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ZUR AXIOMATISIERUNG GEWISSER
AFFINER GEOMETRIEN

von Alexander PRESTEL

Professor E. Specker zum 60. Geburtstag gewidmet H

1. EINFUHRUNG UND PROBLEMSTELLUNG

In seiner Arbeit [T] ,,What is elementary geometry?* stellt A. Tarski
heraus, daB Hilberts bekannte Axiomatisierung [H] des euklidischen
Raumes im Sinne der Pridikatenlogik 1. Stufe nicht ,,elementar® ist. Dies
liegt daran, daB das Stetigkeitsaxiom 2)

C?: JzVxy(xeX AyeY =B(zxy)) = zVxy (xeX AyeY =B (xzy))

Aussagen iiber alle Mengen X und Y macht. Die hier gewihlte Form
besagt inhaltlich, da auf einer Geraden zwischen zwel nicht-leeren Mengen
immer ein Punkt liegt. Dabei bedeutet

B (xyz): ,,Der Punkt y liegt zwischen den
Punkten x und z (unter Einschluf3
der Begrenzungspunkte x und z)*.

Will man nun die Geometrie des euklidischen Raumes den Frage-
stellungen und Methoden der Logik 1. Stufe zugénglich machen, so bietet
sich an, das Stetigkeitsaxiom nur fiir Mengen zu formulieren, die sich
explizit definieren lassen, und zwar unter ausschlieBlicher Benutzung
geometrischer Grundbegriffe und Quantifikation nur iiber Punkte 2). Das
heiBt, statt des Stetigkeitsaxioms (2. Stufe) C? fordert man fiir jedes Paar
~von Formeln ¢ (x) und ¥ (y)

C': FzVxy (o (x) AY (y)=B(zxy)) =3zVxy (¢ (x) AY (y)=B (xzy))

1) Die vorliegende Arbeit ist eine erweiterte Fassung des Vortrages ,,Remarks on the
- axiomatization of general affine geometry” vom 7. Februar 1980 im Symposium iiber
- Logik und Algorithmik, Zirich.
| ?) Die hier verwendete Fassung findet sich nicht bei Hilbert, sondern etwa bei [T],
; ist aber dem von Hilbert verwendeten Stetigkeitsaxiom gleichwertig.

3) Dies schliesst implizit nattirlich die Quantifikation tiber Geraden und Ebenen mit
em da diese ja durch zwei bzw. drei Punkte eindeutig festgelegt sind.
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Die Formeln ¢ und ¥ diirfen dabei selbstverstindlich Parameter ent-
halten.

Das nun resultierende Axiomensystem hat nicht mehr wie bei Hilbert
nur den R> als Modell, vielmehr sind die Modelle genau die euklidischen
Riume R?, wobei R ein reell abgeschlossener Korper ist. Die resultierende
Theorie nennt Tarski die ,,elementare euklidische Geometrie®“. Das Wort
elementar steht also dafiir, daB3 statt des Stetigkeitsaxioms C? das Schema
der ,,elementaren (d.h.erststufigen) Axiome C' gefordert wird.

In [S] fiihrt W. Szmielew analog die elementare hyperbolische und
elementare absolute Geometrie ein.

In allen Fillen sind die Grundbegriffe die Zwischenbeziehung B (xyz)
und die Streckenkongruenz D (xyuv) (= die Strecke xy ist kongruent zu
der Strecke uv). Wieder sehen die Modelle der elementaren Theorie dhnlich
wie die der klassischen Theorie aus, es ist lediglich der Korper R durch
einen reell abgeschlossenen Korper R zu ersetzen.

Die Verhiltnisse dndern sich jedoch wesentlich, wenn man diese Methode
des ,,Elementarisierens® auf die im folgenden zu beschreibende, etwa bei
Coxeter [C] formulierte, Geometrie anwendet ). Als einziger Grundbegriff
wird jetzt die Zwischenbeziehung B (xyz) verwendet. Die Axiome sind die
ublicherweise fiir B formulierten, die be1 Hinzunahme weiterer Axiome fir
die Streckenkongruenz gerade die absolute Geometrie ergeben. Die Modelle
dieser Axiome sind genau die konvexen offenen (nichtleeren) Teilmengen
des R® mit der vom R® induzierten Zwischenbezichung. (Siehe etwa
Klingenberg [K], §9). Bei dieser Axiomatisierung wurde wieder das Stetig-
keitsaxiom C? gefordert.

