ihn auf ein Resultat von R. Montague
in [M] zurückführen.

Dazu betrachten wir zuerst einen reell abgeschlossenen Körper R mit
einer Teilmenge N, die die folgenden Bedingungen erfüllen soll:

(a) O eN und r eN => r + 1 eN

(b r9 s e N,r < s => r + 1 < s

(c) (VreR, r > O) (3 teN) t < r < t + 1
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Die Menge Nenthältdann alle natürlichen Zahlen, ist jedoch, falls R

nicht-archimedisch ist, nicht eindeutig festgelegt. Mit Hilfe von N definieren

wir die folgende Teilmenge S* von R2 :

(x',x")eS% : o [(x'<0 v x"<0) a V2 + x"2 < 4] v
x1

O < x',x"a(3 teN)(<-<i+ 1a
X

wobei At das Innere des Dreieckes mit den Eckpunkten (0, 0) 0,

[2t 2 \(2(1+ 1) 2 \
lyrT? ' VîT?J " ' Wi +(i+D3 ' Vi + (!+i)V '

mit Einschluß der offenen Strecke von 0 nach ut bezeichnet.

Wegen (a)-(c) ist S* offensichtlich konvex und offen.

j Lemma. Es sei R reell abgeschlossen und N a R erfülle (a)-(c). Dann
I ist S* genau dann ein Modell von GA2, falls in R jeder N-definierbare
I Schnitt realisiert ist.1)

I Beweis. Dieses Lemma folgt unmittelbar aus dem Charakterisierungslemma,

wenn man beachtet daß nicht nur S* mit Hilfe von N, sondern

1) Dies ist analog zu S-definierbar zu verstehen, d.h. jetzt darf in den definierenden
arithmetischen Formeln a und ß ein zusätzliches 1-stelliges Prädikat für iV benützt werden.
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auch umgekehrt A mit Hilfe von S* definiert werden kann. Es gilt
nämlich für t e R, 0 < t

t eN o (VO <r <4) (35) 52 + (^ —VA ^)eSß
d.h. die Gerade durch (0,0) und (t, 1) reicht in S* bis zum Rand des Kreises

mit dem Radius 2. q.e.d.
Wir können jetzt den Satz beweisen: Angenommen, es gäbe eine Aussage

p der Sprache der angeordneten Körper mit einem zusätzlichen 2-stelligen
Prädikat für S, so daß für S c R2 mit S konvex und offen und R reell

abgeschlossen S genau dann ein Modell von GA2 ist, falls p in (R, S) gilt.
Für jedes A er R, das (a)-(c) erfüllt, heißt dies speziell

S* Modell von GA2 <=> in (R, N) gilt p*

wobei man p* aus p erhält, indem man die Definition von S* in p für das

Prädikat S einsetzt, p* hat jetzt das zusätzliche Prädikat N. Mit dem
letzten Lemma erhalten wir dann :

Ist R reell abgeschlossen und hat N c= R
die Eigenschaften (a)-(c), so ist genau dann
in R jeder iV-definierbare Schnitt realisiert,
falls in (R, N) die einzelne Aussage p* gilt.

Dies widerspricht jedoch Theorem 8 zusammen mit Theorem 6 in [M].
Montague zeigt nämlich dort in Theorem 6, daß die Theorie der reell

abgeschlossenen Körper R mit Teilprädikat N mit (a)-(c), in dem jeder
A-definierbare Schnitt realisiert ist, „strongly semantically closed" ist.

Nach Theorem 8 impliziert dies, daß das Schema der „reellen Abgeschlossenheit"

zusammen mit endlich vielen anderen Aussagen (z.B. (a)-(c) und p*)
nicht ausreicht, diese Theorie zu axiomatisieren.

4. Schlussbemerkungen

1. Der eben bewiesene Satz läßt sich verschärfen zu

Satz'. Es gibt keine Aussage p der schwachen 2. Stufe für angeordnete

Körper mit zusätzlichem 2-stelligen Prädikat S, so dass für konvexe offene

Teilmengen S ci R2 und R reell abgeschlossen S genau dann ein Modell

von GA2 ist, falls p in (R, S) gilt.
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Dabei meint „schwache 2. Stufe", daß auch Qualifikationen über

endliche Folgen von Körperelementen zugelassen sind.

Wir skizzieren den Beweis: Falls es eine solche Aussage p gäbe, so

würde p insbesondere in (R, S^) gelten. Ersetzen wir Ajj in p durch seine

Definition, so erhalten wir eine Aussage p* der schwachen 2. Stufe, die in

fR, N) gelten würde. Aus Lemma 1 und 2 bei Apt in [A] läßt sich nun (mit
einigem technischen Aufwand) folgern, daß es eine Zahl n > 2 gibt, so

daß die durch A ^-Folgen definierten reellen Zahlen einen reell abgeschlossenen

Teilkörper Rn von R bilden, in dem einerseits p* gelten würde, der

aber andererseits nicht alle N-definierbaren Schnitte realisiert. Damit
müßte einerseits p in (Rn, gelten, andererseits ist aber S1^ nach dem

Lemma im 3. Abschnitt kein Modell von GA2.
Es sei noch bemerkt, daß die Lemmata 1 und 2 bei Apt unter der

Voraussetzung V L bewiesen werden. Der Satz' behält dann jedoch auch
ohne diese Voraussetzung seine Gültigkeit.

2. Die Menge S^ wurde schon von Szczerba und Tarski benützt, um
die Unentscheidbarkeit von GA2 zu beweisen. Weiterhin wurde dieses

Modell in Prestel-Szczerba [P-S] benützt, um zu zeigen, daß die Menge
derjenigen Aussagen, die in allen Modellen von GA2 über R gelten (d.h. in
denen das Stetigkeitsaxiom C2 der 2. Stufe gilt) nicht rekursive axioma-
tisiert werden kann (also insbesondere größer als die Theorie GA2 ist).
Dies heißt insbesondere, daß das „Elementarisierungsverfahren" hier zu
einer echt schwächeren Theorie führen muß. Schließlich wurde von Schwabhäuser

in [Sch] für archimedisch geordnete, reell abgeschlossene Körper R
eine Charakterisierung derjenigen angekündigt, die Modelle von GA2
sind. Diese Charakterisierung folgt ebenfalls aus dem Lemma im 3.

Abschnitt.

3. Es bleibt eine Frage aus [S-TJ ungelöst, nämlich, ob GA2 eine
endlich axiomatisierbare Obertheorie besitzt.

4. Bei R. Fritsch und U. Friedrichsdorf möchte ich mich für viele
informative und anregende Gespräche zu dem Thema dieser Arbeit
bedanken.
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