
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 27 (1981)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: TOWARDS A COMPLEXITY THEORY OF SYNCHRONOUS
PARALLEL COMPUTATION

Autor: Cook, Stephen A.

Kapitel: 4. Conglomerates and Aggregates

DOI: https://doi.org/10.5169/seals-51742

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 19.08.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-51742
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

SYNCHRONOUS PARALLEL COMPUTATION 111

Theorem 3.2. URP is log depth complete for DSPACE (log «)

(NONUNIFORM).

That URP e DSPACE (log «) (NONUNIFORM) follows from the

existence of a short universal covering string for all «-node undirected

connected oriented graphs of fixed degree (see [AKLLR]). The reducibility

proof is similar to the above argument.
Many interesting problems have O (log2 «) as the best known upper

bound for both deterministic space and uniform depth. It is interesting to

try to reduce these to each other via log depth or uniform log depth
reducibility, so as to cut down the number of equivalence classes of problems
classified by their depth complexity. For example, the directed graph
reachability problem (GRP) is well known to be log space complete for
NSPACE (log «) (see [HU]). In fact, it is also uniform log depth complete
for NSPACE (log n). Two other examples are finding the integer part of
the quotient of two «-digit binary numbers, and raising an «-digit number
to the power «. The best known upper bound for both problems for both

space and depth is O (log2 «). Hoover [HI] shows that each is log depth
reducible to the other, although one of the reductions is not uniform. As
a matter of interest, Hoover also points out that the base conversion problem
(say converting binary notation to ternary) is in nonuniform depth
O (log «) (because the powers of two in ternary can be built in), but the
best space upper bound and uniform depth upper bound is O (log2 «).

4. Conglomerates and Aggregates

I Uniform circuits and ATM's are good models for measuring parallel
I time, but neither is right for measuring the second important resource
j mentioned in the introduction, namely hardware size. What is needed is to
I allow circuits to have cycles. Goldschlager's conglomerates [Gl] satisfy this
j requirement. Briefly, a conglomerate is an infinite collection {M0, M1?...,}
j of identical deterministic finite state machines connected together in some
j manner. Each machine has r > 1 inputs and one output, and the connection
j function / specifies for some inputs of some machines the output of which

machine it is connected to. (Inputs left unconnected receive some fixed
symbol b.) Cycles are allowed in the connection graph. Initially at time O,
the first « machines Ml5 M„ store the symbols of the input string
wx w2 ••• and all other machines start in the initial state q0. At sub-

112 S. A. COOK

sequent times 1, 2,... each machine assumes a new state and transmits

output symbols in a manner determined by its input symbols and state at
the previous step. The conglomerate accepts its input if at any time
machine M0 enters the special state q'.

The uniformity condition for conglomerates specifies that the
connection function/ can be computed within some space bound P on a Turing
machine, where/= s> if machine Ms is reached by starting with
M0 and tracing back via input iu then input i2 of that machine, and so on.
The linear space bound P (n) n suffices in order for the inclusions (1.1)
to hold when parallel time is taken to mean conglomerate time. We have

not considered the question of which uniformity condition makes

conglomerate time equivalent to uniform circuit depth.
Goldschlager did not define or study the "hardware size" of a

conglomerate computation. Rather than do that now, we present a new model
(developed in Dymond [Dl]) to study, called an aggregate which can be

viewed either as like a finite conglomerate, or like a circuit with feedback.
Similar objects have been called "sequential circuits" or "logical nets" in
the switching theory literature. An aggregate has different input/output
conventions than these, and we assume every gate has unit delay to avoid

any possibility of ambiguous computations. We interpret the result as more
a "parallel circuit" than a "sequential circuit".

More formally, an aggregate ßn on inputs xx$ xn is a directed graph
(not necessarily acyclic) whose nodes have labels from B0uB1uB2u {x}.
A node v with label g e B^ must have indegree i, and one edge into v is

associated with each argument of g. If a node v has label x, then v is an

input node and must have indegree zero. Associated with each input node v
is a register Rv consisting of [log n] nodes, which specifies which input xt
is presented to x. There is a distinguished pair of nodes designated v0 and

vx, called output nodes. A configuration of ßn is an assignment of 0 or 1 to
each node v of ßn called the output of v. A computation of ßn is a sequence
C0, Cu of configurations as follows.

(a) All nodes in C0 have output 0 except any node labelled with the

constant function 1 e B0.