In [S-T,],,elementarisieren Szczerba und Tarski diese eben beschriebene
Geometrie, indem sie wieder C? durch das Schema der Stetigkeitsaxiome
C! ersetzen. In [S-T,] findet man eine Axiomatisierung fiir den 2-
dimensionalen Fall durch Axiome mit den folgenden Namen:

A 1 : identity axiom

A 2 : transitivity axiom
A 3 : connectivity axiom
A 4 : extension axiom

A 5: Pasch’s axiom

1) Dort als deskriptive Geometrie bezeichnet.
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A 6 : Desargues’ axiom
A 7 : lower dimension axiom
A 8 : upper dimension axiom

A 9 : elementary continuity axioms

Das Schema A 9 ist dabei mit dem oben eingefiithrten Schema C!
gleichwertig. Szczerba und Tarski nennen die resultierende Geometrie
,,allgemeine affine Geometrie“ (= GA,). Die Modelle dieses Axiomen-
systems sind konvexe offene (nicht-leere) Teilmengen von R?, wobei R ein
reell abgeschlossener Korper ist. Im Spezialfall R = R sind die konvexen
offenen Teilmengen genau die Modelle von GA,. Ist jedoch R # R, so
gibt es immer konvexe offene Teilmengen von R?, die keine Modelle von
GA, sind.!) In [S-T,] blieb es ein offenes Problem, diejenigen offenen und
konvexen Teilmengen von R* zu charakterisieren, die Modelle von G4,
sind. Wir werden im folgenden zeigen, dal3 dies in einem gewissen Sinne
nicht moglich ist.

Der Grund dafiir, daf3 bei dieser Geometrie im Gegensatz zu den vorher
erwihnten die Modellklasse sich nicht verniinftig beschreiben 1483t, liegt
an der unterschiedlichen Stirke des Schemas C! in den verschiedenen
Geometrien. In allen betrachteten Geometrien 1483t sich eine Koordina-
tisierung mit einem geordneten Korper R vornehmen. Das Schema C!
erzwingt dann in den zuerst betrachteten Geometrien lediglich die Realisier-
barkeit rein korpertheoretisch definierbarer Schnitte, dies ist aber mit der
reellen Abgeschlossenheit von R &dquivalent. Im Falle der Geometrie G4,
kann jedoch die ,,Gestalt“ eines Modelles die Realisierung wesentlich
komplizierterer Schnitte erzwingen. Dies kommt zum Ausdruck durch
das im 2. Abschnitt zu beweisende.

CHARAKTERISIERUNGSLEMMA. Es sei R ein reell abgeschlossener Korper

und S = R*® konvex und offen. S ist genau dann ein Modell von GA 25
wenn in R jeder S-definierbare Schnitt realisiert ist.

Dies soll heiBlen, daB fiir je zwei Formeln (mit Parametern) « (r) und
B (s) aus der Sprache eines angeordneten Korpers mit einem zusitzlichen

2-stelligen Préddikat fiir S (das wir wie iiblich selbst wieder mit S bezeichnen)
die folgende Aussage in (R, S) gilt:

FtVrs (e (r) AB(s) = t<r<s) = ItVrs (¢ () A (s) = r<{t<s)

1) Siehe [S — T;] bzw. fiir die Beweise [S — T,].
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Dieses Lemma zeigt, dafl die ,,Kompliziertheit“ der Menge S nicht die
von R uberschreiten darf, um Modell von GA, zu sein. Fiir R = R sieht
man damit sofort, dal jedes konvexe offene S ein Modell ist.

Im 3. Abschnitt folgern wir aus diesem Zusammenhang dann den
folgenden Satz {iber die Nicht-Charakterisierbarkeit:

SATZ. Es gibt keine Aussage p in der Sprache der geordneten Korper
mit einem zusdtzlichen 2-stelligen Prddikat S, die genau die konvexen
offenen Teilmengen S < R* mit R reell abgeschlossen charakterisiert
(d.h. in (R, S) gilt), die Modelle von GA, sind.

2. BEWEIS DER CHARAKTERISIERUNGSLEMMAS

Wir bedienen uns in diesem Abschnitt der Ausfithrungen von Szczerba-
Tarski in [S-T,], ohne sie jeweils im einzelnen zu zitieren.

Sei zuerst S = R?* offen und konvex, R reell abgeschlossen und in R -

sei jeder S-definierbare Schnitt realisiert. Von den Axiomen von GA4,
bleibt dann fiir S lediglich 4 9 d.h. C! zu zeigen. Es seien also die geo-
metrischen ') Formeln ¢ (x) und  (y) gegeben. Unter Ausschlu von
trivialen Fillen konnen wir annehmen, daB ¢ und ¥ zwei nicht-leere
Mengen auf einer Geraden durch Punkte x, # y, mit ¢ (xo) und ¥ (y,)
definieren. Fiir die Koordinaten eines Punktes z € R* schreiben wir immer
(z', z"). Es ist nun klar, daB3 das folgende Verfahren unter Benutzung der
Parameterdarstellung der Punkte der Geraden durch x,, y, einen S-
definierbaren Schnitt auf R beschreibt, dessen Realisierung in R mit der
Realisierung des durch ¢ und ¥ in S definierten Schnittes gleichwertig ist.
Man verdndere folgendermaflen die Formeln ¢ und :

(1) alle Parameter a bzw. Variablen z werden durch (d’, @”) bzw. (z/, z")
ersetzt,

(2) entsprechend werden Quantifikationen Vzp und Jzp durch
Vzz'(S(Z,z") = p) bzw. 32" 2" (S (2, 2") A p) ersetzt,

(3) die Primformeln B ((', u") (v', v") (W', w")) werden ersetzt durch
F 1 (0<t<l Av=tu+ (1—1)w)?),

1) D.h. als einziger Grundbegriff tritt die Zwischenbeziehung B auf und die Quanti-

fikation lauft nur Gber Punkte.
2) Eine Gleichung a = b meint natiirlich die Konjunktion a’ = " A a” = b”.

stk e g e s
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(4) sind @* (x', x") bzw. ¥* (y’, y") die resultierenden Formeln, so setzen
wir schlielich

a(r): = 3x x"(*(x',x") A x = xg + 1 (¥o—%p)) ")
B(s): =Ty y (W*Q,y) Ay = x5+ s(o—X0) ") -

Die Umkehrung bereitet erheblich groBere technische Schwierigkeiten.
Sei dazu S = R konvex und offen, R reell abgeschlossen und auBerdem S
ein Modell von GA,. Es gilt jetzt die Richtigkeit von C' in S zu beniitzen,
um zu zeigen, dafl in R jeder S-definierbare Schnitt realisierbar ist. Wir
haben also eine Ubertragung eines Schnittes von R in das Modell S vor-
zunehmen und miissen dort die arithmetischen Operationen geometrisch
beschreiben.

Es ist klar, daB durch Anwendung von affinen Transformationen im
R? die folgende Situation keine Beschrinkung der Allgemeinheit darstellt:

(1) die arithmetischen Formeln o und S definieren unter Benutzung eines
2-stelligen Priadikates S zwei nicht-leere Teilmengen von R im Inter-
vall [0, 1],

(i) die konvexe offene Menge S enthdlt die Punkte e, = (0, 0),

1
ey = <—2—, 0>, e, = (1,0),e, = (0, Dund e = (1, —1).