(b) If v has label ^eBi? then in Ct+1 v has output equal to g applied to
the input (s) of v in Q.

(c) If v is an input node, then v has output 0 in Ct for t < Hog n\ and

in general in Q+rlognl v has output xi+ x, where i is the value in binary
notation of the register Ry in Ct.

SYNCHRONOUS PARALLEL COMPUTATION 113

The output of ßn is defined to be the output of the node v0 in the first

configuration Ct in which vt has output 1. The running time t (ßn) of ßn

is the maximum over all inputs xu xn of this index t. The hardware size

h (ßn) is the number of nodes in ßn.

The peculiar input conventions for aggregates need justification. The

reason that inputs xt are not fed directly into aggregates as they are for
circuits is that this would entail h (ßn) > n, whereas we are interested in
sublinear hardware bounds (see theorem 4.1 below). In fact, the value of
an input node v could be computed from the index stored in Rv using a

decoding circuit of size O (n) and depth O (log n) (this is the reason we

assume a delay of [log n1 for Rv to affect v). Our convention of not counting
the size of the decoding circuit is similar to the convention of not counting
the input tape in measuring the space used by an off line Turing machine.

(One might imagine, for example, a large number of small aggregates
sharing the same large decoding circuits.)

Our input and output conventions could be modified slightly to allow
aggregates to compute functions instead of to recognize sets. The particular
bit computed of the function would be specified by a part of the input
called the output specifier. Then aggregates could be cascaded to compute
the composition of two functions in hardware size equal to the sum of the
hardware sizes for each of the functions. The output v0 of the first aggregate
ß would be connected to the input v' of ß', and the register of ß' would
be connected to the output specifier of ß. The timing conventions for the
input v' of ß' would be changed to allow for the uncertain delay between
an input request and its answer (signalled by vf).

Definition. A family {ßn} of aggregates is uniform provided the
transformation ln ßn can be computed in deterministic space

o (log h (ß„) + log n)

The complexity classes defined by uniform aggregate families of bounded
hardware and bounded time and of nonuniform bounded time families
can be characterized as follows :

] Theorem 4.1. Let H, S be fully space constructible functions with
I H(n), S(«) > log n. Then

\ (a) UHARDWARE (H) DSPACE (H),
; (b) HARDWARE (H) <= DSPACE (H) (NONUNIFORM),
j (c) UAGTIME (S) UDEPTH (S),
i (d) AGTIME (S) DEPTH (S).

114 S. A. COOK

This theorem shows that neither of the resources uniform hardware
and uniform aggregate time define new complexity classes in themselves.

However, taken together they define apparently new and natural
simultaneous complexity classes. Simultaneous resource bounds are discussed

in section 7.

Proof sketch (a) and (b): A deterministic Turing machine can simulate

an aggregate by updating a bit vector which has one bit for the output of
each gate. A queue is kept of the next fiog ri\ input values for each input
node v to facilitate the update of these nodes. Note that there can be at
most O (H (ri)jlog n) input nodes v, since each has an associated register
Rv with Hog n1 gates.

An aggregate can simulate a (uniform) deterministic Turing machine

for inputs of length n by having a "box" of gates devoted to each work tape

square. The box records the current contents of that tape square, and if
scanned, it records the state of the Turing machine. The contents of the

input tape is obtained by an input node v, whose register Rv is attached to a

counter which records the input head position. This simulation does not
work for nonuniform Turing machines, since the reference tape could have

length exponential in the size of the aggregate.

Proof sketch (c) and (d) : An aggregate can be converted to a circuit by
implementing each input node by the decoding circuit mentioned earlier.
Then each gate v is replaced by a set {<v, t} 10 < / < S (/?)} of gates. The

gate (v, t + 1) has inputs from <wl51} and <w2,/), where wx and w2

are the inputs to v in the aggregate. The circuit output is <^0, S (n)) (we

can assume v0 retains its value in the aggregate once v± 1).

To convert a circuit to an aggregate, construct an input node vt for
each circuit input xt. The register Rv. has constant value i. Let v0 be the

output node for the circuit, and let be the end of a length S (;n) chain of
identity gates having the constant function 1 at the beginning.