Wir denken uns jetzt die affine Ebene R? in die projektive Ebene P2
eingebettet und bilden mit einer projektiven Transformation f die uneigent-
liche Gerade des R? im P auf die Gerade durch e, und e_, ab, wobei e, in
sich iiberfithrt werden soll. Diese Abbildung kann fiir (x’, x”) € R? etwa

durch
14 144 x, x”
f(x ’x) = ’ "2 ' ”
14x"4+x" " 14+x"+x

beschrieben werden. Die Abbildung f bildet also den Quadranten0 <<x’, x"
auf das Dreieck ey, e, e, ab, das im Innern von S liegt. Insbesondere
bildet f das Intervall [0, 1] von R auf die Strecke [e,, e,] in S ab 2). Damit
liegen die f~Bilder des durch « und B definierten Schnittes in S. Es bleibt
also noch die Ubersetzung der arithmetischen Operationen in die geo-
metrische Sprache von S.

) Eine Gleichung a=5 meint natiirlich die Konjunktion a’=5" A a’=b".
#) Dabei wird wie iiblich R durch » — (r, 0) in R? eingebettet.

L’Enseignement mathém. t XXVIT face 1.9 ~
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Da wir nur fiir nicht-negative re R garantieren konnen, dal} ihre 1
f~Bilder in S liegen, ersetzen wir die Formeln « und  durch gleichwertige
Formeln (die wir wieder mit « und f bezeichnen wollen), in denen jedoch
nur iiber die Elemente aus P = {re R|r > 0} quantifiziert wird. Es ist
klar, wie dies zu geschehen hat: statt von einem Korperelement r sprechen
wir von einer Aquivalenzklasse < ry,7, Y/ ~, wobei fiir ry,r,, 5y, 5, € P
definiert wird

CrisTy) ~CS, 80 s L+, =8 + 1,

In den Formeln o und f taucht jetzt natiirlich das urspriinglich 2-stellige
Pradikat S als vierstelliges auf:

S(ris120, <515 82))
Wir haben also statt (i) jetzt:
(i) die Formeln o und f enthalten nur Quantifikationen iiber Elemente

aus P, Parameter aus P, das vierstellige Pradikat S ({ry, 75>, {5y, §5))
und definieren nicht-leere Mengen im Intervall [0, 1].

Sind nun r, s, € P gegeben, so 148t sich die Beziehung r + s = ¢
im Quadranten 0 << x’, x” bekanntlich rein affin beschreiben:

5 .
/ Vr _ r+8
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Wenden wir die projektive Abbildung f an, so wird daraus:

N\ e,
b
(&
a\
u
v
&
e oY e
o £(r) £(s) (r+s) SN

| Bezeichnet dann x @ y = z die folgende geometrische Formel:

d abcuv [B(eqae,) A ey #a # e, A B(eybey) AD # e, A B(yub) A
A B(aue,) A B(eguc) A B(ave,) A B(xvc) A B(ey,ce,) A

A B(zvb)],

| so ist Klar, daB gilt:

J@) @f(s) = f(r+s)

) Analog 148t sich die Multiplikation © von Elementen aus [e,, e, >
| rein geometrisch in S definieren. Es gilt dann

fF@®OSf(s) =1 (s
Es fehlt jetzt noch die Ubersetzung von

Sri,72,<515 52)

| Wir suchen eine geometrische Formel o (x4, x,; ¥, ¥,) mit der Eigen-
schaft:

O'(f (ry), f (r2); f (sq), f (52))} - { Sre, 120, <81, 52))
gilt in S gilt in (R, S)
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Die Formel ¢ muf} also in S ausdriicken, daB <{x;, x,> und <{y;,y,>
die f-Bilder der affinen Koordinaten {r, r,> und {sy, s,> eines Punktes
aus S sind. Dabei geniigt es natiirlich, wenn

{X,% ) RS (1), f(r)) und yy, ¥, ) & f(s9), f(s2))

gilt, wobei ~ die analog zu ~ mit @ in [e,, e, > gebildete Aquivalenz-
relation ist. Nach Szczerba-Tarski [S-T,], §5 148t sich eine Formel

Ks (z; x4, X551, ¥2) angeben, die fiir z, x,, x,, yy, y, € S gerade besagt,
daB

(f (Z’)>f(zﬂ)) = (<x13x2 >/R’/><y19y2>/"§‘)

ist. Wir konnen also

(X1, X235 Y1,V2) 1 = dz Ks(z5%4,%55 Y1, Y2)

setzen.

Nach diesen Ausfithrungen diirfte klar sein, daB die folgende Uber-
setzungsvorschrift fiir die Formeln o und f§ einen geometrisch definierten
Schnitt auf [e,, e,] liefert, dessen Realisierung in S eine Realisierung des -
urspriinglichen Schnittes auf [0, 1] nach sich zieht:

(1) ersetze in « und B Quantifikationen V xp bzw. I xp durch
V x (B (egXe,,) AX #e,=>p) bzw. 3 x (B (egxe,) AX#e, Ap),

(2) ersetze die Teilformeln u + v = wund u-v = w durch u Qv = w
bzw. u O v = w,

(3) ersetze die Teilformeln S ({uy, u,), {vq,v,)>) durch o (uy, u,;v,,v,),
(4) ersetze Parameter r durch f (r).

3. DiE NicHT-CHARAKTERISIERBARKEIT

Wir wollen nun den im 1. Abschnitt formulierten Nicht-Charakteri-
sierbarkeitssatz beweisen, indem wir ihn auf ein Resultat von R. Montague
in [M] zuriickfiihren.

Dazu betrachten wir zuerst einen reell abgeschlossenen Korper R mit
einer Teilmenge N, die die folgenden Bedingungen erfiillen soll:

() OeN und reN =r + 1eN
(b) r,seN,r <s =r+1<s
(©) (VreR,r > 0)(dteN)t <r <t + 1
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Die Menge N enthilt dann alle natiirlichen Zahlen, ist jedoch, falls R
nicht-archimedisch ist, nicht eindeutig festgelegt. Mit Hilfe von N definieren
wir die folgende Teilmenge Sy von R”:

(x',x")e Sy : < [(x'<OVvx"<0) A x? 4+ x"? < 4]v
x’
[O <x,x" A@tEeN)t< = <t +1A (x’,x”)eAt] ,
X

wobei 4, das Innere des Dreieckes mit den Eckpunkten (0,0) = 0,

2 2 B 2(t+1) 2 )
<\/1 +127 1 +t2> o <\/1 +(t+ 12 \/m> A

mit EinschluB der offenen Strecke von 0 nach u, bezeichnet.

u
(e}
N
./ |/

-~

Wegen (a)-(c) ist Sy offensichtlich konvex und offen.

LeMMA. Es sei R reell abgeschlossen und N < R erfiille (a)-(c). Dann

*é ist SK genau dann ein Modell von GA,, fallsin R jeder N-definierbare
é Schnitt realisiert ist.)
i

§  Beweis. Dieses Lemma folgt unmittelbar aus dem Charakterisierungs-
I lemma, wenn man beachtet dall nicht nur S¥ mit Hilfe von N, sondern

b 1 D.ies ist analog zu S-definierbar zu verstehen, d.h. jetzt darf in den definierenden
] arithmetischen Formeln o und (B ein zusétzliches 1-stelliges Pradikat fiir N beniitzt werden.
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auch umgekehrt N mit Hilfe von Sy definiert werden kann. Es gilt
nimlich fir re R,0 < ¢

2
teN < (V0<r<4)@s) I:S2 + <Et> =r A (S, Et> eSﬁ] ,

d.h. die Gerade durch (0, 0) und (z, 1) reicht in Sy bis zum Rand des Kreises
mit dem Radius 2. q.e.d.

Wir konnen jetzt den Satz beweisen: Angenommen, es gibe eine Aussage
p der Sprache der angeordneten Korper mit einem zusdtzlichen 2-stelligen
Pridikat fiir S, so daB fiir S < R? mit S konvex und offen und R reell
abgeschlossen S genau dann ein Modell von G4, ist, falls p in (R, S) gilt.
Fiir jedes N < R, das (a)-(c) erfiillt, heif3t dies speziell

SR Modell von GA, < in (R, N) gilt p*,

wobei man p* aus p erhilt, indem man die Definition von Sk in p fiir das
Pradikat S einsetzt. p* hat jetzt das zusitzliche Priddikat N. Mit dem
letzten Lemma erhalten wir dann:

Ist R reell abgeschlossen und hat N < R

die Eigenschaften (a)-(c), so ist genau dann
in R jeder N-definierbare Schnitt realisiert,
falls in (R, N) die einzelne Aussage p* gilt.