More details can be found in [Dl].
The above theorem sheds some light on the old problem of to what

extent feedback in circuits helps reduce the number of required gates. The

best result in that direction seems to be due to Rivest [R2] who gives

examples showing a linear reduction in size, but only for a multiple output
circuit. On the other hand, theorem 4 suggests that disallowing feedback

might cause an exponential size blow up in some cases. For example, let

A be a set which is log space linear time complete for DSPACE (/z) (see

Hong [H2] for a natural example). Then by equation (a), A can be recog-

SYNCHRONOUS PARALLEL COMPUTATION 115

nized by an aggregate family of linear hardware size. On the other hand, as

far as we know A requires exponential time on a Turing machine, so by
theorem 2.1 it would follow that any uniform circuit family recognizing A
has size at least 2nB for some s > 0 (indeed 2ß(7l/log2/,) by [P3]). In fact, we

know of no way to reduce this bound even if we allow nonuniform circuit
families.

Of course in other cases a proof that disallowing feedback causes

exponential size blow up would imply P # NP. For example,
SATISFIABILITY can be recognized in linear space and hence is recognized by
an aggregate family with linear hardware. If P NP, then
SATISFIABILITY would be recognizable by polynomial size circuits.

We close this section with two little results about aggregates in the
I style "if horses can whistle then pigs can fly". This style (but not these
I results) comes from the paper of Karp and Lipton [KL]. The results are

intriguing because the hypotheses consist of assumptions concerning the
i nonuniform complexity of classes and the conclusions assert uniform
I complexity bounds.
i

[Theorem 4.2. If P ^ HARDWARE (log n) then

f P ç DSPACE (log n loglog n)

Proof sketch : Since the circuit value problem (CVP) is log space
complete for P (see [HU]), it suffices to prove CVP is in the second class

given it is in the first class. Thus for each n we assume the existence of an
aggregate ß„ which correctly solves the CVP on inputs of length n, with
h (ßn) O (log n). A deterministic Turing machine M can represent and
simulate a candidate ß'n for ßn in space O (log n loglog 77), and in fact M
can cycle through all such candidates ß'n. There is no apparent way to
determine in small space whether ß'n gives the correct answer for all inputs c
of length 77, but given a particular input c (i.e. circuit with inputs specified)
M can check that ß'n gives consistent answers for each gate g of c by
simulating ß'n three times, with c as input modified so that its output is each of
the two inputs to g and g itself. If ß'n gives consistent answers for each gate
of c, then ß'n correctly gives the output of c (i.e. tells whether c e CVP).

Theorem 4.3. If NP ç HARDWARE (log 77) then

NP c DSPACE (log 77. loglog 77).

116 S. A. COOK

Proof sketch : It suffices to show that SATISFIABILITY is in the
second class given it is in the first class. Reasoning as above, the Turing
machine M can check whether a candidate aggregate ß'n correctly tells
whether a propositional formula F is satisfiable by making ß'n produce a

satisfying assignment bit by bit, by plugging in partial truth assignments
to F and asking ß'n about the result. The trouble is M cannot remember
the partial assignments in small space. However, the problem of whether
"the z'-th bit is 1 in the lexocographically first assignment which ß'n says
satisfies F" is in P. Thus by theorem 4.2 this bit can be determined in
space O (log n loglog n), and M can determine whether this assignment
satisfies F in small space.

5. Hardware Modification Machines

As mentioned in the introduction, there is a need to define a parallel
model which is more powerful than an aggregate, in that it can modify its

circuits, but less powerful than existing parallel RAM models, in that
each unit of hardware can only perform a bounded amount of work in one

step. We shall call the new machine a hardware modification machine

(HMM), since it is intended to be the parallel analog of the storage
modification machine. An HMM consists of a finite collection of finite state
machines connected together as in a conglomerate. At each step, each

machine may, in addition to assuming a new state and transmitting output
signals, modify its input connections. Specifically, it may detach any of its

inputs and re-attach it to a new machine which it brings into the HMM, or
it may re-attach it to an output of any machine which can be reached by a

path of length at most two traced backwards from the input.
One advantage of an HMM over circuits, aggregates, and conglomerates

is that there is no question of uniformity. The machine is uniform because

it constructs itself.
An HMM can execute an algorithm like the one described in [FW] to

simulate a deterministic S space bounded machine in time O (S), and HMM
time S can be simulated in deterministic space O (S2). Thus the inclusions ij

(1.2) apply.
The theory of HMM's is developed in [Dl].

	4. Conglomerates and Aggregates