Dies widerspricht jedoch Theorem 8 zusammen mit Theorem 6 in [M].
Montague zeigt ndmlich dort in Theorem 6, dal3 die Theorie der reell ab-
geschlossenen Korper R mit Teilpradikat N mit (a)-(c), in dem jeder
N-definierbare Schnitt realisiert ist, ,,strongly semantically closed® 1ist.
Nach Theorem 8 impliziert dies, dal3 das Schema der ,,reellen Abgeschlossen-
heit”“ zusammen mit endlich vielen anderen Aussagen (z.B. (a)-(c) und p*)
nicht ausreicht, diese Theorie zu axiomatisieren.

4. SCHLUSSBEMERKUNGEN

1. Der eben bewiesene Satz 148t sich verschirfen zu

SATZ'. Es gibt keine Aussage p der schwachen 2. Stufe fiir angeordnete
Korper mit zusdtzlichem 2-stelligen Prddikat S, so dass fiir konvexe offene
Teilmengen S < R* und R reell abgeschlossen S genau dann ein Modell
von GA, ist, falls p in (R, S) gilt
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Dabei meint ,,schwache 2. Stufe®, daB auch Quantifikationen {iiber
endliche Folgen von Kérperelementen zugelassen sind.

Wir skizzieren den Beweis: Falls es eine solche Aussage p gibe, so
wiirde p insbesondere in (R, SR) gelten. Ersetzen wir Sy in p durch seine
Definition, so erhalten wir eine Aussage p* der schwachen 2. Stufe, die in
(R, N) gelten wiirde. Aus Lemma 1 und 2 bei Apt in [A] 1aBt sich nun (mit
einigem technischen Aufwand) folgern, dall es eine Zahl n > 2 gibt, so
daB die durch A.-Folgen definierten reellen Zahlen einen reell abgeschlos-
senen Teilkdrper R, von R bilden, in dem einerseits p* gelten wiirde, der
aber andererseits nicht alle N-definierbaren Schnitte realisiert. Damit
miiite einerseits p in (R,, S'\) gelten, andererseits ist aber S If\? nach dem
Lemma im 3. Abschnitt kein Modell von GA4,.

Es sei noch bemerkt, dal die Lemmata 1 und 2 bei Apt unter der Vor-
aussetzung ¥V = L bewiesen werden. Der Satz’ behilt dann jedoch auch
ohne diese Voraussetzung seine Giiltigkeit.

2. Die Menge Sx wurde schon von Szczerba und Tarski beniitzt, um
die Unentscheidbarkeit von G4, zu beweisen. Weiterhin wurde dieses
Modell in Prestel-Szczerba [P-S] beniitzt, um zu zeigen, dall dic Menge
derjenigen Aussagen, die in allen Modellen von G4, iiber R gelten (d.h. in
denen das Stetigkeitsaxiom C? der 2. Stufe gilt) nicht rekursive axioma-
tisiert werden kann (also insbesondere groBer als die Theorie GA, ist).
Dies heil3t insbesondere, daB3 das ,,Elementarisierungsverfahren® hier zu
einer echt schwicheren Theorie fithren muf3. SchlieBlich wurde von Schwab-
héduser in [Sch] fiir archimedisch geordnete, reell abgeschlossene Kdrper R
eine Charakterisierung derjenigen Sy angekiindigt, die Modelle von G4,
sind. Diese Charakterisierung folgt ebenfalls aus dem Lemma im 3.
Abschnitt.

3. Es bleibt eine Frage aus [S-T,] ungeldst, ndmlich, ob GA, eine
endlich axiomatisierbare Obertheorie besitzt.

4. Bei R. Fritsch und U. Friedrichsdorf mochte ich mich fiir viele

informative und anregende Gespriche zu dem Thema dieser Arbeit
bedanken.
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